Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Потенциал перенапряжения водорода

    Как видно из приведенных данных, перенапряжение водорода может достигать на некоторых электродах (особенно на электродах из ртути, свинца и олова) весьма большой величины. На ртутном электроде потенциал пары 2Н /Н2 на 1,04 в более отрицателен, чем на электроде из платинированной платины. Величина перенапряжения водорода имеет очень большое значение для электроанализа благодаря перенапряжению водорода на катоде можно выделять такие металлы, которые, судя по их окислительным потенциалам, выделяться не должны. [c.430]


    И связанного с этим уменьшения потенциала пары 2Н+/Н2 предупредить выделение водорода при электролизе можно также, проводя электролиз с ртутным катодом. Перенапряжение водорода на ртути особенно велико (около —1 в), поэтому применение ртутного катода дает возможность количественно выделять многие металлы, которые нельзя осадить на платине вследствие выделения водорода. Другое преимущество ртутного катода заключается в том, что выделяющиеся металлы образуют с ртутью амальгамы— разбавленные растворы этих металлов в ртути, и значительно меньше переходят в раствор (т. е. окисляются), чем эти же металлы в чистом виде. Вследствие этого на ртутном катоде можно выделить (при низкой концентрации Н+-ионов) даже щелочные металлы. Большое значение имеет применение ртутного катода для отделения Ре + и ряда других катионов от А1 +, Цз+ и т. д. [c.436]

    Перенапряжение водорода очень чувствительно к присутствию в электролите посторонних веществ. Добавки солей к разбавленным растворам кислот увеличивают перенапряжение водорода на ртути, причем увеличение концентрации 1—1-зарядного электролита (при постоянном pH) в 10 раз повышает т] примерно на 55— 58-10 В. Первоначальная добавка электролита с поливалентным катионом оказывает большее действие, чем такая же добавка 1—1-зарядного электролита. Соединения с поверхностно-активными анионами сильнее всего влияют на водородное перенапряжение на ртути в области малых плотностей тока, снижая его на десятые доли вольта. Поверхностно-активные катионы, наоборот, повышают перенапряжение водорода на ртути в широких пределах плотностей тока. Поверхностно-активные молекулярные вещества или повышают, или понижают в зависимости от их природы, величину Т1Н на ртути. Действие этих добавок ослабляется с ростом плотности тока и при высоких ее значениях полностью исчезает. Перенапряжение водорода на платине, железе и никеле также возрастает при введении поверхностно-активных веществ. Характер влияния поверхностно-активных веществ на водородное перенапряжение и на этих металлах является функцией потенциала электрода. В случае железа, на котором перенапряжение водорода в кислых средах слабо зависит от pH, присутствие в ]застворе поверхностно-активных катионов не только увеличивает перенапряжение, но и изменяет характер связи между г)н и pH. [c.401]


    Для второго из выбранных объектов, т. е. для железа, стандартный электродный потенциал равен —0,44 В. Поэтому здесь, так же как и в случае цинка, следует считаться с реакцией выделения водорода, и, следовательно, условия стационарности будут заданы уравнением (24.2). Однако в отличие от цинка здесь совершенно иное соотношение токов обмена металла и водорода. Ток обмена железа имеет порядок 10 з А-см- , а для водорода на железном электроде в кислых растворах он достигает А-см 2. Можно ожидать поэтому, что стационарный потенциал железа в условиях кислотной коррозии должен заметно отличаться от его обратимого потенциала он будет смещен в сторону положительных значений, г. е. в направлении равновесного потенциала водородного электрода. Этот вывод согласуется с экспериментальными данными и находит дополнительное подтверждение в том, что железо ведет себя в некоторых интервалах pH подобно водородному электроду. Скорость коррозии железа также можно вычислить, если только известны его стационарный потенциал и перенапряжение водорода на нем. [c.493]

    Явления перенапряжения представляют не только теоретический, но и практический интерес, в частности перенапряжение водорода. Для иллюстрации этого можно указать, что выделение путем электролиза таких металлов, как Ре, РЬ, 2п, которые стоят выше водорода в ряду напряжений, может осуществляться только благодаря тому, что они обладают перенапряжением, значительно меньшим, чем перенапряжение водорода на этих металлах, в особенности при высоких плотностях тока. Поэтому потенциал выделения его становится большим, чем потенциал выделения этих металлов. В случае применения тока большей плотности при высоком перенапряжении можно получать вещества в более активном состоянии. [c.452]

    Как ранее было указано, электрохимическая реакция присоединения электрона к иону водорода требует некоторой энергии активации, т. е. для того, чтобы процесс разряда ионов водорода шел на электроде с определенной скоростью, необходимо сообщить ему некоторый избыточный (против равновесного) потенциал, который определяется величиной перенапряжения водорода. Потенциал разряда водородных ионов с определенной скоростью к равен сумме равновесного потенциала водородного электрода и величины перенапряжения водорода, обозначаемой г]. Под величиной перенапряжения водорода понимают сдвиг потенциала катода при данной плотности тока 1п в отрицательную сторону по сравнению с потенциалом водородного электрода в том же растворе, в тех же условиях, но при отсутствии тока в системе. Поэтому расход электрической энергии на получение водорода электролизом больше, чем это определяется термодинамическими подсчетами. [c.42]

    При анодном процессе (кривая аз ) коррозия идете водородной деполяризацией, так как протекает при потенциалах более отрицательных нормального водородного потенциала Янг А , з> Д аз, т. е. наблюдается катодный контроль. Скорость коррозии может быть понижена при наличии (В сплаве включений, повышающих перенапряжение водорода. [c.7]

    А/см потенциал составляет —0,916 В относительно 1н. каломельного электрода. pH электролита 4,0. Каково значение перенапряжения водорода  [c.388]

    Реакции на кадмиевом электроде протекают аналогично приведенным выше для железного электрода. Процесс восстановления гидроокиси кадмия при заряде сопровождается небольшой поляризацией. В то же время водород выделяется на кадмии с большим перенапряжением, поэтому потенциал выделения водорода здесь достигается только к концу заряда. [c.88]

    На ртутном электроде вследствие высокого перенапряжения водорода и деполяризации натрия за счет образования амальгамы становится возможен разряд ионов натрия. Потенциал амальгамного электрода зависит от концентрации металла в амальгаме, а также от концентрации ионов натрия в электролите и может быть вычислен по уравнению [c.159]

    Электрохимические свойства марганца и электродные реакции. По электрохимическим свойствам марганец относится к той же группе металлов, что и цинк и кадмий, т. е. к металлам с малым перенапряжением и высоким тюком обмена (см. табл. IX-1), поэтому марганец склонен к образованию крупнозернистых осадков, к дендритообразованию. Достаточно высокое перенапряжение водорода на марганце все же не обеспечивает отрицательного потенциала выделения водорода и только при pH = 2 и более марганец удается выделить на катоде  [c.280]

    Для железнения применяют растворы сернокислой, хлористой и борфтористоводородной солей двухвалентного железа. Характер электродных процессов и свойства осадков железа в значительной степени зависят от температуры электролита. При комнатной температуре процесс протекает при резко выраженной катодной поляризации, причем потенциал осаждения железа электроотрицательнее потенциалов осаждения никеля и кобальта. Так как перенапряжение водорода на железе невелико, то уже при небольшой сравнительно кислотности (pH = 1—2) из холодного электролита металл осаждается на катоде с очень низким выходом по току. [c.412]


    В технологии электрохимических производств перенапряжение может оказаться как полезным, так и нежелательным. Например, при электролизе воды (растворов щелочи) для получения водорода катодное перенапряжение приводит к бесполезной затрате электрической работы. Если же цель технологического процесса — выделение металла, но одновременно в качестве побочного процесса может идти выделение водорода, то большое перенапряжение водорода полезно, так как оно, затрудняя выделение водорода, снижает бесполезный расход энергии на этот побочный процесс. Например, при электролизе щелочных растворов комплексных солей цинка на катоде должны разряжаться ионы водорода, а не цинка, так как равновесный потенциал водородного электрода менее отрицателен, чем цинкового. Но ионы гидроксония разряжаются на цинке с большим перенапряжением, т. е. при потенциале, гораздо более отрицательном, чем потенциал цинка. Поэтому из раствора при электролизе выделяется цинк. [c.297]

    Осаждение никеля из растворов его солей происходит при pH, равных от 2,5 до 5,5. Следовательно, потенциал -начала разряда ионов водорода в этих условиях находится р пределах значений —0,15—0,32 в. Из сравнения этих величин с потенциалами разряда ионов никеля видно, что ионы никеля будут совместно разряжаться с ионами водорода, причем перенапряжение водорода на никеле невелико, в стационарном состоянии оно равно —0,012 в (см. рис. 132, кривая IV), а в кинетическом колеблется от —0,15 до —0,35 в). [c.312]

    Ртутные электроды позволяют в полной мере использовать высокое перенапряжение водорода на ртути, благодаря чему на катоде можно выделять весьма электроотрицательные металлы. Многие металлы образуют со ртутью металлические соединения, которые сохраняют свои свойства будучи растворены в жидкой ртути. Это обстоятельство заметно понижает активность металла, вследствие чего потенциал его заметно сдвигается в электроположительную сторону. [c.586]

    Значение потенциала можно легко сдвинуть, изменяя кислотность среды, хотя возможности смещения его в отрицательную область (большие значения pH) ограничены образованием осадков гидроксидов выделяемых катионов. Выпадение гидроксидов можно предотвратить, используя реакции комплексообразования, но все же для получения хороших результатов необходимо принимать защитные меры (так как в результате комплексообразования уменьшается активность катионов металлов и их потенциал также сдвигается в отрицательную область). Сильно отрицательное перенапряжение водорода (пНз) на многих металлах по этой причине оказывает благоприятное влияние, поскольку дает возможность проводить электрогравиметрическое определение ряда металлов, как было указано выше. Наконец, следует также учитывать, что потенциал водорода в процессе электролиза сдвигается в сторону положительных значений, так как в растворе возрастает концентрация ионов Н3О+, образующихся эквивалентно количеству выделившегося на катоде металла. Потенциал выделения водорода и по окончании электролиза не должен достигать потенциала зоны осаждения. [c.262]

    Изучение перенапряжения прн электролитическом выделении водорода представляет значительный интерес для теории и практики. Найденные при этом закономерности могут служить в качестве исходных данных для обобщений в области электрохимической кинетики. Величина водородного перенапряжения и зависимость его от различных факторов учитываются при создании технологических электрохимических процессов. Например, при электролизе водных растворов солей цинка на катоде могут протекать реакции разряда ионов Zn ((pzn - ,zn = —0.76 В) и ионов Н" (в нейтральном растворе фн -,н, = —0,41 В). Вследствие высокого перенапряжения водорода на цинке потенциал его выделения сдвигается в сторону более отрицательных значений, благодаря чему возможно катодное осаждение металла с выходом по току 90—95%. [c.513]

    Перенапряжение выделения металлов обычно незначительно, но велико для газов. Большое перенапряжение водорода объясняет возможность электролитического выделения активных металлов из водных растворов. Несмотря на то что равновесные потенциалы таких металлов ниже равновесного потенциала водородного электрода, на катоде гальванической ванны могут выделяться эти металлы, так как выделение водорода задерживается из-за большого перенапряжения и потенциал разряда ионов металла оказывается менее отрицательным, чем для разряда ионов водорода. [c.329]

    В присутствии органических веществ перенапряжение водорода в области обычного разряда изменяется в том интервале потенциалов, где эти вещества адсорбируются на поверхности электрода. В присутствии спиртов или кислот жирного ряда т] возрастает в области адсорбции этих веществ (рис, 137). После их десорбции г, -кривые в растворах кислоты с добавкой органического вещества и без добавки совпадают, причем потенциал десорбции, полученный из поляриза- [c.255]

    Итак, теоретический расчет и экспериментальные данные показывают, что при оценке величины /,., в определенных условиях можно пользоваться точкой пересечения поляризационных кривых растворения основного металла и выделения водорода на включении. Если растворению подвергается лишь основной металл, то ток его саморастворения можно определить по скорости выделения водорода, которая складывается из тока выделения водорода на основном металле и на включении при стационарном потенциале. Токи выделения водорода, а следовательно, и / можно рассчитать, зная площади поверхностей основного металла и включения 5 и зависимости скорости выделения водорода на них от перенапряжения. В самом деле, предположим, что скорость выделения водорода на основном металле и включении подчиняется уравнению Тафеля (см. уравнение (47.6)] с одинаковым коэффициентом Ь, но с различными значениями а, причем а >ав т. е. включение обладает меньшим перенапряжением водорода. Одинаковое значение потенциала на основном металле и на включении означает, что [c.364]

    Технические металлы часто содержат инородные включения. Химически неоднородной может быть также поверхность сплава. Если на включении перенапряжение водорода снижено и металл включения не растворяется или растворяется с небольшой скоростью, то стационарный потенциал включения оказывается более положительным, чем стационарный потенциал основного металла. Таким образом, основной металл и включение образуют микроскопический гальванический элемент — локальный элемент. Так как оба металла находятся в контакте друг с другом и с раствором электролита, то возникает локальный ток (рис. 189) и потенциал основного металла смещается в положительную сторону. Последнее означает ускорение анодного растворения основного металла и замедление катодного выделения водорода на его поверхности. На поверхности включения при этом происхо.пит [c.377]

    Потенциал пары 2Н+/Н2 при [Н+] = 1 равен нулю. Но поскольку в процессе электролиза катод окажется покрытым слоем меди, нужно учесть перенапряжение водорода на меди. Это перенапряжение равно —0,58 в (при плотности тока 0,01 aj M ). Таким образом, выделению водорода соответствует потенциал катода, равный —0,58 в, а выделению меди потенциал -f0,31 в. Следовательно, кислая среда не будет мешать выделению меди на катоде. Водород может начать выделяться только тогда, когда концентрация Си +-ионов понизится до величины, соответствующей потенциалу —0,58 в. Величину этой концентрации легко найти из уравнения  [c.434]

    Кроме того, в щелочной среде увелич вается перенапряжение водорода. Однако наряду с этим понилсается окислительно-восстаио вите.тьный потенциал пары Zn +ZZn, так как в указанных условиях большая часть Zn -ионов оказывается превращенной в анионы Zn02 (при избытке сильной щелочи) или в катионы [2п(МНз)4] + (в аммиачной среде). [c.435]

    Если же электролиз соли никеля проводить даже в очень слабокислой среде, то из-за отрицательной величины стандартного потенциала пары Ы1 +/Ы1 и небольшого перенапряжения водорода на никеле полное осаждение никеля не достигается, так как задолго до окончания осаждения Ы12+-ионов на катоде начинают разряжаться Н+-ионы. Наоборот, при электролизе в аммиачной среде окислительно-восстановительный потенциал пары 2Н+/Нг гонижается приблизительно до —0,7 в и становится меньше по- [c.444]

    Первая иоиытка количественного оформления теории замедленного разряда была предпринята Эрдей-Грузом и Фольмером в 1930 г., хотя некоторые ее положения уже содержались в работах Батлера (1924) и Одюбера (1924). Эрдей-Груз и Фольмер вывели формулу, связывающую потенциал электрода иод током с плотностью тока. Выведенная ими формула является основным уравнением электрохимического перенапряжения и согласуется с эмпирическим уравнением для перенапряжения водорода. Однако теория замедленного разряда в ее первоначальном виде содержала ряд недостаточно обоснованных допущений и не могла удовлетворительно описать всю совокупность опытных данных. Наибольший вклад в теорию замедленного разряда был внесен А. Н. Фрумкиным (1933), который впервые учел влияние строения двойного электрического слоя на кинетику электрохимических процессов. Его идеи во многом определили основное направление развития электрохимической науки и ее современное состояние. [c.345]

    Практически перенапряжением называют разность между фактической и теоретической величиной потенциала разложения электролита. В технике большое значение имеет перенапряжение водорода, так как оно дос-тигает иногда очень большой величины. [c.253]

    При выборе ингибиторов коррозии металлов большое значение имеет заряд поверхности металла в данном электролите, т. е. его потенциал ф в шкале нулевых точек (см. с. 164). Если поверхность металла заряжена положительно (т. е. ф > О, например, у РЬ, Сё, Г1), это способствует адсорбции анионов, которые, образуя на металле анионную сетку , снижают перенапряжение водорода и ионизации металла, что нежелательно, так как приводит к ускорению коррозии. Замедляюш,ее действие могут в этих условиях оказать лишь анионные добавки экранирующего действия, а замедлители катионного типа не применимы. [c.348]

    Если условия контактной коррозии металлов таковы, что суммарная анодная кривая (Уа1)обр 1 вновь пересекается с суммарной катодной кривой (Ук)обр кс в области значительной зависимости последней от перенапряжения катодного процесса (перенапряжения водорода), например в точке 3 (рис. 255), то так же, как и в первом случае, эффективность ускоряющего действия катодного контакта на коррозию основного (анодного) металла будет зависеть от природы металла катодного контакта (его обратимого электродного потенциала в данных условиях ( аЛобр. поляризуемости электродных процессов и Ра, [c.361]

    Как следует из уравнения Тафеля, при коррозионных процессах, протекающих с водородной деполяризацией, изменение по-тешдиала катода от плотности тока имеет логарифмическую зависимость, так как перенапряжение водорода повышается пропорционально логарифму плотности тока. Эта зависимость наблюдается в широком диапазоне плотностей катодного тока, за исключением очень малых плотностей тока. При плотностях катодного тока меньше чем 10 м - зависимость перенапряжения водорода и смещения потенциала от плотности тока становится линейной  [c.43]

    Так как перенапряжение существенно влияет на величину потенциала разряда, то оно может кардинально изменить и последовательность разряда ионов при электролизе. Так, например, большое катодное перенапряжение водорода на таких металлах как железо, цинк, медь, никель препятствует разряду ионов Н3О+ и позволяет получать эти металлы электролизом водных растворов их солей. Наоборот, малое катодное перенапряжение водорода на бериллии, алюминии, тантале или при электролизе растворов солей лития, натрия, калия не может компенсиро- [c.333]

    Степень допускаемого обеднения электролита по ионам кадмия и обогащения его по серной кислоте зависйт от содержания в растворе ионов цинка, меди и других примесей. При слишком сильном обеднении электролита по ионам кадмия и высоком содержании цинка (до 80 г/л) потенциа разряда ионов кадмия приближается к потенциалу разряда ионов цинка и на катоде начинает выделяться цинк. При нормальных условиях выход кадмия по току высок и достигает 85—90% несмотря на низкие плотности тока (40—100 А/м ). Это связано с высоким перенапряжением водорода на кадмии. Благодаря применению нерастворимых анодов из сплава свинца с 1% серебра напряжение на кадмиевых ваннах достигает 2—2,5 В, а расход энергии 1200—1500 кВт-ч/т металла. [c.277]

    Характерным примером значительного облегчения процесса, связанного с материалом катода, является выделение натрия на ртути с образованием амальгамы. При этом потенциал выделения натрия из нейтрального раствора смещается в сторону электроположительных значений примерно на 1 В. Кроме высокого перенапряжения водорода на ртути облегчению процесса способствует химическое взаимодействие между натрием и ртутью, сопровождающееся уменьшением парциальной мольной энергии натрия (АФна). Установлена возможность выделения щелочных металлов на некоторых твердых металлах, например на свинце, цинке [7], а также выделения титана на ряде металлов [51]. [c.434]

    Потенциал амальгамы с 0,5—1% натрия и 1—3-н. растворе NaOH или . аС1 (pH = 8—14) при 25°С равен —1,80 в. Активность натрия в амальгаме равна 1. 10 . Выделение натрия с высоким выходом по току на ртутном катоде при —1,80 в возможно за счет высокого значения перенапряжения водорода на ртути, которое при плотности тока 10 а/дм достигает —1,90 -5-2,0 в. В воде натрий амальгамы имеет потенциал, соответствующий I зоне, амальгама будет реагировать с водой. [c.40]

    Однако сопоставление равновесного потенциала разряда ионов цинка с равновесными потенциалами водородного электрода в кислой и щелочной средах (см. рис. 16) может привести к выводу, что выделение цинка мало вероятно не только в кислой, но и в щелочной среде. Но практика подтверждает возможность осаждения цинка из очень кислых растворов. Возможность электролитического осаждения цинка в нейтральных и кислых растворах определяется значительным перенапряжением выделения водорода на цинке, составляющим около — 0,7 в. Перенапряжение водорода на цинке занисит от ряда факторов плотности тока на катоде, температуры электролита, содержания примесей и поверхностно активных добавок и др. [c.434]

    Основными компонентами сульфатных электролитов являются сульфат олова, серная кислота и органические поверхностно-активные вещества. Для предупреждения окисления двухвалентного олова и гидролиза соли необходимо присутствие в растворе значительного количества (1,0—1,5 моль/дм ) Н2304. Высокая концентрация кислоты не отражается на выходе по току (который близок к 100%), так как перенапряжение водорода на олове очень высокое. В отсутствие органических добавок на катоде происходит рост отдельных игольчатых кристаллов (дендритов), плохо связанных между собой. Компактные осадки олова с мелкокристаллической структурой можно получить из кислых растворов, добавляя поверхностно-активные вещества клей, ОС-20, синтанол ДС-10, сульфированный фенол, крезол и др. В результате адсорбции этих веществ на поверхности катода образуется сплошная адсорбционная пленка, затрудняющая процесс разряда ионов олова, и катодный потенциал резко смещается в сторону отрицательных значений. На поляриза- [c.27]

    Рассмотрим теперь влияние специфически адсорбирующихся анионов на скорость реакции разряда катионов НзО на ртутном электроде. При специфической адсорбции анионов потенциалы внутренней и внешней плоскостей Гельмгольца (а следовательно, и 1-потенциал) сдвигаются в отрицательную сторону, что согласно уравнению (60.3) должно уменьшать перенапряжение. На рис. 135 приведены кривые перенапряжения водорода на ртути в подкисленных растворах солей поверхностно-активных анионов при постоянной ионной силе раствора. Постоянная общая концентрация выбирается для того, чтобы исключить эффект увеличения т . Как видно из рис. 135, экспериментальные данные подтверждают вывод об ускорении реаи ции разряда катионов в присутствии специфически адсорбированных анионов, причем уско- [c.253]

    Рассмотрим теперь влияние специфически адсорбирующихся анионов на скорость реакции разряда катионов Н3О+ на ртутном электроде. При специфической адсорбции анионов потенциалы внутренней и внешней плоскостей Гельмгольца (а следовательно, и 1з1-потенциал) сдвигаются в отрицательную сторону, что, согласно уравнению (50.3), должно уменьшать перенапряжение. На рис. 135 приведены кривые перенапряжения водорода на ртути в подкисленных растворах солей поверхностно-активных анионов при постоянной ионной силе раствора. Постоянная общая концентрация выбирается для того, чтобы исключить эффект увеличения т). Как видно из рис. 135, экспериментальные данные подтверждают вывод об ускорении реакции разряда катионов в присутствии специфически адсорбированных анионов, причем ускоряющий эффект проявляется только в области их адсорбции. Этот результат означает, что эффект увеличения поверхностной концентрации НзО" в присутствии адсорбированных анионов превалирует над эффектом возрастания энергии активации [пропорциональной (ф — Ifii)], когда гр1-потенциал сдвигается в отрицательную сторону. [c.269]


Смотреть страницы где упоминается термин Потенциал перенапряжения водорода: [c.452]    [c.45]    [c.49]    [c.389]    [c.394]    [c.7]    [c.43]    [c.43]    [c.438]    [c.445]    [c.519]    [c.363]   
Практикум по физической химии (1950) -- [ c.241 ]




ПОИСК





Смотрите так же термины и статьи:

Водород атомарный потенциал перенапряжения

Измерение потенциала выделения металла и перенапряжения водорода

Перенапряжение

Перенапряжение водорода

Перенапряжение ср потенциал



© 2025 chem21.info Реклама на сайте