Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спектры комплексных соединений органических соединений

    Электронные спектры комплексных соединений. Известно, что многие органические и неорганические соединения окрашены. Происхождение окраски органических соединений может быть связано с тем, что в молекуле имеется большая цепочка сопряженных кратных связей, благодаря чему полоса я я -перехода сме- [c.282]

    К сожалению, не все органические вещества, а тем более комплексные соединения органических веществ с катионами при замораживании их растворов в нормальных парафинах дают структурные спектры флуоресценции. Не удается получить линейчатые спектры для азометиновых и азосоединений. Наличие водородных связей между кислородом оксигруппы и азотом способствует размыванию спектров флуоресценции даже в замороженном состоянии . [c.152]


    В настоящем разделе приводятся спектры поглощения неорганических, комплексных и органических соединений в ультрафиолетовой и видимой области. [c.734]

    Целью данной работы является получение спектральных характеристик двух систем, обладающих различным характером спектров поглощения. Для этого изучают спектры поглощения растворов какого-либо комплексного соединения с органическим реагентом, имеющие широкие полосы поглощения, и спектры поглощения аквакомплексов редкоземельных элементов, которые имеют узкие полосы поглощения. Измерения проводят на приборах, в которых монохроматорами потоков излучения являются светофильтры (ширина спектрального интервала, пропускаемого светофильтром в фотоэлектроколориметрах ФЭК-М, — 80—100 нм, в фотоэлектроколориметрах ФЭК-Н-57, ФЭК-60, ФЭК-56 — 30—40 нм), и на приборах, диспергирующим элементом которых является призма (спектрофотометры СФ-4, СФ-4А, СФ-5, СФ-16, СФ-26) или дифракционная решетка (СФД-2). [c.53]

    Учебная исследовательская работа 7.1. Изучение спектров поглощения комплексных соединений в водно-органических растворителях [c.126]

    Сравнивают полученные результаты с результатами исследования водного раствора того же комплексного соединения и делают заключение о влиянии органического растворителя на спектр поглощения комплекса. [c.126]

    В последнее время все большее применение находит метод обменной экстракции с последующим определением элементов спектро([юто-метрическим методом. Ю. А. Золотовым [29] даны теоретические основы метода и приведен ряд примеров его практического применения. В качестве реагента обычно применяют раствор внутрикомплексного соединения какого-либо элемента в органическом растворителе. Определяемый элемент (М ) из водной фазы при перемешивании фаз переходит в органическую фазу, содержащую элемент (М. ), вытесняет этот элемент, образуя более устойчивое и лучше экстрагируемое комплексное соединение. Таким путем повышается избирательность [c.80]

    С ЭТИМИ тремя реагентами, а также комплекс никеля с диметилглиоксимом не разрушаются при обработке экстрактов раствором щелочи, применяемой для разрушения соответствующих комплексных соединений кобальта и меди, часто сопутствующих никелю. Действием щелочи избыток этих реагентов удаляется из слоя органического растворителя и можно измерять поглощение только комплексного соединения в ультрафиолетовой области спектра, где е имеет более высокое значение. [c.187]


    ИК-спектры поглощения неорганических солей и комплексных соединений с неорганическими лигандами обычно проще спектров органических соединений (содержат меньшее число полос), поэтому неорганические и координационные соединения значительно легче идентифицируются методами ИК-спектроскопии, чем органические. [c.539]

    В зависимости от кислотности раствора можно разделить катионы всех металлов на две большие группы. Еще большее дифференцирующее действие проявляют органические реактивы, которые являются слабыми кислотами и в то же время образуют очень прочные комплексы с ионами металлов. В качестве примера на рис. 26.3 приведен дитизоновый спектр , т. е. зависимость экстракции дитизонатов некоторых металлов от pH раствора. Из рисунка видно, что ртуть и серебро экстрагируются тетрахлоридом углерода в виде дитизонатов металлов в очень кислой среде ионы висмута и меди экстрагируются в менее кислой среде с повышением pH экстрагируются ионы цинка, кадмия, индия и других металлов. Таким образом, регулируя только pH раствора, можно в значительной мере провести разделение металлов. Подобным образом можно разделить ионы металлов в виде гидр-оксихинолинатов и других комплексных соединений с органическими реактивами. [c.536]

    Книга представляет собой пособие для практического освоения ряда фундаментальных методов органического синтеза. В ней рассмотрены каталитическое гидрирование органических соединений, восстановление комплексными гидридами металлов, реакции литийорганических соединений и применение жидкого аммиака в органическом синтезе. Каждая глава включает обсуждение важнейших особенностей метода, а также описание экспериментальной процедуры 10-15 синтезов с подробной химико-физической характеристикой получаемых веществ (ИК, УФ, ПМР спектры). [c.2]

    Инфракрасная спектроскопия (ИКС) — раздел спектроскопии, охватывающий длинноволновую область спектра (>700 нм за красной границей видимого спектра). По инфракрасны.ч спектрам поглощения можно установить строение молекул различных органических (и неорганических) веществ антибиотиков, ферментов, алкалоидов, полимеров, комплексных соединений и др. По числу н положению пиков в ИК спектрах поглощения можно судить о природе вещества (качественный анализ), а по интенсивности полос поглощения — о количестве вещества (количественный анализ). Основные приборы — различного типа инфракрасные спектрографы. [c.57]

    За последние 20 лет появилось более тысячи публикаций, посвященных кислородсодержащим макроциклическим соединениям. Макроциклические полиэфиры вызвали всеобщий интерес исследователей благодаря способности образовывать координационные соединения с катионами металлов в кристаллическом виде и в растворе. Спектр действия этих лигандов настолько широк, что вопреки принятому мнению о необходимости соответствия жесткости координирующихся частиц они вступают в реакции комплексообразования с представителями самых различных групп металлов — щелочных, щелочноземельных, -переходных, лантаноидов, актиноидов Известны также комплексные соединения краун-эфиров с некоторыми нейтральными молекулами — водой, бромом, органическими растворителями и основаниями, однако в данной книге комплексы такого типа не рассмотрены. Все аспекты возможного практического применения макроциклических полиэфиров — в экстракции, межфазном катализе, аналитической химии, в биологии и медицине, безусловно, связаны с их комплексообразующей способностью. [c.147]

    С помощью спектроскопии ЯМР можно решать те же основные задачи, что и с помощью ИК- и УФ-спектроскопии определять структуру органических соединений, проводить кинетические исследования, решать задачи количественного и качественного анализа. Появление спектроскопии ЯМР вызвало, по существу, переворот в стереохимии. Как правило, спектры ЯМР дают гораздо больше информации об органическом соединении, чем другие виды спектроскопии однако все методы спектрального исследования лучше применять комплексно, поскольку они взаимно дополняют друг друга. [c.114]

    Молекулярные спектры поглощения вещества также находят приложение в качественном анализе, при этом первое место, бесспорно, принадлежит колебательным спектрам. Их исключительно широко используют в органическом качественном анализе для установления присутствия различных функциональных групп. В неорганическом качественном анализе их применение ограничивается чаще всего определением состава и структуры комплексных соединений. Использование колебательных спектров дает возможность установить наличие изомеров. данного вещества (например, цис- и транс-изомеров).-Один из вариантов метода, известный как метод отпечатков пальцев , позволяет идентифицировать не только отдельные функциональные группы, но и целые молекулы. В этом случае после того, как будут установлены основные функциональные группы исследованного соединения и на основании всех данных предложена его определенная структура и состав, сравниваются спектры поглощения в инфракрасной области образца и того чистого известного соединения, которое, как было допущено, идентично пробе При совпадении обоих спектров можно считать, что предполагаемый состав верен, а если спектры не совпадают, то спектр исследованного вещества сравнивают со спектрами других соединений, которые, как допускается, могут иметь состав, соответствующий анализируемому образцу. [c.196]


    Исследование изомерии позволило химикам-органикам предсказать в прошлом веке формы органических молекул аналогично существование изомерии и выяснение ее природы позволили Вернеру прочно обосновать его идеи о строении координационных соединений. Третья глава книги посвящена этому вопросу в его современном состоянии. Четвертая и пятая главы посвящены спектроскопии комплексных соединений. Спектры поглощения в видимой и ультрафиолетовой области составляют экспериментальную основу для применения теории кристаллического поля к координационной химии, а спектроскопия в целом оказалась важнейшим методом для суждения о строении. Последняя глава посвящена магнетохимии комплексных соединений, имеющей огромное значение в исследовании комплексов переходных металлов. Эта область, которая в течение ряда лет казалась установившейся, начала внезапно очень быстро развиваться. Об этом существенном развитии и идет речь в гл. 6. [c.9]

    Лаборатория молекулярной спектроскопии и квантовой химии (руководитель Л. А. Грибов) занята разработкой автоматизированной системы идентификации органических соединений по их спектрам. Ведутся работы по инфракрасной спектроскопии и спектроскопии комбинационного рассеяния. Кроме того, проводятся исследования в области электронной спектроскопии, в частности с целью изучения состава и структуры комплексных соединений переходных металлов. Важное место в работе этой лаборатории занимают расчетные методы квантовой химии. [c.201]

    Алифатические сульфиды образуют комплексные соединения с молекулярным йодом, интенсивно поглощающие свет в ультрафиолетовой области спектра (около 307 ммк). Эти соединения позволяют с достаточной точностью определять алифатические сульфиды при условии отсутствия других веществ, поглощающих в ультрафиолетовой области. Комплекс представляет собой соединение органического сульфида и йода в отношении 1 1 и очень чувствителен к избытку того или другого компонента. В связи с тем, что практически очень трудно добавить точно необходимое количество йода (особенно в присутствии ароматических или олефиновых углеводородов, которые могут связывать различные количества йода), рекомендуют поддерживать концентрацию йода значительно более высокой. [c.325]

    Поглощение в растворах окраигенных комплексов рзэ имеет вид широких полос и отличается очень высокой интенсивностью, характеризуемой молярными коэффициентами погашения в тысячи и даже десятки тысяч единиц. Поэтому в подобных определениях достижима значительная чувствительность. С другой стороны, с органическими реагентами возможны только групповые определения, поскольку спектры комплексных соединений в ряду рзэ почти тождественны друг другу и лишь незначительно различаются характеристиками максимумов полос. Линии и полосы индивидуальных ионов рзэ при этом незаметны, так как концентрации анализируемых растворов намного ниже тех, которые необходимы для появления индивидуальных спектров. [c.185]

    Появление и широкое распространение спектральных и радиоспектроскопических методов анализа чрезвычайно расширили возможности селективного обнаружения различных структурных фрагментов и функциональных фупп В последние десятилетия предложены различные способы интерпретации и комплексного использования результатов общего химического и ЯМР-спектрального анализа при исследовании разнообразных природных продуктов Спектроскопия ЯМР в сильных магнитных полях позволила нам детально проанализировать структурно-спектральные взаимосвязи в разнообразных классах модельных ароматических и непредельных органических соединений 388] Методологическая новизна этих исследований заключается в комплексном использовании всех видов информации, доступной из спектров ЯМР, в том числе различных параметров спектров ЯМР гетероатомов, в первую очередь ядер О и 8 [389] Этот цикл работ создал фундамент для решения более сложных структурных задач, связанных с изучением состава и строения компонентов смесей природного происхож- [c.238]

    Более интенсивные спектры комплексных соединений с емакс>Ю часто наблюдаются не в видимой, а в ультрафиолетовой области. Их ицтен-сивность явно показывает, что они разрешены по Лапорту , т. е. относятся к типу q<->и, а те переходы, для которых 8 10 , вероятно, разрешены по спину (но крайней мере в случае соединений элементов с Зс -электронами). Возможно, что имеются и переходы типа запрещенных по спину или запрещенных по симметрии (или и те и другие). Такие переходы хорошо известны в органических соединениях. Но в комплексах эти переходы должны появляться с несколько меньшими интенсивностями и могут быть замаскированы более интенсивными переходами. [c.250]

    Инфракрасные спектры комплексов металлов с органическими лигандами можно разделить на два участка. В области волновых чисел 650—4000 см располагаются полосы поглощения, соответ-ствующие колебаниям атомов лигандов, тогда как в области 50— 650 M- можно обнаружить скелетные колебания структуры, состоящей из металла и донорных атомов. Обычно колебательные спектры комплексных соединений имеются в распоряжении исследователя, так что этим эмпирическим методом можно определить характеристические колебания молекулы лиганда. Однако подход оказывается слишком затруднительным при исследовании колебаний связей металл—донорный атом (за исключением колебаний связей металл—водород), и в большинстве случаев необходим теоретический анализ. [c.90]

    Наличие веществ разного знака предположительно объяснено образованием комплексных соединений органических кислот с металлами-комнлексообразователями. В этом нас убеждают данные ИК-спектроскопии. Даже после двукратного переосаж-дения из щелочных растворов соляной кислотой спектры фракций показывают наличие ионной формы карбоксильных групп. [c.268]

    Обильный, НО весьма трудтто поддающийся обобщению экС периментальный материал был получен этими же авторами при псследованпи спектров поглощения хлора в комплексных и органических соединениях. Часть из этих данных представлена в табл. 27. На основании этого материала все-таки можно сделать некоторые заключения. В тех случаях, когда атом хлора находится во внешней сфере комплекса, его спектр поглощения имеет простую структуру, а длина волны, отве- [c.148]

    Подобная картина наблюдается и для внутрикомплексных соединений катионов металлов с органическими аддендами . Сплошные спектры флуоресценции в этих случаях обусловливаются внутримолекулярными взаимодействиями, т. е. присущи самой молекуле. Известен всего лишь один пример получения структурного спектра комплексного соединения—раствора фта-лоцианина магния в нормальных углеводородах . [c.152]

    Несмотря на довольно широкий спектр методов анализа, наибольшее распространение получили экстракционные, гравиметрические и титриметрические методы, так как они не требуют дорогой аппаратуры и доступны каждому исследователю. В основе самых распространенных методов анализа НПАВ лежит их способность образовывать комплексные соединения с анионами типа ферроцианпда, кобальттиоцианата и др. Комплексы экстрагируют органическими растворителями и определяют содержание ПАВ колориметрически. В случае применения в качестве реагентов-осадителей гетерополикнслот комплексы выдev яют в виде осадка и определение ведут гравиметрически. [c.80]

    На при.мере анилина, диоксана, ацетона, этилацетата и уксусного ангидрид, показано, что обработка двуокиси углерода приводит к изменению спектров поглощения некоторых органических соединений. Изменения электронных спектров, выражающиеся в появлении новых полос и в нз.мепении инте.чсивностн поглощения, объяснены возникновением водородных и других комплексных связей меж- [c.163]

    Этен-номенклатурное название С2Н4 его тривиальное название-этилен.) Соединения с циклическим расположением атомов, имеющие делокализованные, бензолоподобные кратные связи, называют ароматическими. Дакрон, нафталин, ДДТ, аденин и рибофлавин (см. рис. 21-1 и 21-3) содержат ароматические группы. На примере аденина и рибофлавина видно также, что углерод способен образовывать двойные связи с азотом и что азот может принимать участие в образовании ароматических циклов с делокализованными кратными связями. Многие разделы органической химии связаны с особыми свойствами систем, включающих ароматические циклы. Ароматические молекулы и комплексные соединения переходных металлов являются двумя важнейшими классами соединений, в которых энергия, необходимая для возбуждения электрона, приходится на видимую часть спектра. Поэтому практически все красители представляют собой такие соединения и принимают участие в механизмах захвата и переноса энергии фотонов. [c.270]

    Исходя из сказанного, можно отметить, что методы ВС и МО приблил<енные. Для молекул, к которым они применимы, при их помощи получаются сходные результаты. Вместе с тем метод МО более общий по сравнению с методом ВС. Он рассматривает не отдельные связи, а молекулу в целом. Эти преимущества выявляются при описании электронных спектров, магнитных свойств молекул сложных органических и комплексных соединений. [c.106]

    При наличии в комплексном соединении двух или более одинаковых лигандов линии поглощения в инфракрасном спектре должны расщепляться из-за появления нескольких типов колебаний лигандов относительно центрального атома. Однако у транс-изомеров, обладающих центром симметрии, расщепления полос не происходит, что позволяет отличить их от г ыс-изомеров. Так, в области ПОО см транс-изомер [ oen2(S N)2] S N имеет одну полосу (П26 см ), а г ыс-изомер—две (И23 и 1144 см ). Комплекс с центром симметрии (транс-изомер) можно отличить также по нулевому дипольному моменту, однако измерение дипольного момента, как правило, удается провести только для нейтральных комплексных частиц с крупными органическими лигандами. [c.103]

    Расшифровка СТС спектров ЭПР очень важна для органической химии при исследовании свободных радикалов. По СТС спектров ЭПР определяют область делокализации неспаренного электрона в свободном радикале. Кроме того, можно найти плотность неспа-репного электрона на соответствующих атомах, что дает возмож-ность судить о реакционной способности отдельных фрагментов радикала. В неорганической химии изучение СТС спектров ЭПР дает ценную информацию при установлении структуры комплексных соединений. Метод ЭПР используют также и при исследовании дефектов в кристаллах, в том числе дефектов, возникающих после облучения нейтронами. ЭПР приобрел особый интерес и для квантовой электроники в связи с тем, что открылась возможность использова- [c.191]

    Спектры поглощения комплексных соединений нонов рзэ с органическими реагентами представляют основу для спектрофотомет рических определений другого рода, отличакщихся от описанных даше чувствительностью и назначением. [c.185]

    Иногда для введения в пламя водные растворы проб заменяют органическими растворами комплексных соединений. Простое добавление 4% (по объему) увеличению BuOH приводит к интенсивности спектров в среднем в 2 раза, а для La — в 3 раза [1263]. В присутствии 50% (по объему) МеОН интенсивность спектра La увеличивается в 5 раз [1432], а введение рзэ в пламя в виде раствора комплексов с ТТА] в гексоне дает еще большее увеличение интенсивности [1679], доходящее в случае La до 100-кратного [1433]. Определенное увеличение интенсивности достигается при введении в водный раствор NH4 I [372]. [c.196]

    Эти и подобные им исследования для других гидридов впервые иавели на мысль, что водород во всех соединениях связан не с железом, а с магнием, образуя либо смешанный гидрид железа и магния, либо комплексное соединение, в состав которых, кроме указанных компонентов, входит органический растворитель. Изучение ИК-спектров показало, что в так называемом гидриде железа, осажденном реактивом Гриньяра, иет полос связи Ре—Н, но зато обнаруживаетси линия, характерная для гидрида магния. [c.96]

    В ультрафиолетовой области спектра сильно поглощают сами реагенты — а-бепзплдиок СИМ и р-нитрозо-а-нафтол, которые экстрагируются хлороформом вместе с комплексными соединениями никеля и кобальта. В литературе [1, 2] имеются указания па возможность реэкстракцип этих реагентов щелочами из хлороформного раствора. Нами были детально изучены условия экстракции и реэкстракции реагентов. Результаты представлены на рисунке. Двойная реэкстракция реагентов щелочью приводит к почти полному устранению их влияния на определение металлов в ультрафиолетовой области соединения никеля с а-бепзплдиок-симом и кобальта с Р-нитрозо-а-нафтол ом щелочью не реэкстра-гируются. Для устранения влияния на поглощение ничтожной доли реагента, остающегося в фазе органического растворителя, работа всегда проводилась с использованием нулевого раствора, содержащего все реагенты и прошедшего те же операции, что и исследуемые растворы, но не содержащие никеля п кобальта. [c.299]

    Начиная с концентрации 10 М НС1 и выше, характер спектра и значения молярных коэффициентов погашения практически остаются постоянными, не зависящими от концентрации кислоты. Детальные измерения спектров показали наличие пиков при 230 и 293 ммк, молярные коэффициенты погашения которых равны 10 400 и 4700 соответственно. Для идентификации нового валентного состояния технеция была использована реакция комплексообразования пятивалентного технеция с роданид-ионами. Как известно, эта реакция протекает очень быстро с образованием комплексного соединения розового цвета, которое хорошо извлекается такими органическими растворителями, какбутилацетат, эфир. Однако при экстракции новой формы технеция, проведенной сразу же после добавления роданид-ионов, извлечение этого элемента оказалось незначительным. В то же время прибавление к солянокислому раствору технеция роданид-ионов и какого-либо не очень сильного восстановителя, как например, аскорбиновой [c.327]

    Парагематины. Способность геминового железа связывать органические основания сильно различается для двух- и трехвалентного состояния. Комплексные соединения восстановленного гемина с органическими основаниями известны в кристаллическом виде уже с давних пор [188] (см. также [189). Они относительно устойчивы и содержат 2 моля основания на 1 моль тема. Их называют гемохромогенами, например пиридингемо-хромоген. Тот факт, что и гемин соединяется с основаниями, был обнаружен по изменению спектра гемина при добавлении основания [190]. Кейлин назвал новые соединения парагемати-нами. Г. Фишеру [191] впервые удалось получить пиридинпара- [c.68]

    Среди методов определения микроколичестз платиновых металлов и золота основное место занимают колориметрические и спектрофотометрические или экстракционно-спектрофотометрические методы. Число колориметрических методов для некоторых благородных металлов, например палладия, чрезвычайно велико между тем для определения иридия существует сравнительно небольшое число методов. Чувствительность спектрофотометрических методов достигает 0,01 мкг/мл, за редким исключением 0,001 мкг/мл. Большая часть методов основана на возникновении окраски комплексных соединений платиновых металлов с органическими реагентами (реже применяются неорганические реагенты) и на использовании собственной окраски таких комплексных соединений, как хлориды, бромиды, иодиды. Для спектрофотометрического определения платиновых металлов и золота применяют все классы органиче ских реагентов,, перечисленные в главе П. Во многих случаях химизм реакции и состав образующихся окрашенных продуктов неизвестны. Многие реагенты не избирательны, поэтому методы определения одного металла в присутствии другого основаны либо на нахождении различия в условиях образования окрашенных соединений (температура, pH раствора), либо на использовании некоторого различия в спектрах поглощения соединений двух металлов с одним и тем же реагентом, т. е. определении оптической плотности в разных областях спектра, либо на различной экстрагируемости окрашенных соединений органическими растворителями. [c.158]

    В первом разделе представлены работы, в которых освещаются ре )ультаты теоретических и экспериментальных исследований строения молекул, приводятся многочисленные экспериментальные данные о спектрах органических, элементооргаиических и комплексных соединений, а также расчеты спектральных и электрооптических характеристик молекул. Вто)эой раздел содержит работы по исследованию строения вещества и межмолекулярных взаимодействий, ряд работ откосится к изучению строения и динамики кристаллической решетки. Третий раздел — применение методов спектроскопии к изучению химических реакций, явлений адсорбции и вопросам связи между реакционной способностью и спектроскопическими характеристиками молекул, несколько работ посвящено спектральным исследованиям высокомолекулярных соединений и биологических объектов. [c.2]

    Критический обзор некоторых важных результатов в изучении комплексов переходных металлов методом инфракрасных спектров был сделан Коттоном [262]. В этом обзоре обсуждаются инфракрасные спектры многих неорганических координационных соединений, а также-спектры следующих органических комплексов металл-сэндвичевых соединений, циклопентадиениловых карбонилов металлов, нитрозилов, алкилов и пр., р-дикетонов, оксалатов и соответствующих комплексов, алкеновых и алкиновых комплексов, комплексов аминокислот, мочевины, этилендиаминтетрауксусной кислоты, диметилгли-оксимов, 8-оксихинолина, комплексов больших органических лигандов, таких, как производные тетрафенилпор-финов и комплексных соединений щавелевой кислоты и ее производных. [c.88]


Смотреть страницы где упоминается термин Спектры комплексных соединений органических соединений: [c.734]    [c.163]    [c.157]    [c.734]    [c.203]    [c.203]    [c.265]    [c.5]    [c.72]   
Органические аналитические реагенты (1967) -- [ c.175 ]




ПОИСК





Смотрите так же термины и статьи:

спектры соединения



© 2024 chem21.info Реклама на сайте