Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Лимонная кислота, определение

    Определение лимонной кислоты [c.321]

    При подготовке вещества к анализу для отделения или связывания мешающих компонентов во всех методах широко применяют различные типы реакций. Однако конечный этап определения связан в большинстве случаев с реакцией одного из этих типов. В зависимости от реакции, метод определения того или другого компонента относят к соответствующей группе методов объемного анализа. Так, например, кальций в силикатах можно определить следующим путем. К раствору после разложения силиката прибавляют лимонную кислоту, чтобы связать алюминий и железо (реакция комплексообразования), затем осаждают кальций щавелевокислым аммонием (реакция осаждения) промытый осадок щавелевокислого кальция растворяют в кислоте и освободившуюся щавелевую кислоту титруют (окисляют) перманганатом. Несмотря на использование в ходе анализа реакций различных типов, описанный метод определения кальция относят к группе методов окисления и восстановления. [c.272]


    Показано, что гасящее влияние кислот на эмиссию натрия усиливается в ряду кислот лимонная, азотная, борная, серная, соляная и фосфорная [488]. По данным работы [713], муравьиная и уксусная кислоты повышают интенсивность испускания натрия, винная и лимонная кислоты — снижают. Объясняется это изменением поверхностного натяжения раствора и его влиянием на размер капель аэрозоля. В присутствии 100%-ной уксусной кислоты чувствительность повышается в 5—10 раз. При атомно-абсорбционном определении натрия в силикатах в пламени ацетилен—воздух борная кислота устраняет все влияния [620]. [c.123]

    Прямое комплексонометрическое титрование циркония возможно выполнять в кислых растворах, когда избирательность метода повышается. При прямом титровании циркония в 0,3 М, растворе серной кислоты в присутствии лимонной кислоты определению циркония не мешают большие количества титана в 3 М растворе соляной кислоты титрованию не мешают большие количества титана даже без введения дополнительных комплексообразующих веществ. Подходящим индикатором, реагирующим с цирконием в кислых средах и резко изменяющим свою окраску в этих условиях, является ксиленоловый оранжевый. [c.141]

    Условия опыта в 200 мл раствора лимонной кислоты определенной концентрации вводили ионит КУ-2 в количестве 5% от веса растворенной лимонной кислоты. Раствор со смолой перемешивали 1 час [c.353]

    Оптимальные условия разделения продуктов распада Ас при комплексообразовании их с лимонной кислотой. Определение Ас по францию. Для отыскания оптимальных условий систематически изучали поведение отдельных радионуклидов, являющихся изотопами или аналогами актиния и продуктов распада Ас. На бумаге ватман-31 методом электрофореза разделяли модельную смесь [c.65]

    Разделение катионов. Наиболее простой способ, основанный на использовании различной степени поглощения отдельных ионов, не дает удовлетворительных результатов. Обычно вначале поглощают все присутствующие в растворе ионы, а затем подбирают такой раствор, который извлекает только некоторые ионы. Чаще всего при этом используют различные комплексообразователи. Так, например, при разделении редких земель используют различную устойчивость их лимоннокислых комплексов. Устойчивость этих комплексов зависит от кислотности раствора. Слой катионита, поглотивший ряд катионов, промывают раствором лимонной кислоты, доведенным до определенной кислотности. Таким образом удается перевести в раствор одни ионы, тогда как другие остаются в катионите. [c.74]


    Разработаны фотометрические методы определения калня, основанные на предварительном осаждении растворами соли висмута и тиосульфата [370, 2210], натриевой солью 2-хлор-З-нитротолуол-5-сульфокислоты [2896], 5-нитробарбитуровой кислоты [2180] и реакцией с лимонной кислотой в уксусном ангидриде [1019] [c.102]

    Для определения кобальта в алюминии берут две навески металла по 1 г, растворяют каждую в 20 мл едкого натра, прибавляют посте пенно раствор лимонной кислоты до pH 8. Раствор переносят в мер ную колбу емкостью 50 мл и доводят объем раствора водой до метки В стакан емкостью 50 мл переносят 10 мл приготовленного раствора добавляют 2 мл раствора 2-нитрозо- 1-нафтола, нагревают почти до ки пения, охлаждают и переносят раствор в делительную воронку емко стью 50 мл. К этому раствору приливают 5 мл хлороформа, оставляют стоять 15 мин и экстрагируют соединение кобальта в течение 20 мин на механическом вибраторе. Водный слой отбирают пипеткой (используя резиновую грушу). Для удаления избытка реагента хлороформный слой обрабатывают 5 мл щелочи в течение 20 мин, используя механический вибратор, затем промывают водой. Если имеется примесь железа, то его комплексное соединение разрушается раствором щелочи при удалении избытка реагента из хлороформа. Для разрушения комплексных соединений никеля и меди, которые могут также содержаться в качестве примесей, раствор хлороформа промывают 5 мл соляной кислоты в течение 5 мин и снова водой, используя механический вибратор. Так как при этой операции освобождается некоторое количество реагента, которое входило в комплексные соединения меди и никеля, то еще раз раствор хлороформа промывают последовательно раствором щелочи (1 мл) и водой (5 мл). Раствор хлороформа переводят в мерный цилиндр или градуированную пробирку, добавляют хлороформ до 5 мл и измеряют оптическую плотность раствора на спектрофотометрах при к 307 нм. Раствор сравнения готовят в условиях, указанных на стр. 162. [c.164]

    При выращивании культур определенных дереворазрушающих грибов на древесных опилках в присутствии питательных солей наблюдается накопление значительных количеств кислоты, идентифицированной как лимонная. Количество лимонной кислоты, образовавшейся некоторыми культурами дереворазрушающих грибов (% от веса опилок), следующее  [c.425]

    Изучено влияние соляной, серной, борной, фосфорной, уксусной, лимонной кислот на процесс испарения частиц аэрозоля и реакций в газовой фазе при определении натрия [486]. Измерялись вязкость, поверхностное натяжение, скорость поступления растворов в пламя, применялась техника двух распылителей. Показано, что присутствие уксусной, лимонной и серной кислот влияет на дисперсность капель аэрозоля и скорость испарения частиц. Фосфорная, соляная и борная кислоты влияют также на процесс испарения и равновесные реакции в газовой фазе. [c.124]

    Ионнообменная хроматография. Метод состоит из двух последовательных операций 1) поглощение катионов из раствора в колонке, наполненной кусочками смолы, предварительно переведенной в Н" -, NHt-, Си +- или форму по мере продвижения раствора по колонке вниз катионы лантаноидов обмениваются с катионами смолы и сорбируются на поверхности по определенным зонам (в каждой из сорбционных зон содержится катион определенного лантаноида) 2) элюирование (вымывание) катионов лантаноидов растворами (элюентами) веществ, образующих комплексные соединения. При элюировании катионы лантаноидов вымываются в определенной последовательности. В качестве комплексообразующих веществ используются лимонная кислота, натриевые или аммонийные соли органических кислот — нитрилтриуксусиой (трилон А), этилендиаминтетрауксусной (трилон Б) и др. Вымывание производится элюентами с определенной концентрацией и при оптимальных значениях pH. [c.279]

    Применяют для фотометрического определения Т в ста- лях, сплавах алюминия, шлаках, глиноземе, горных поро- дах, минералах и водах. Щавелевая, винная и лимонная кислоты не мешают определению. [c.212]

    Кроме определения содержания суммы органических кислот, нами было изучено накопление щавелевой и лимонной кислот, как наиболее типичных для данного вида анабазиса. [c.205]

    Железо не мешает определению урана, если его связать в комплекс винной, лимонной кислотами или F -ионом. [c.216]

    ПАН предложен для экстракционно-фотометрического определения платины (IV) в электролите золочения, содержащем большие количества лимонной кислоты и железо (III) [8 ]. [c.21]

    Определение кобальта. Используют метод дифференциального потенциометрического титрования растнором красной кровяной соли КзРе(СЫ) . Отбирают 20—50 см исследуемо1о раствора, добавляют 100 см воды, 10 см 10 %-го NH4 I, 30 см 25 %-го аммиака и 10 см 30 %-й лимонной кислоты. В стакан с приготовленным раствором помещают два платиновых электрода, из которых один заключен в чрубку с открытым концом. Электроды подключают к милливольтметру, например типа рН-340. Титрование ведут прн перемешивании раствора магнитной мешалкой. Конец титрования определяют по скачку потенциала, Ко щентрацию (г/дм ) кобальта рассчитывают по формуле  [c.131]


    При добавлении строго определенного количества серной кислоты освобождается только лимонная кислота, а оксалат остается в растворе. Затем раствор обесцвечивают активированным углем, и с помощью желтой кровяной соли осаждают железо. Горячую массу фильтруют в нутч-фильтрах. Осадки на фильтре промывают горячей водой и присоединяют ее к раствору лимонной кислоты. [c.151]

    Полярографическое определение мышьяка в природных и сточных водах описано в работах [93, 97, 1029]. Давидюк [97] разработал метод, позволяющий определять до 1,25-10 % As на фоне гидроокиси кальция и лимонной кислоты определению не мешают все элементы, входящие в состав природных вод. Исключение составляют Zn и Ni их мешающее влияние устраняют введением в раствор комплексона III (0,004 молъ/л). [c.87]

    Анализ титаната бария с добавками висмута и церия основан на гравиметрическом сульфатном методе определения бария /1/. Чтобы предупредить соосаждение Т1, В й Се, последние удерживали в растворе лимонной кислотой. Определение титана проводили дифференциальным фотометрическим методом, используя его пе-рекисный комплекс /1-2/. Церий определяли фотометрическим методом с арсеназо III /3/, предварительно отделив его в виде куп- фероната экстракцией смесью бензола и изоамилового спирта /4/ Для перевода пробы в раствор применили сплавление. В качэстве плавня использовали смесь тетраборнокислого и углекислого натрия. Определение висмута проводили из отдельной навески колори. метрическим методом с тиомочевиной /Ь/. [c.263]

    В случаях, когда содержание СО2 в исследуемом газе менее 1%, следует пользоваться методом титрования, состоящим в том, что отмеренный объем газа пропускают через известный объем Ва(0Н)2 определенного титра. Гидрат окиси бария связывает СО2 в нерастворимую соль ВаСОз. а непрореагировавший избыток Ва(ОН)а оттитровывают раствором щавелевой или лимонной кислоты в присутствии фенолфталеина. [c.827]

    В центрифужных пробирках смешивают 1,1 мл 0,9%-ного раствора ЫаС1, 0,4 мл 5%-ного раствора сернокислого цинка и 0,4 мл 0,3 н. раствора ЫаОН. К смеси добавляют 0,1 мл крови (в качестве противо-свертывающего средства можно использовать гепарин, натриевые и калиевые соли щавелевой или лимонной кислот). При определении глюкозы непосредственно в момент взятия крови антикоагулянты можно не применять-. Смесь хорошо перемешивают и через 10 мин белки [c.19]

    Определение по методу Пьючера, Виккери и Ливенуорзса показывает, что в сернокислотном растворе остается 26 г лимонной кислоты. Применять этот раствор вторично для получения аконитовой кислоты не рекомендуется накопившиеся вода и побочные продукты значительно понижают как выход, так и качество получаемого продукта. [c.16]

    Водка Водка . Для приготовления этой водки на 1 дал сортировки расходуют 1 г пищевой соды (NaH Oa), 0,308 г пищевой лимонной кислоты и 10 г рафинированного сахара-песка. Пищевую соду вводят непосредственно в сортировку в виде водного раствора. Сахар в сортировку вводят в виде инвертного сахара. Из указанного количества лимонной кислоты 0,3 г вносят в сортировку в виде раствора для создания определенной кислотности, а 0,008 г используют для получения инвертного сахара (0,08% от массы сахара). [c.264]

    Аналогичный метод применил Мор [9861 при определении алюминия в медных сплавах. Ройтель П109] при анализе цинка и его сплавов использовал для маскировки цианид в сочетании с винной или лимонной кислотой. Если в сплаве присутствует магний, то он осаждается совместно с алюминием, поэтому необходимо определить его содержание и ввести поправку (следы магния во внимание не принимают). Результаты очень точные, если 2п А) < 100. [c.83]

    Продукт взаимодействия лимонной кислоты с уксусным ангидридом реагирует с ионами натрия и других щелочных металлов, образуя соединение фио.петово-красного цвета с максимумом светопоглощения при 560 нм [6881. Определению мешают соли других щелочных металлов и даже 1 мкг четвертичных аминов. Реакцию полностью ингибируют (в мкг) Fe(III) (0,5) Н3РО4 (40,0) и (в г) вода (0,03) СН3СООН (0,1) СНдОН (0,05) не мешают (в мкг) Са (32,6) Си (313,0) Fe(II) (13,0) Hg(II) (68,6) и щавелевая кислота (0,03 г). Селективность реакции повышают введением ацетилацетона. Закон Вера соблюдается до концентраций натрия 5-10 М. [c.78]

    Отмечается [713], что при пламенно-фотометрическом определении натрия с помощью фильтрового фотометра К. Цейсс (модель П1) этанол снижает интенсивность излучения натрия за счет увеличения самоноглощения, изменения температуры пламени и кинетики процессов, несмотря на увеличение эффективности распыления раствора. При изучении влияния муравьиной, уксусной, винной и лимонной кислот на определение натрия с помощью спектрофотометра на основе спектрографа ИСП-51 установлено повышение чувствительности определения натрия в 5—10 раз в присутствии 100%-ной уксусной кислоты и в 1,5—2 раза для 2 М раствора кислоты [713]. В несколько меньшей степени влияет муравьиная кислота. Винная и лимонная кислоты снижают интенсивность излучения натрия. Основное значение придается роли поверхностного натяжения раствора. Отмечается, что уксусная кислота увеличивает эмиссию и абсорбцию натрия за счет уменьшения диаметра частиц аэрозоля [497]. Изучено влияние метанола, этанола, бутанола и уксусной кислоты на распределение свободных атомов в пламени ацетилен—воздух и на температуру [559]. Для этой цели применяли пламенно-фотометрическую установку на основе спектрографа ИСП-51, комбинированную горелку-распылитель. При концентрации органического растворителя 1 М температура пламени повышается на 100° С. Интенсивность линий натрия в присутствии органических растворителей максимальна в более высокой зоне пламени по сравнению с водным раствором. Общий объем пламени возрастает. Аналогичные результаты получены в работе [397]. [c.126]

    NaOH, сурьма количественно проходит в фильтрат, а таллий полностью задерживается катионитом. В щелочной среде сурьма находится в виде анионов ЗЬОз , ЗЬОг , ЗЬОз и, следовательно, не задерживается катионитом. Аналогичное явление наблюдается в присутствии разных комплексообразующих анионов (пирофосфат, цитрат, тартрат, оксалат) таллий количественно адсорбируется катионитом, сурьма переходит в фильтрат [53]. Лучще всего использовать при хроматографическом разделении сурьмы и таллия винную или лимонную кислоты. Этот метод отделения таллия от сурьмы применяется при определении таллия в пылях цинкового и свинцового производств, в цинковом электролите, металлическом кадмии, В ряде работ, посвященных хроматографии на бумаге, имеются данные и о солях таллия. В качестве растворителя наиболее часто применяются амиловый или бутиловый спирты, насыщенные 1—2Л/ раствором НС1, или смеси изопропилового или этилового спиртов с 5Л/ раствором НС1 (9 1). Для характеристики разделения катионов приводим значения Rf [620—622] (табл. 17). [c.74]

    Сухой реактив на нитратный азот. Смесь применяют для определения нитратного азота капельным методом. Тщательно размешивают 10 г сульфата марганца, 2 г цинковой пыли, 75 г лимонной кислоты и 4 г сульфаниловой кислоты со 100 г сульфата бария. В хорошо размешанную смесь добавляют 2 г а-нафтиламина, предварительно растертые в ступке, и снова смесь хорошо перемешивают. Правильно приготовленный реактив должен иметь светло-серую окраску. Появление розового или красного оттенка в приготовленной смеси свидетельствует о наличии в исходных реактивах азотистых соединений такой смесью пользоваться нельзя. Реактив хранят в темной склянке, тщательно закрытой притертой пробкой. [c.193]

    Бензолсульфиновая кислота и ее щелочные соли количественно осаждают четырехвалентный плутоний из слабокислых растворов в виде оранжевого аморфного осадка [48]. Состав его отвечает формуле Ри(СбН5802)4. Шестивалентный плутоний восстанавливается этим реагентом до-четырехвалентного состояния. Трехвалентный плутоний бензолсульфиновая кислота не осаждает (М. С. Милюкова, 1953 г.). Растворимость бензолсульфината плутония (IV) в условиях, соответствующих количественному осаждению (0,15 М НЫОз и 2,5%-ный избыток осадителя), равна 1,2-10 моль/л (М. С. Милюкова. 1959 г.). Определению плутония в виде бензолсульфината мешают винная и лимонная кислоты при концентрации их выше 10%, а также катионы и - -, ТЬ +, 2г + и Ре +. Определение можно проводить в присутствии N1, Со, Сг, Ьа, Ре(II), Мп, Си и других элементов. М. С. Милюковой (1953 г.) предложена следующая методика определения Pu(IV) в виде бензолсульфината. [c.261]

    Полученная кислота охарактеризована следующим образом 1) кривыми зависимости между радиоактивностью и титром кислоты на снликагелсвой хроматограмме [6], 2) колориметрическим определением по методу, специфичному для определения лимонной и ацетондикарбоновой кислот [7]. Асимметричное распределение изотопа относительно третичного атома углерода в лимонной кислоте доказано с помощью биохимического расщепления. [c.161]

    Сурьму полярографически можно определять по реакции (2) на фоне электролитов, в которых Sb(III) находится и разряжается на электроде в виде комплексных ионов. Сурьма может электро-восстанавливаться и в виде аква-ионов, однако, в связи с повышенной склонностью Sb(HI) к гидролизу с образованием полярографически неактивных гидролизованных форм Sb(III), определение необходимо проводить в растворах с высокой концентрацией H2SO4 [292, 492, 1605—1607] или НзР04 [1672]. Отсутствие токов восстановления Sb(HI) в слабокислых, нейтральных и слабощелочных растворах используется в ряде случаев для устранения ее мешающего влияния определению некоторых других элементов. Так, например, для определения Bi в присутствии Sb предложено использовать в качестве фона IM NH4 I, содержащий 20% лимонной кислоты [721]. На этом фоне возможно определение микроколичеств Bi в сурьме без предварительного разделения. Способность Sb образовывать прочные комплексы с цитрат- и тартрат-ионами широко используется в полярографии для повышения разрешающей способности метода при определении Sb(HI) в присут- [c.63]

    В работе [132, 133] на примере анализа щавелевой кислоты, оксалата аммония, лимонной кислоты, цитрата натрия и п-амино-салицилата натрия была показана возможность радиометрического титрования органических кислот и их растворимых солей соединением AgNOa. Анализ этим методом включает в себя количественное осаждение солей серебра и последующее обнаружение избытка иона серебра в жидкой фазе после образования и осаждения твердой фазы. Недавним усовершенствованием радиометрического метода определения щавелевой кислоты явилось титрование 0,1 н. или [c.166]

    Эл. Шами [489] разработал метод потенциометрического титрования уранил-хлорида раствором r lg. Стандартный раствор r la приготовляли электролитически по методике, описанной ранее [511]. Индикаторным электродом служила платиновая проволока ( =0,3 мм), впаянная в стеклянную трубку в качестве электрода сравнения использовали насыщенный каломельный электрод. Титрование проводили в атмосфере инертного газа ( Og). Было исследовано влияние температуры, кислотности среды и комплексующих кислот (щавелевой, лимонной) на точность определения урана. Авторы рекомендуют проводить титрование уранил-хлорида раствором r Ig в 8 AI растворе НС1 при нагревании до 90—70 . Щавелевая, винная и лимонная кислоты (0,1 М) Не мешают. [c.217]

    Для определения конца электролиза нет необходимости в данном случае использовать индикаторную систему, так как электролиз прекращают, как только ток в цепи достигнет значения тока одного фона. Электролиз проводят в 1 М растворе Н, 04, при потенциале катода — 0,25 в (отн. электрода Ag А С1/КС 1нас) или в цитратном растворе, 1 М по лимонной кислоте и 0,1 М по А 12(504)3 с pH 4,5. при потенциале, равном — 0,60 в. Предварительно продувают через раствор ток азота в течение 15 мин. для удаления растворенного кислорода. Электролиз в сернокислой среде следует вести 5—10 мин. электролиз в цитратной среде протекает медленнее и длительность его увеличивают до 30—40 мин. Работать необходимо с очень чистой ртутью, продажную ртуть следует предварительно тщательно очищать. [c.226]

    Для этого вырезанные полосы бумаги разрезают на мелкие части и три раза экстрагируют порциями горячей воды по 10—15 мл. Экстракт лимонной кислоты собирают в одну выпарительную чашку, а яблочной — в другую. Растворы упаривают на водяной бане до объема около 1 мл в каждом. Полученные вытяжки оттитровывают из микробюретки 0,001 н. раствором фенолфталеината натрия. Из пошедшего на титрование объема фенолфталеината натрия необходимо вычесть объем раствора, израсходованного на контрольное определение. Контрольное определение проводят следующим образом из непроявленной и не содержащей кислот части бумаг вырезают полосу, равную по пдощади полосам, взятым для экстракции каждой из кислот. Из этих полос извлекают горячей водой присутствующие в бумаге другие кислоты, экстракт упаривают и титруют, как указано выше. По полученным данным рассчитывают содержание лимонной и яблочной кислот в мг1мл. [c.271]

    Допустимые количества комплексообразующих веществ, не мешающих определению ЭДТА, аскорбиновая и лимонная кислота — 1000 щавелевая и сульфосалициловея кислота - 100, а также SO 4 — 1000 N0 3 — 10 F -100 [2]. [c.7]

    Определению. Рс1(II) мешают Т (1 /), Си(11), Се(1 /), ЭДТА, щавелевая и лимонная кислоты. [c.14]

    Продуцентами этих кислот могут быть бактерии, плесневые грибы или дрожжи. Микроорганизмы, продуцирующие молочную кислоту, а также вызывающие спиртовое брожение, в ходе эволюции приспособились к анаэробному образу жизни. Уксусная и лимонная кислоты в свою очередь образуются в аэробных условиях. По-видимому, кислоты играют определенную роль в борьбе с конкурирующей микрофлорой, а также являются резервными источниками углерода. Так, Aspergillus niger после использования сахара могут использовать в качестве субстрата лимонную кислоту. В свою очередь уксуснокислые бактерии при отсутствии спирта в среде ассимилируют уксусную кислоту, окисляя ее до воды и СО2. [c.143]

    Гидроокись натрия растворяет осадок перрената тетрафениларсония. Определению рения мешают многие анионы Мп04 , С104 , S N , J , Вг и F . Концентрация ионов NOg в растворе не должна превышать 0,1 М. Кроме того, должны отсутствовать Hg, Bi, Pb, Ag, Sn, Tl, V(II). Вольфрамат- и ванадат-ионы не мешают определению. Элементы, образующие анионные галоидные комплексы, которые осаждаются с тетрафенил арсонием в присутствии 0,5 N 1 , могут присутствовать только в незначительных количествах. Молибден не мешает определению, если осаждение проводить из аммиачных растворов 6 М) или из растворов винной или лимонной кислот (0,6 М). [c.75]


Смотреть страницы где упоминается термин Лимонная кислота, определение: [c.92]    [c.161]    [c.209]    [c.20]    [c.110]    [c.27]    [c.191]    [c.162]    [c.56]    [c.59]   
Методы анализа чистых химических реактивов (1984) -- [ c.196 ]




ПОИСК





Смотрите так же термины и статьи:

Лимонен

Лимонит

Лимонная кислота

Лимонная кислота в лимонах



© 2025 chem21.info Реклама на сайте