Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Физические силы межмолекулярного взаимодействия макромолекул

    Поглощение ИК-излучения связано с колебаниями молекулы и соответственно ее групп. Взаимодействие между группами оказывает влияние на колебательные частоты. В низкомолекулярных соединениях, имеющих кристаллическую структуру, существует однозначная связь между колебательным спектром этого соединения, его структурой и силами межмолекулярного взаимодействия. В силу статистической природы полимерных объектов характер структуры макромолекул и взаимодействий между ними не имеет такой однозначности. Правда, данная макромолекула в определенных условиях имеет определенный колебательный спектр. Но этот спектр в большей мере, чем для низкомолекулярных соединений, зависит от физических воздействий, изменяющих конформацию макромолекул и надмолекулярную структуру. В колебательном спектре такие изменения находят отражение, и это дает ценную информацию о структуре полимера, что в свою очередь способствует решению ряда физико-химических проблем. [c.18]


    По современным представлениям, высокомолекулярные соединения построены из длинных гибких нитевидных молекул, способных изменять свою форму. Связь между макромолекулами осуществляется физическими силами межмолекулярного взаимодействия. Как показали структурные исследования, все полимеры неоднородны по физической структуре, что обусловлено большим размером и гибкостью макромолекул. Кристаллизующиеся полимеры двухфазны и имеют кристаллические и аморфные области. Аморфные полимеры однофазны, но и в этих полимерах, согласно представлениям В. А. Каргина, имеются области упорядоченности, названные им пачками. Благодаря гибкости макромолекул и их способности менять свою форму полимеры обладают высокими обратимыми деформациями, что отличает их от низкомолекулярных соединений. [c.52]

    В процессе набухания полимеров существенное значение имеет сольватация макромолекул. Сольватацией называют нехимическое взаимодействие макромолекул с молекулами растворителя, которое приводит к относительно прочному их связыванию за счет физических сил межмолекулярного взаимодействия. Вполне очевидно, что наибольшей степенью сольватации будут характеризоваться полимеры, содержащие полярные группы, в полярных растворителях, так как при этом образуются наиболее прочные межмолекулярные связи макромолекул с молекулами растворителя. Если и полимер, и растворитель неполярны, силы межмолекулярного взаимодействия малы, и сольватация в этом случае не происходит. Например, при набухании в четыреххлористом углероде полибута- [c.86]

    Как уже отмечалось, параметрами, отражающими физическую индивидуальность данной макромолекулы, являются гибкость и силы межмолекулярного взаимодействия, причем конформация полимерной молекулы определяется именно ее гибкостью (см. далее). Появление стереорегулярных полимеров послужило стимулом для дальнейшего активного развития исследований конфигурации и конформации макромолекул, в том числе с помощью такого мощного экспериментального метода, как ЯМР высокого разрешения. Благодаря этому в настоящее время мы располагаем экспериментальными возможностями определения локальной химической структуры полимерных молекул, по крайней мере в пределах триад. Рассмотрим, например, фрагмент цепи полимера винилового ряда, имеющий общую формулу [c.155]

    Как и Гпл величина Tg определяется гибкостью (кинетической) полимерной цени и силами межмолекулярного взаимодействия. В настоящее время в отдельных случаях удается найти корреляцию между локальной структурой макромолекулы на уровне триад и значениями Tg, однако следует иметь при этом в виду, что Tg также зависит, строго говоря, и от временных эффектов, от условий и методики эксперимента, от молекулярной массы полимера, содержания разветвлений в цепи или густоты пространственной сетки, наконец, от степени вытяжки и т. п. Словом, значения Tg зависят от характера молекулярной агрегации полимера в блоке. Иначе говоря, как и в случае прочих физических свойств полимеров, при обсуждении значений Тg необходимо учитывать не только локальную конформацию участков макромолекулы (сегментов), но и конформацию полимерной цепи в целом. [c.166]


    При нагревании полимера тепловая энергия переходит в кинетическую энергию молекул. Тепловое движение макромолекул ослабляет силы межмолекулярного взаимодействия и полимер из твердого агрегатного состояния переходит в жидкое. Сначала происходит переход из стеклообразного или кристаллического физического состояния (твердое агрегатное состояние) в высокоэластическое (твердое), а затем в вязкотекучее состояние (жидкое). При этом аморфные (стеклообразные) и кристаллические полимеры ведут себя по-разному. [c.38]

    Причиной образования различий в надмолекулярных структурах СПУ может быть различная плотность физической сетки. Исследования глобулярной структуры СПУ [27] показало, что полиуретан с большей плотностью сшивок обладал выраженной глобулярной структурой, а наименьшая плотность сшивок соответствовала образованию полосатой структуры. Последний случай соответствует ситуации, когда межмолекулярное взаимодействие преобладает над силами внутримолекулярного взаимодействия, развернутые макромолекулы полимера объединяются в ассоциаты, которые укладываются более или менее параллельно друг другу, образуя полосатые структуры. В работах [28-31 ] исследовано влияние химического состава и условий получения полиуретановых покрытий на вид и упорядоченность глобулярной структуры и связь глобулярной структуры с механическими свойствами. Установлено, что оптимальная глобулярная структура с высокими физико-механическими свойствами в ПУ покрытии образуется при возможности структурирования раствора, имеющего определенные параметры взаимодействия полимер - растворитель. Получение покрытия из плохого растворителя и в условиях гелеобразования приводит к образованию глобулярной структуры с нестабильными свойствами, и прочность пленок значительно снижается. [c.229]

    Многие исследователи изучали связь между химическим строением сложных полиэфиров и иг физическими свойствами исходя из представлений о роли энергии когезии, гибкости молекулярных цепей и формы макромолекул Было показано, что температура плавления полиэфиров связана с силами межмолекулярного взаимодействия и гибкостью цепей Высокие температуры плавления полимера связывают со следующими факторами регулярностью строения цепи, т. е. симметрией макромолекулы наличием жестких межцепных связей способностью линейных цепей к плотной упаковке наличием диполь-дипольного взаимодействия и поляризацией молекул [c.104]

    Межмолекулярные взаимодействия склонных к структурированию ВМС приводят к образованию пространственных надмолекулярных структур, состоящих из множества макромолекул. В зависимости от характера связей надмолекулярные структуры делят на физические ассоциаты, в которых действуют силы Ван-дер-Ваальса, и на физико-химические комплексы с более прочными химическими связями. Физические ассоциаты способны при определенных условиях переходить в комплексы (кристаллиты). Число мак- [c.11]

    Предлагаемый вниманию читателя учебник написан известным американским биохимиком Д. Мецлером. Автор поставил перед собой цель дать анализ структур, функций и процессов, характерных для живой клетки, с позиций современной биоорганической химии и молекулярной физики. Он концентрирует внимание на всестороннем рассмотрении протекающих в клетках химических реакций, на ферментах, катализирующих эти реакции, основных принципах обмена веществ и энергии. Впервые приведена классификация химических механизмов ферментативных реакций (нуклеофильное замещение, реакции присоединения, реакции элиминирования, реакции изомеризации и др.). В этом наиболее наглядно проявилась особенность рассмотрения биохимических проблем с позиций биоорганика. Обстоятельно изложены многие вопросы, которым прежде не уделяли должного внимания в курсе биохимии. Это касается в частности количественной оценки сил межмолекулярно-го взаимодействия, принципов упаковки молекул в надмолекулярных структурах (самосборка), кооперативных структурных изменений макромолекул и их комплексов. Приведены основные сведения о структуре и функциях клеточных мембран, об антигенах и рецепторах клеточных поверхностей. Весьма подробно рассмотрены также вопросы фотосинтеза, зрения и ряда других биологических процессов, связанных с поглощением света при этом охарактеризована природа некоторых физических явлений, наблюдаемых при взаимодействии света и вещества. [c.5]

    Модифицирование неоднородной поверхности адсорбента нанесением небольшого количества органического вещества, адсорбирующегося в первую очередь на наиболее неоднородных местах поверхности, или плотного монослоя, покрывающего всю поверхность адсорбента-носителя, снижает потенциал адсорбционных сил особенно на наиболее неоднородных участках поверхности адсорбента-носителя и делает поэтому модифицированную таким образом поверхность более однородной. И хотя модифицирующие слои часто физически неоднородны, они могут вести себя как практически однородные по отношению к адсорбции достаточно крупных молекул 18, 43]. Модифицирование поверхности твердого тела плотными монослоями молекул или макромолекул, содержащих соответствующие функциональные группы, приводит к увеличению адсорбции молекул, способных к специфическому межмолекулярному взаимодействию с этими группами [18, 36, 43]. [c.21]


    Между атомами в молекулах низкомоле1сулярных органических соединений, в звеньях полимеров и между звеньями в цепях существуют химические (ковалентные) связи, относимые к сильному взаимодействию. Между молекулами низкомолекулярных соединений, между макромолекулами полимеров и между участками одной и той же цепи существует нехимическое взаимодействие (соответственно межмолекулярное и внутримолекулярное), не приводящее к образованию новых химических связей, - слабое взаимодействие. Это взаимодействие зависит от химического строения молекул, расстояния между молекулами и от их взаимного расположения. Нехимическое взаимодействие подразделяют на межмоле-кулярные силы и водородные связи. Оно определяет агрегатное и фазовое состояния и физические свойства вещества. [c.126]

    В отличие от кристаллических полимеров, для которых возникновение упругой силы связано с межатомным взаимодействием, механизм действия (возникновения) упругих сил при растяжении аморфных полимеров обусловлен изменением потенциальной энергии межмолекулярного взаимодействия, преимущественно потенциальной энергии вращения вокруг ковалентных связей. Из сказанного ясно, что в первом приближении модуль упругости аморфных стеклообразных полимеров можно оценить, измеряя модуль упругости кристаллических полимеров в направлении, поперечном вытяжке, т. к. в этом направлении макромолекулы кристаллического полимера связаны лишь физическими межмолекулярными связями. Из табл. 4.3 следует, что в поперечном направлении значение модуля упругости кристаллических полимеров составляет 3-4 ГПа. Однако модуль упругости стеклообразных полимеров существенно ниже. Одно из вероятных объяснений этого несоответствия состоит в том, что даже в замороженных конформациях под действием приложенного напряжения возникает определенная подвижность сегментов и, следовательно, напряжение релаксирует. Напомним, что аналогичным является механизм вынужденной эластичности, рассмотренный выше. [c.166]

    Взаимодействие между альбумином и лекарствами осуществляется за счет действия межмолекулярных сил, которые проявляются в изменении некоторых физических и физико-химических свойств молекул, образующих комплекс. Величина энергии связи комплекса не превышает 8—10 ккал/моль, что указывает на существование слабых связей между макромолекулами и лекарствами. К таким связям относятся водородные, гидрофобные и ионные (рис. 10). [c.231]

    Регулярность строения отражается на механических, физических и других свойствах полимеров, так как при регулярном строении гораздо легче достигаются плотная упаковка макромолекул и максимальное сближение цепей тем самым обеспечивается наиболее эффективное действие межмолекулярных сил. Следует отметить, что только при правильном размещении вдоль цепи подвижных атомов водорода и полярных групп последние могут всегда оказаться достаточно близко друг к другу для Полного проявления межмолекулярного действия водородных связей и взаимодействия положительно заряженных участков одних макромолекул с отрицательно заряженными участками других. Наконец, только при наличии регулярного строения возможно взаимное расположение макромолекул, достаточно правильное для того, чтобы произошла кристаллизация. [c.26]

    Согласно физической теории устойчивости коллоидных систем ДЛФО в области перекрывания диффузных слоев коллоидных частиц вследствие перераспределения противоионов между слоями и окружающим раствором возникают дополнительные неуравновешенные электростатические силы отталкивания. Этому способствует возникновение дополнительного расклинивающего давления в тонком слое жидкости. В зависимости от баланса сил притяжения и отталкивания расклинивающее давление может быть положительным, увеличивая действие сил отталкивания, или отрицательным, при котором наблюдается уменьшение слоя жидкости между частицами. Жидкость, находящаяся в тонком слое, разделяющем две твердые поверхности, обладает большей упругостью формы. Действие расклинивающего давления между частицами обусловлено наличием ионной атмосферы у коллоидной частицы. Чем больше размыт диффузный слой, тем сильнее проявляется действие расклинивающего давления, тем выше устойчивость коллоидного раствора. При введении электролита изменяется толщина диффузного слоя и пленки жидкости, разделяющей частицы. После достижения порога коагуляции величина потенциального барьера снижается настолько, что кинетическая энергия взаимодействующих частиц превыщает его и частицы под действием межмолекулярных сил притяжения начинают сближаться, что означает начало процесса коагуляции. В начале процесса коагуляции размер образующихся агрегатов недостаточно велик и видимых изменений в коллоидном растворе не наблюдается. Это период скрытой коагуляции. Затем в результате дальнейшего укрупнения частиц начинается образование хлопьев. При введении в разрушающийся коллоидный раствор ВМС, имеющих макромолекулы с полярными [c.119]

    Очевидно, что число свободных концов, согласно вышепринятой характеристике сетки, равно удвоенному числу исходных макромолекул, из которых образован данный участок сетчатой структуры. Для достаточно плотно сшитых сеток, когда влиянием свободных концов на структуру сетки можно пренебречь. Тогда для густых сеток N, =v, т. е. число отрезков цепей между узлами сетчатой структуры равно числу узлов сетки, и все основные свойства сетчатой структуры определяются этим параметром. Так, модуль сдвига или растяжения такой сетки прямо гропорционален Л/с или V (см. ч. 2). Эти пололашия справедливы, .1,ля сетчатых структур, в которых межмолекулярное взаимодействие в участках между узлами сетки пренебрежимо мало и не влияет на свойства сетчатых эластомеров. Если же меж молеку-лярное взаимодействие между отрезками цепей сетки велико (пластики, волокна), то его вклад в механические свойства таких сеток будет существенным, что необходимо учитывать при их описании. В этом случае модуль сетки определяется этими физическими силами межмолекулярного взаимодействия и число химических узлов не влияет на его величину. С повышением температуры силы межмолекулярного взаимодействия преодолеваются тепловым движением сегментов макромолекул, и механические свойства сетки определяются числом химических поперечных связей (узлов сетки). [c.297]

    Горение большинства полимеров, как указывалось в гл. 1, является гетерогенным, диффузионным. В некоторых исследованиях, например в работе [45], приведены факты, на основании которых можно заключить, что диффузионные процессы играют более важную роль, чем химическая активация пиролиза. Это заключение основано на том, что значения кислородных индексов не зависят от химического состава полимера при повышении температуры окружающей среды. Существенное влияние на диффузионные процессы оказывает физическая структура материала или полимера и такие свойства, как плотность, кристалличность, анизотропность, растворимость, набу-хаемость, газопроницаемость и другие, которые являются проявлениями физической структуры. Физическая структура обусловлена химическим строением полимера, его составом и способом получения, она зависит от сил межмолекулярного взаимодействия и представляет собой наиболее выгодное по плотности упаковки образование макромолекул в данных условиях. [c.54]

    Наряду с изменениями конформаций макромолекул тепловые движения в полимерах выражаются и в перемещении- макромолекул относительно друг друга. Однако этот вид тепловых движений требует большей энергии для преодоления межмолекулярного взаимодействия и разрушения физических зацеплений и прояв-лятся либо при нагрузках превышающих силы межмолекулярного взаимодействия, либо при высоких температурах. [c.42]

    Свойства такого материала сильно зависят от его физической над- молекулярной структуры. Надмолекулярная структура свойственна всем полимерам, независимо от их агрегатного и фазового состояния. Причиной ее возникновения является соотношение сил внутри-и межмолекулярного взаимодействия цепей. Надмолекулярная структура полимеров представляет собой сложные, пространственно выделяемые агрегаты разных размеров и формы, созданные укладкой макромолекул определенным образом. В создании надмолекулярных структур проявляется фундаментальное свойство гибкой цепи — способность складываться в складки (фолды) или сворачиваться в клубки сами на себя . Подвижным структурным элементом при этом является сегмент. [c.32]

    Поскольку все звенья макромолекулы связаны между собой, вращение отдельных групп повлечет за собой изменение формы всей полимерной молекулы, т. е. изменение ее конформации. Переходы от одной конформации к другой не могут осуществляться совершенно свободно, так как вращение отдельных групп относительно ординарных связей также заторможено. Следует учитывать наличие межмолекулярного взаимодействия за счет физических связей различного типа (ван-дер-ваальсовы силы, взаимодействие между полярными группами, водородные связи). Вообще, макромолекула полимера никогда не может быть изолированной, но всегда окружена или соседними макромолекулами (если полимер находится в твердом состоянии или в расплаве), или малыми молекулами растворителя (если полимер находится в растворе) . При изучении деформации полимерного тела нужно учитывать это важное обстоятельство. Интересно также, что взаимодействие макромолекулы с ее соседями облегчает конформационные переходы, т. е. полимерная цепь в конденсированном состоянии обладает большей гибкостью, чем изолированная макромолекула. [c.7]

    Вообще говоря, все физические системы стремятся к уменьшению величины свободной энергии и, следовательно, к уменьшению поверхности, которое происходит за счет стягивающих поверхность физических сил поверхностного натяжения. Эти силы количественно характеризуют как взаимодействие частиц жидкости между собой, так и ту долю энергии поверхностных молекул, которая не скомпенсирована межмолекулярным взаимодействием, т. е. свободную энергию . Чем выше поверхностное натяжение, тем сильнее взаимодействие молекул пленки между собой и, следовательно, пленка жестче. Но чем выше поверхностное натяжение, тем менее устойчива система, и, начиная с какого-то уровня дисперсности, жидкие пленки будут самопроизвольно разрушаться вследствие чрезмерного паконления свободной энергии, переходя в термодинамически более устойчивое состояние. Для чистых жидкостей этот уровень весьма низок и увеличение поверхности при вспепивании (А5) мало. Единственный способ облегчить развитие поверхности заключается в том, чтобы снизить увеличение свободной энергии. Это достигается покрытием поверхности жидкости взаимодействующими с ней молекулами поверхностно-активного вещества (ПАВ). Как будет показано ниже, для каждой нары жидкость—ПАВ имеется оптимальная концентрация ПАВ, обеспечивающая минимальную свободную энергию системы и, следовательно, обеспечивающая ее наибольшую стабильность. В то же время из полимерных веществ стабильные жидкие пены образуются и без добавления ПАВ. Это связано с принципиальной качественной особенностью полимерного состояния силы взаимодействия между макромолекулами сравнимы по величине с валентными силами и вследствие этого жидкие полимерные пленки сами [c.28]

    Наиболее полно гибкость полимерных цепей может быть реализована в очень разбавленных растворах, когда отсутствуют взаимодействия между отдельными макромолекулами. При этом конформационные превращения приводят к образованию наиболее плотно свернутых форм макромолекул — глобул. Глобулы образуются и в коллоидных системах, когда несколько молекулярных клубков ассоциируются в отдельные коллоидные частицы полимерного вещества. Типичным случаем такой системы являются натуральный и синтетические латексы, представляющие собой водные коллоидные системы с полимерными частицами глобулярного строения. Устойчивость глобул в коллоидных частицах зависит от характера межмолекулярного и рнутримолекулярного взаимодействия. Если под влиянием ван-дер-ваальсовых сил внутримолекулярного взаимодействия возникают прочные физические связи, придающие устойчивость свернутым формам макромолекул (например, в белках), глобулы оказываются весьма стабильными. Если же силы внутримолекулярного взаимодействия в полимере слабы и молекулы обладают малой гибкостью, то глобулярные структуры неустойчивы и легко разрушаются. Вообще, чем меньше гибкость полимерной цепи, тем менее вероятны свернутые формы макромолекул и тем меньше возможность образования глобул в таком полимере. Образование глобул чаще всего протекает в процессе синтеза полимера, например при эмульсионной полимеризации. [c.50]

    Сдвиговые деформации могут вызвать временные или постоянные изменения свойств полимеров. Если усилия при сдвиге превосходят силы межмолекулярного и внутримолекулярного взаимодействия, то имеет место разрушение надмолекулярной структуры полимеров. Мы рассматриваем реакции, происходящие под действием механических сил преимущественно в линейных полимерах. Течение сетчатых полимеров может быть достигнуто путем механохимических реакций, но у линейных полимеров предел текучести обычно значительно ниже усилий, необходимых для разрыва связей. К более слабым взаимодействиям в полимерных системах относятся ионные и водородные связи. Физические зацепления, прочность которых зависит от скорости деформации, могут оказаться причиной еще более высокого уровня накопления упругой энергии в деформированной полимерной сетке. Примером этого случая служит обычный поливинилхлорид. И, наконец, если сдвиговые усилия достаточны для накопления упругой энергии, равной прочности основной цепи макромолекул, и в итоге происходит разрушение молекул. Процесс можно представить как последовательное накопление упругой энергии, в результате чего развиваются химические реакции и происходит рассеяние этой энергии. Механохимическое разрушение связей протекает путем гомолити-ческого разрыва молекул с уничтожением образующихся радикалов. В литературе описано несколько типов ионных реакций, происходящих под действием механических сил. [c.16]

    В процессе варки целлюлозы и полуцеллюлозы древесная ткань подвергается химическому и физическому воздействию. В результате делигнификации и частичного удаления гемицеллюлоз она распадается на отдельные древесные волокна с превращением последних в целлюлозные волокна. При этом ультраструктура клеточной стенки существенно изменяется. Учитьгаая распределение слоев клеточной стенки по массе, необходимо подчеркнуть, что основное количество лигнина присутствует во вторичной стенке. Следовательно, для достижения достаточной степени делигнификации требуется удалить лигнин из всех слоев клеточной стенки. Удаление лигнина из срединной пластинки приводит к ее разрушению и разъединению волокон, а удаление из вторичной стенкн - к ослаблению связей между фибриллами. Фибриллярная структура клеточной стенки позволяет делить, волокна на продольные элементы и связывать их между собой. На этом основан процесс производства бумаги. В результате делигнификации целлюлозные волокна становятся гибкими и эластичными. При последующем размоле целлюлозной массы при подготовке к формованию бумаги происходит фибриллирование клеточньк стенок - расщепление их на фибриллы и последних на более тонкие элементы. На процесс фибриллирования определяющее влияние оказы-вае ультраструктура клеточной стенки. По сравнению с хлопковым волокном волокна древесной целлюлозы фибриллируются значительно легче. При формовании бумаги в процессе удаления воды возникают прочные межволоконные связи за счет трения, механического зацепления фибрилл, а также возникновения межмолекулярных сил взаимодействия, в том числе прочных водородных связей между макромолекулами на поверхностях фибриллированных элементов, и образуется бумажный лист. [c.224]

    Молекулы смолы связаны в очень длинные цепочки, илп нити (макромолекулы), ирочнымп химическими связями, которые действуют только вдоль цепочек. В то же время такая цепочка смолы во многих местах по своей длине взаимодействует с соседними цепочками. Это взаимодействие заключается в том, что между углеродными атомами близко расположенных питевтщиых молекул смолы действуют сравнительно слабые физические связи, так называемые силы Вап-дер-ваальса (межмолекулярные силы притяжения). Радиус действия зтих сил очень ограничен п они проявляются только при близком расположении пли даже соприкосновении соседних нитевидных молекул. [c.132]


Смотреть страницы где упоминается термин Физические силы межмолекулярного взаимодействия макромолекул: [c.246]    [c.102]   
Поливиниловый спирт и его производные Том 2 (1960) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Взаимодействие межмолекулярное

Межмолекулярные

Межмолекулярные силы



© 2025 chem21.info Реклама на сайте