Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полиолефины и изменение свойств

    Кроме того, следует отметить еще одну особенность термостабилизации радиационно-сшитых полиолефинов. Обычно антиокислители вводят в полимер в количествах (сотые доли процента), минимально необходимых для того, чтобы период индукции несколько превышал длительность переработки полимера в изделие (минуты). При этом доля молекулярных цепей полимера, участвующих в химических превращениях в присутствии кислорода и антиокислителя, весьма мала, и свойства полимера после такой термообработки практически не отличаются от исходных. В то же время при стабилизации радиационно-сшитых полиолефинов, предназначенных для длительной эксплуатации при >7 пл, антиокислители вводят в существенно большем количестве (проценты). При этом индукционный период фактически растягивается на сотни и тысячи часов, на протяжении которых автокаталитическое окисление хотя и не развивается, но химические превращения затрагивают значительную долю молекулярных цепей, т. е. объектом исследования — в отличие от указанного выше случая, является изменение свойств полимера именно в пределах периода индукции, а не после него. [c.139]


    Данные об изменении свойств стабилизированных полиолефинов в процессе старения приведены на стр. 386—394. [c.385]

    Изменение свойств полиолефинов при атмосферном старении [c.356]

    Изменение свойств полиолефинов при тепловом старении при различных температурах (толщина образца 1 мм) [c.359]

    Изменение свойств пленок (толщиной 0,25 мм) полиолефинов при световом старении [c.368]

    В таблице на стр, 408—409 показано изменение свойств полиолефинов, стабилизированных наиболее эффективными антиоксидантами, в процессе длительного испытания на вальцах при 160° С. [c.410]

    Органические и неорганические пигменты и красители, применяемые для окрашивания полиолефинов для пищевых продуктов, представляют собой высокодисперсные порошки, нерастворимые в полимере. Наиболее высокой кроющей способностью отличаются органические пигменты, поэтому их можно вводить в небольших количествах (0,01—0,06%), не вызывающих изменений механических и электрических свойств готовых изделий. [c.47]

    Считают, что при облучении полиэтилена, УФ-светом основные изменения молекулярной подвижности и надмолекулярной структуры происходят в аморфной фазе. Поскольку аморфная фаза в значительной мере определяет способность полимера к высоким деформациям, то становится понятной одна из возможных причин охрупчивания полиолефинов в результате светового воздействия. При исследовании изменения свойств после облучения на воздухе светом с длиной волны больше 320 мкм при 313 К промышленной экструдированной анизотропной пленки (22 мкм) из изотактического полипропилена было обнаружено, что увеличение хрупкости сопровождается изменением плотности, относительного удлинения при разрыве, а также ИК-спектра предел текучести при этом практически не изменяется [65]. На рис. 3.11 показан характер изменения относительного удлинения при разрыве и плотности в зависимости от продолжительности облучения. [c.86]

    Прогнозирование изменения свойств полимеров при старении под действием света рассмотрено в работах [20, 21]. При известном механизме окисления полиолефинов и если определение кинетики накопления карбонильных и гидроперекисных групп в процессе эксплуатации не слишком затруднено, то прогнозирование сводится к расчету изменения эффективной константы скорости фотораспада гидропероксида а [20]. Эта константа связана с интенсивностью и спектральным составом падающего света следующим соотношением  [c.212]

    Получение волокон из смесей полимеров является одним из наиболее перспективных направлений. Проведенные исследования показывают [39], что молекулярная совместимость двух высокомолекулярных соединений является скорее исключением из общего правила несовместимости полимеров. Совместимость полиолефинов и полистирола с другими полимерами изучали реологическими, термомеханическими, термохимическими, рентгеноструктурными и другими методами.В качестве второго компонента использовали полиэтилен низкой и высокой плотности, полипропилен, полистирол, полиизобутилен, сополимер стирола с акрилонитрилом, полиэтилентерефта-лат, поливинилпиридин. Результаты исследований показывают, что все изученные системы не совмещаются на молекулярном уровне. Отсутствие молекулярной совместимости полиолефинов и полистирола с другими полимерами не дает оснований сделать заключение о невозможности использования смесей полимеров для изменения свойств волокон. На основании сопоставления экспериментальных данных [40—45], полученных для ряда смесей полимеров, можно сделать заключение, что для качественных изделий применяют полимеры близкой химической природы. Такие системы имеют две температуры стеклования. Однако механическая прочность волокон, полученных из систем с близкой химической природой, снижается меньше прочности волокон, полученных из систем различной химической природы. К числу систем близкой химической природы относятся полипропилен—полистирол и полипропилен—полиэтилен. Волокна из смесей полимеров формуют из расплавов полимеров. Ниже приведен температурный режим формования волокон из смеси полипропилена с полистиролом [40] (80% полипропилена и 20% полистирола)  [c.576]


    Представляется полезным дифференцированное рассмотрение термодинамической и эксплуатационной совместимости [43 45, 46, 267]. Обладающие термодинамической совместимостью смеси полимеров не изменяют своих свойств после повышения температуры и возвращения к исходной. При этом степень однородности смесей может повышаться. Степень термодинамической совместимости предложено оценивать интервалом соотношений компонентов, обеспечивающим термодинамическую устойчивость системы. Чем шире интервал соотношений, в котором один полимер полностью растворяется в другом, тем больше степень их совместимости. Учитывая сложность структур цепей и их ассоциатов, трудно предполагать термодинамическую совместимость полиолефинов друг с другом и другими полимерами. Стабильность структур и свойств смесей, включающих полиолефины, может быть связана не с термодинамическими факторами, а с весьма малой скоростью изменения структур. Термодинамическая несовместимость не исключает, однако, эксплуатационной совместимости, которая зависит от допустимого предела изменения определенных свойств смеси во времени в условиях эксплуатации. Изменение свойств смеси термодинамически несовместимых полимеров при эксплуатации связано с возрастанием неоднородности системы. [c.151]

    Чем ниже физико-механические свойства термопласта, тем он чувствительнее к изменениям температуры. Так, среди полиолефинов полипропилен, прочность и жесткость которого позволяет отнести его к конструкционным материалам, при нагреве до 80 °С [c.103]

    Среди синтетических материалов в настоящее время одно из первых мест принадлежит полиолефинам, значение которых все возрастает. В связи с этим заслуживают внимания разнообразные возможности изменения свойств полиолефинов. Одной из подобных возможностей является введение в полиолефины определенных функциональных групп. [c.192]

    Недостатки винипласта — низкие термостабильность и морозостойкость. При длительной эксплуатации, и особенно при изменении температуры, механические свойства винипласта ухудшаются. Для их улучшения ПВХ совмещают на вальцах с каучуками или хлорированными полиолефинами. Ударная вязкость таких материалов повышается в [c.30]

    В заключение следз ет отметить, что сополимеризация как метод синтеза высокомолекулярных соединений предоставляет практически неограниченные возможности для направленного изменения структуры и свойств полимеров. В частности, сополимеризация олефинов с небольшим количеством полярных сомономеров, содержащих гетероатомы, позволяет улучшить окрашиваемость и адгезию полиолефинов. [c.143]

    Изменение физико-механических и диэлектрических свойств полиолефинов после воздействия тепла (температура 55 и 85 °С), повышенной влажности (97 37о > 40 °С), солнечной радиации (ксеноновая лампа [c.390]

    Особо большое значение при этом имеет нахождение условий, обеспечивающих соответствие скоростей вспенивания и изменения вязкоупругих свойств полимерной матрицы. Основные положения физико-химии процессов вспенивания полиолефинов были изложены ранее (см. гл. 1). В данном параграфе мы кратко рассмотрим особенности морфологии данных материалов. [c.369]

    При введении структурообразователей значительно снижается разброс показателей физико-механических свойств и изделия имеют повышенный глянец. Следует отметить, что изделия из полиолефинов с введенными органическими структурообразователями отличаются повышенной прозрачностью. Введение структурообразователей влияет на изменение текучести материала индекс расплава при оптимальном содержании структурообразователя увеличивается. Это показано на рис. 5. [c.418]

    До середины 1950-х гг. все попытки получить полиолефины из иных мономеров, чем этилен и изобутилен, приводили к образованию лишь низкомолекулярных продуктов, промышленная ценность которых невелика. Причиной этих неудач является протекание реакций переноса активного центра (путем отрыва атома водорода от олефина), конкурирующих с реакциями роста цепи путем присоединения радикала. Однако в 1954 г. Натта, продолжая исследования Циглера, обнаружил, что некоторые биметаллические катализаторы циглеровского типа способны превращать пропилен и многие другие а-олефины, в частности 4-метилпентен-1 и бутен-1, в кристаллические полимеры. Путем небольших изменений состава и физической природы катализаторов этому ученому удалось получить несколько видов высокомолекулярного полипропилена, значительно различающихся по свойствам. При дальнейшем изучении было установлено, что эти свойства обусловлены различной стереорегулярностью полученных продуктов (см. выше). Изотактический полипропилен оказался похожим во многих отношениях на полиэтилен высокой плотности, тогда как атактическая форма полипропилена характеризовалась аморфной структурой и низкими прочностными характеристиками. Метильные группы, связанные с альтернантными атомами углерода основной цепи, оказывают разностороннее влияние на свойства полимера. Так, с одной стороны, они увеличивают жесткость макромолекуляр- [c.256]


    Свойства. Введение хлора в макромолекулу полиолефинов приводит к уменьшению их кристалличности, изменению темп-р размягчения, стеклования и др. Свойства П. X. зависят от распределения хлора в макромолекуле, к-рое, в свою очередь, определяется методом хлорирования. [c.10]

    Ярким подтверждением этого является исследование [17] сравнительного окисления полиолефинов в ряду полиэтилен — сополимер этилена с пропиленом — полипропилен. В этой работе были использованы полиэтилен высокого и низкого давления, сополимер (СЭП), содержащий 14 мол. % пропилена, и полипропилен, в котором 77% составляли изотактические фракции. Измерялось поглощение кислорода, количественный состав низкомолекулярных летучих продуктов реакции и кинетика изменения физико-химических свойств полимера по ходу окисления. Для накопления [c.95]

    Свойства полиолефинов сильно изменяются под влиянием ультрафиолетового излучения. Особенно сильно действие света сказывается в атмосфере кислорода. В работе [81] показано, что облучение пленок полиолефинов на воздухе при комнатной температуре светом ртутно-кварцевой лампы (ПРК-4) приводит к сравнительно быстрому ухудшению физико-механических свойств. Резко падает относительное удлинение (рис. 55), изменяется предел прочности при разрыве (рис. 56), увеличивается значение тангенса угла диэлектрических потерь (рис. 57). В процессе фотостарения полимер растрескивается, становится хрупким, приобретает окраску. В той же работе показано, что изменение физико-механических свойств полиолефинов в условиях атмосферного старения протекает по [c.119]

    Исключительно большое значение в последние годы приобрела радиационно-химическая технология, изучающая и разрабатывающая методы и устройства для наиболее экономичного осуществления с помощью ионизирующих излучений физико-химических процессов с целью получения новых материалов, а также придания материалам и готовым изделиям улучшенных (или новых) эксплуатационных свойств. Наибольшего успеха радиационно-химическая технология (РХТ) достигла в связи с разработкой процессов радиационной модификации полимеров (особенно полиэтилена и поливинилхлорида). Радиационная модификация (т. е. изменение свойств под действием излучения) позволяет создать, например, в полиолефинах более жесткую структуру, повысить термостойкость, что дает возможность изготовленные из них конструкционные материалы эксплуатировать при высоких температурах вплоть до температуры термолиза. Наряду с этим улучшаются и электрофизические свойства. Облученный полиэтилен используют для изоляции высокочастотных кабелей вместо дорогого тефлона. Такая замена позволяет сэкономить до 200 руб. на 1 км кабеля. В нашей стране осуществлен процесс радиационной вулканизации изделий на основе силоксановых каучуков с помощью у-излучения. Облучая пропитанную мономером древесину низкого качества (оси.пу, березу), получают древесио-пластические компо- [c.93]

    Следует заметить, что ни одна модель не может правильно описать свойства полимерных материалов, в том числе и полиолефинов, если рассматривается достаточно широкий диапазон изменения переменных. Поэтому часто комбинируют различные модели с целью получения уравнений, правильно описывающих поведение исследуемого материала в условиях эксперимента. Так, часто рассматривают модель, построенную из серии последовательно соединенных моделей Кельвина — Фойгта. Это приводит к представлению о существовании набора (спектра) времен запаздывания. Если связать эти значения времен запаздывания с параметрами макромолекулы или ее сегментов, то тем самым создается возможность установления корреляции между строением полимера и его вязкоупругими свойствами. Подробнее это обсуждается несколько ниже. Представление о спектре времен релаксации возникает при исследовании набора параллельно соединенных максвелловских элементов. Можно также рассмотреть набор моделей с нелинейным вязким элементом, подобным показанному на рис. 5. [c.60]

    При рассмотрении влияния особенностей молекулярного строения полимера на его реологические свойства основное внимание будет уделено установлению корреляции между строением и свойствами. Ясно, что такое рассмотрение не претендует ни на абсолютную строгость, ни на полноту описания всех известных экспериментальных результатов. Мы просто надеемся, что излагаемые представления будут способствовать лучшему пониманию того, как изменение особенностей молекулярного строения полиолефина влияет на его реологические свойства. [c.83]

    Контактные химические процессы приводят к существенным изменениям в приповерхностном слое полимера—сшиванию, деструкции, изменению надмолекулярной структуры [87—94]. На основании того, что прочность адгезионного соединения полиолефин—металл обусловливается главным образом прочностными и деформационными свойствами граничного слоя полимера, был сделан вывод [89] о необходимости создания таких условий формирования соединения, в которых присоединение кислорода не сопровождается деструкцией и происходит сшивание. На этот процесс влияют температура формирования, состояние поверхности субстрата, количество кислорода. Введение в полимер низкомолекулярных агентов структурирования, антиоксидантов, восстановителей существенно влияет на адгезионную прочность. При этом рекомендуется отводить низкомолекулярные (в том числе летучие) продукты деструкции. Для этой цели может быть использована сорбционная способность дисперсных наполнителей, поскольку между адсорбционной способностью наполнителей и их адгезионной активностью существует корреляция [89, 90]. Активность наполнителей связана также с их кислородо-донорными свойствами [92]. Обработка наполнителей раствором щелочи или перманганата калия позволяет повысить адгезионную прочность в 4—10 раз. Применение таких адгезионно-активных наполнителей, как оксид кальция, диоксид марганца, сульфид цинка, позволяет достичь высоких значений адгезионной прочности в системе полиэтилен—металл [92]. При формировании адгезионного соединения полиэтилен—металл в отсутствие кислорода воздуха решающую роль приобретают каталитические реакции взаимодействия полимера с металлом, в процессе которого происходит отщепление водорода от полимера с последующим взаимодействием по- [c.93]

    По результатам измерений строились диагра.ммы в координатах средняя температура размягчения - молекулярная масса смеси либо концентрация (рнсАЛ, 4.2). Результаты эксперимента свидетельствуют о скачкообразном изменении свойств в критических областях, которые соответствует структурной перестройке указанных систем. Анализ диаграмм состояния для смесей на основе ВМСС и полиолефинов позволяют выделить 2 характерные точки ФП 1 и 2 рода. Вероятно, образованные этими точками области на [c.35]

    Изменяя режимные параметры процесса, групповой и компонентно-фракционный состав системы, изменяем структуру квазичастиц и их реакционную способность. Используя представления о непрерывном изменении свойств многокомпонентных кинетических сред, исследованы процессы химической конденсации высокомолекулярных нефтяных фракций, а также полимеризация полиолефинов в нефтяных дисперсных системах. Найдены эффетстивные кинетические параметры процесса На основе этого были разработаны приемы синтеза ряда асфальто-смолистых олигомеров из отходов нефтехимии и нефтяных остатков и многокомпонентных растворителей [43] Предложены направления развития методов направленного синтеза многокомпонентных систем. На рис 5.7,5 8 приведены варианты направленного синтеза ряда сложных систем-растворителей для АСВ призабойной зоны пласта и многокомпонентных олигомеров. [c.114]

    Способность ПЭВД, как и других полиолефинов в определенной мере взаимодействовать с различными соединениями используется на практике для направленного изменения свойств — химического модифицирования. Широко изучены процессы хлорирования, сульфохлорирования, фосфонирования, окисления с последующей прививкой различных функциональных групп и созданием привитых сополимеров. Большую роль играют процессы физико-химического модифицирования, сочетающие воздействие химических реагентов с воздействием УФ-излучения, ионизирующего излучения. Вопросы направленного изменения структуры и свойств ПЭВД и других полиолефинов подробно рассмотрены в монографии [154]. [c.163]

    Обычно чем больше значение константы ро, тем выше равновесная степень набухания при ограниченном набухании. Набу-.хаиие полимерных изделий приводит ие только к увеличению их объема и размеров, искажению формы, но н к ре.зкому снижению прочности. Изменение свойств полимера прн набухании в значительной степени зависит от природы полимера и растворителя, с которым он соприкасается. Так, действию паров воды н водных растворов кислот, солей н других веществ наиболее подвержены полимеры с полярными функциональными группами, например целлюлоза, белкн н др. Равновесное содержание влаги Б полимере (в % к его массе при данной влажности воздуха) минимально у полиолефинов (полиэтилен — 0,1%), более значительно у аминопластов и полиамидов (капрон—до 4%), очень высокое у белкой (10% и более). Влажность существенно влияет на свойства полимеров, особенно прн высокой температуре, в частности снижает прочность, диэлектрические показатели, прозрачность. [c.399]

    Изменение свойств светостабилизирозанных полиолефинов при атмосферном старении под Ленинградом [c.416]

    Физико-механические свойства полиолефинов. Механические свойства кристаллических полимеров изучены В. А. Каргиным с сотр. 2" . Зависимость напряжения (а) от деформации (е) для кристаллических полимеров выражается ломаной линией, состоящей из трех отрезков (рис. 17). На участке ОА напряжение прямо пропорционально деформации. Однако нельзя считать, что на этом участке выполняется закон Гука, так как значения модуля упругости зависят от скорости деформации, а не являются константой материала. В точке А происходит скачкообразное изменение кривой эта точка соответствует образованию шейки , при этом образец, бывший ранее однородным по своим поперечным размерам, становится неоднородным. Происходит [c.56]

    По-видимому, эффект ограниченной совместимости полиолефина с более полярным продуктом его модификации лежит в основе ряда рекомендаций, имеющих целью изменение свойств поверхности. Например, способность изотактического полипропилена окрашиваться возрастает при введении в него продукта прививки к полипропилену цепей мономера, содержащего гидрофильные группы [72]. Такой же результат достигается с помощью добавок к полиолефинам сополимера этилена с акриловой кислотой [75], акриламидом [205], введением в полиэтилен небольших количеств термодеструктированного окисленного полиэтилена [206]. [c.153]

    Период индукции может быть выражен в терминах изменения химической структуры или ухудшения физических свойств. Его можно определить, временем, в течение которого в полимере возникает некоторая произвольно выбранная концентрация химических групп, например карбонильных групп в полиолефинах или виниленовых групп в галогенсодержащих полимерах. Период индукции может быть определен также как время, требуемое для произвольно выбранного фиксированного изменения некоторого физического свойства, например вязкости расплава пропускания или отражения света в янтарножелтом диапазоне длин волн (575-625 нм) - для полимера на основе винилхлорида. В первом случае можно получить вполне адекватные результаты путем простых измерений показателя текучести расплава, во втором - достаточно сравнения невооруженным глазом с образцами стандартного цвета. [c.415]

    Шелтон и Винсент [2] и Бейтман с сотр. [3] предположили, что для большинства полимеров разложение перекисей, указанное в реакции (Х1П-4), является основным источником радикалов, которые инициируют окисление. В процессе переработки полимеров обычно образуются в небольших количествах перекиси и другие примеси. На первых стадиях окисления Шелтон наблюдал изменение скорости, которое он объяснил началом бимолекулярного разложения, по мере того как накап.т1ивались гидроперекиси. Большинство полимерных углеводородов окисляются с заметной скоростью при действии ультрафиолетового излучения и/или повышенной температуры. В условиях атмосферных воздействий у полиэтилена, нанример, менее чем через 2 года происходит ухудшение механических и диэлектрических свойств [4, 5]. Как полиэтилен, так и полипропилен окисляются с заметной скоростью в темноте при 60° [6]. Фотоокисление полиэтилена становится заметным только через несколько месяцев экспозиции на открытом воздухе [4, 5]. Ионы некоторых металлов увеличивают скорость инициирования, ускоряя разложение гидроперекисей, вероятно, путем гомолитического распада их на радикалы. Медь является одним из активных катализаторов реакций окисления полиоле-фина. Этот эффект значительно больше для полипропилена, полиизобутилена и других полиолефинов аналогичного строения, содержащих больше третичных атомов углерода в основной цепи, чем в молекуле полиэтилена. Некоторые остатки катализатора, удерживаемые полимерами в процессе полимеризации, становятся активными катализаторами окисления. [c.452]

    Механические свойства полиолефинов также можно менять в сторону увеличения ударной вязкости путем создания смесей с полиолефиновыми сополимерами. Степень смешения двух полимеров является важным фактором, определяющим механические свойства смесей. Наиболее значительные изменения возникают при составлении композиций из изотактического полипропилена с этиленпропилендиеновым мономером (ЭПДМ), в которых ЭПДМ в процессе смешения сшивается. При комнатной температуре эти так называемые динамические вулканизаты ведут себя подобно вулканизованному каучуку, и могут быть получены из расплава аналогично термопластам. [c.249]

    Для полипропилена было проведено широкое испытание ряда стабилизаторов промышленного значения. Исследовалось изменение физико-механических и других свойств полипропилена в процессе старения на воздухе при 150° С. Показательно изменение характеристической вязкости раствора полимера в тетралинев присутствии различных антиоксидантов в процессе старения. Эти данные приведены в табл. 10, из которой видно, что полимер даже в присутствии некоторых антиоксидантов начинает деструктировать-ся уже при переработке. Отчетливо также видны и преимущества смесей стабилизаторов. Несмотря на то, что 2,2 -тио-быс-(4-метил-6-трет-бутилфенол) является сильным антиоксидантом, смесь его с а-нафтиловым эфиром пирокатехинфосфористой кислоты значительно более эффективна. Полимер, ингибированный одним фенолсульфидом, в условиях старения механически разрушился через 220 час. Ингибирование же смесью №9 привело к сохранению свойств полимера в течение более 450 час. Каждый из приведенных в табл. 8 антиоксидантов имеет промышленное значение и может быть использован для стабилизации не только полипропилена, но и других полиолефинов. [c.119]

    При сжимающих и растягивающих нагрузках ползучесть и остаточная деформация пенопластов на основе полиолефинов в значительной степени зависят от степени кристалличности исходного полимера. В самом деле, те полимерные цепи, которые пересекают кристаллические и аморфные участки полимера, увеличивают жесткость структуры и могут рассматриваться как псевдосшивки [94]. В результате этого изменяются вязкоэластические и упругие свойства полимерной матрицы, что в свою очередь влияет на ползучесть и остаточную деформацию пенопласта. Таким образом, выше температуры стеклования пенопласты на основе несшитого кристаллического полиэтилена проявляют высокую чувствительность к деформационным изменениям при действии постоянных нагрузок. Действительно, как показано Леннером и Хесерингтоном [333], остаточная деформация пенополиэтилена тем меньше, чем ниже температура, при которой производилось сжатие и восстановление образцов. [c.383]


Смотреть страницы где упоминается термин Полиолефины и изменение свойств: [c.93]    [c.119]    [c.15]    [c.190]    [c.126]    [c.131]    [c.130]   
Полиолефиновые волокна (1966) -- [ c.165 ]




ПОИСК





Смотрите так же термины и статьи:

Изменение свойств

Изменение физико-химических свойств полиолефинов при формовании волокон

Полиолефины свойства

Формование волокон и изменение свойств полиолефинов



© 2025 chem21.info Реклама на сайте