Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кровь состав кислот

    Гетероциклические соединения входят в состав многих веществ природного происхождения, таких, как хлорофилл, гем крови, нуклеиновые кислоты, пенициллины, многие витамины и почти все алкалоиды. Более половины всех лекарственных веществ содержит в своей структуре гетероциклы. [c.350]

    Основными источниками жира молока являются нейтральные жиры плазмы крови. Молочная железа из притекающей к ней крови поглощает значительные количества нейтральных жиров. Приблизительные расчеты показывают, что 65% жира молока образуется из высокомолекулярных жирных кислот, входящих в состав нейтральных жиров плазмы крови. Жирные кислоты в составе фосфатидов, которые до недавнего времени считались предшественниками жира молока, по современным данным существенной роли в образовании молочного жира не играют. [c.531]


    Глюкоза (виноградный сахар) СвН аОв (стр. 223). Одна из наиболее часто встречающихся в природе альдогексоз. ( Содержится в соке винограда и других плодов, а также (вместе с фруктозой) в меде. Входит в состав крови и других биологических жидкостей животных организмов. Является составной частью многих полисахаридов, из которых и может быть получена при гидролизе. В технике О-глюкозу получают гидролизом крахмала в присутствии минеральных кислот (стр. 262). Чистая О-глюкоза получается из так называемого инвертного сахара (стр. 258) — смеси О-глюкозы и О-фруктозы, образующейся при гидролизе тростникового сахара разделение этих моносахаридов основано на их различной растворимости в спирте. [c.247]

    Гистоны—белки основного характера, так как содержат значительное количество диаминокислот со свободными аминогруппами они растворимы в воде и в разбавленных кислотах, но не растворимы в разбавленных щелочах. Обычно представляют собой собственно белковые части сложных белков. Представитель глобин — белок, входящий в состав сложного белка крови — гемоглобина. [c.297]

    Все известные ферменты представляют собой длинные цепи из а-амино-кислот (относительная молекулярная масса порядка 0,5 млн), свернутые в компактную форму, в которых имеется несколько реакционноспособных участков. Изучение природы ферментов показало, что, помимо белка, многие из них содержат и другие соединения. Так, например, в составе окислительных ферментов были обнаружены органические соединения железа. Эти соединения у различных окислительных ферментов оказались одинаковыми по составу. Кроме того, было выяснено, что такие же соединения железа входят и в гемоглобин крови, переносящий кислород в организме человека и животных. Комплексное соединение железа (гем) можно отделить от белка. Однако после этого ни белок, ни гем не проявляют ферментативных свойств. Отсюда следует, что высокая активность и специфичность свойственны только сложной системе, состоящей из белка и гема. В состав различных ферментов входят и комплексные соединения других металлов. В некоторых ферментах обнаружены медь, цинк, марганец, хром и другие элементы. Для некоторых ферментов уже известна первичная структура, т. е. последовательность аминокислот в длинной цепи. Вторичная структура — общий характер спирали, образуемый цепью, приближенно установлена для нескольких ферментов. О третичной структуре, т. е. природе реакционноспособных поверхностных участков молекулы, известно очень мало. [c.149]


    Фосфолипиды. Они входят в состав всех важных органов животного организма (мозг, печень, почки, сердце, легкие). Фосфолипиды играют важную биологическую роль. Они участвуют в белковом обмене обладают тромбопластической активностью, участвуют в процессе свертывания крови. Применяются при лечении атеросклероза [13]. По химическому строению фосфолипиды являются сложными эфирами многоатомных спиртов (глицерина, сфингозина) и жирных кислот. К ним относятся  [c.373]

    Однако хлорид натрия нужен организму человека или животного не только для образования соляной кислоты в желудочном соке. Эта соль входит в тканевые жидкости и в состав крови. В последней ее концентрация равна 0,5—0,6 %. [c.23]

    Полисахариды животных тканей. В организме животных и человека широко распространены гетерополисахариды, которые входят в состав соединительных тканей крови, нервной ткани. Эти полисахариды содержат аминосахара, маннозу, галактозу, уроновые кислоты, реже глюкозу. В некоторых из них часть гидроксильных групп также этерифицирована остатками серной кислоты, [c.483]

    В состав остаточного азота входит также азот аминокислот и полипептидов. В крови постоянно содержится некоторое количество свободных аминокислот. Часть из них экзогенного происхождения, т.е. попадает в кровь из пищеварительного тракта, другая часть аминокислот образуется в результате распада белков ткани. Почти пятую часть содержащихся в плазме аминокислот составляют глутаминовая кислота и глутамин (табл. 17.2). Содержание свободных аминокислот в сыворотке и плазме крови практически одинаково, но отличается от уровня их в эритроцитах. В норме отношение концентрации азота аминокислот в эритроцитах к со- [c.581]

    Распространение в природе. Будучи чрезвычайно реакционноспособными соединениями, моносахариды редко встречаются в свободном виде. В живом организме они существуют либо в виде своих производных, чаще всего — в виде эфиров фосфорной кислоты, либо входят в состав более сложных веществ — гликозидов, олиго- и полисахаридов, гликопротеинов, гликолипидов, нуклеиновых кислот и т. п. Исключение составляют D-глюкоза, найденная в свободном виде в крови млекопитающих, соке растений и в других источниках, и некоторые кетозы. [c.14]

    Аминосахара, входящие в состав природных биополимеров, как правило, М-ацетилированы. Частичный кислотный гидролиз таких веществ осложняется протекающим одновременно дезацетилированием аминогрупп и деструкцией аминосахаров и по этой причине для частичного расщепления используется реже, чем в случае полисахаридов, содержащих уроновые кислоты. Тем не менее, с помощью этого метода получены важные сведения о строении таких сложных объектов, содержащих аминосахара, как хондроитинсульфат С или групповые вещества крови . [c.508]

    Нейраминовая кислота является составной частью ряда глюко- и липопротеидов и входит, в частности, в состав муцина. Содержание нейраминовой кислоты в сыворотке крови составляет около 70 мгУо. При заболеваниях, связанных с деструкцией соединительной ткани, содержание в крови нейраминовой кислоты значительно повышается за счет разрушения глюкопротеидов соединительной ткани. [c.237]

    Суспендируют 40 г кровяного агара (имеется в продаже) в 1 л дистиллированной воды, доводят до кипения, автоклавируют, охлаждают и к еще не застывшей смеси добавляют с соблюдением правил асептики 5%-ную стерильную дефнбриннрованиую кровь. Состав основного кровяного агара 500 г экстракта сердечной мышцы крупного рогатого скота, 10 г триптозы (Dif o), 5 г хлористого натрия и 15 г агара (Dif o). К 1 л среды добавляют 10 г янтарной кислоты. [c.227]

    Химический состав опорных тканей позвоночных отличается от состава скелетных тканей беспозвоночных — спонгина, хитина и др. В покровах позвоночных присутствует особый белок - кератин. Позвоночные отличаются от беспозвоночных и действием пищерастительных ферментов, более высоким отношением (Ма + К)/ Са + Мд) в жидкой фазе внутренней среды. Среди беспозвоночных только у оболочников есть целлюлозная оболочка, имеется ванадий в крови в особых окрашенных клетках, а у круглоротых - соединительно-тканный скелет и хрящ, а также особый дыхательный пигмент — аритрокруорин с наименьшей для позвоночных молекулярной массой (17 600). Отличительная черта сипункулид — древних групп морских беспозвоночных - наличие специального переносчика кислорода - гемэритрина и наличие в эритроцитах значительного количества аллантоиновой кислоты. Для насекомых характерно высокое содержание в крови аминокислот, мочевой кислоты и редуцирующих и несбраживаемых веществ, в хитиновом покрове отсутствуют смолы, для членистоногих — наличие специфической (только для их групп) фенолазы в крови. Таким образом, можно констатировать, что систематические группы животных имеют свои биохимические особенности. Такие же особенности наблюдаются и у растений для различных систематических групп - наличие специфических белков, жиров, углеводов, алкалоидов, глюкозидов, ферментных систем. [c.189]


    Фосфор, как и азот, необходим для всех живых существ, так как он входит в состав некоторых белков как растительного, так и животного происхождения. В растениях фосфор содержится главным образом в белках семян, в животных организмах — в белках молока, крови, мозговой и нервной тканей. Кроме того, большое количество фосфора содержится в костях позвоночных животных в основном в виде соединений ЗСаз(Р04)2-Са(0Н)2 и ЗСаз(Р04)2-СаС0з-Н20. В виде кислотного остатка фосфорной кислоты 4>осфор входит в состав нуклеиновых кислот — сложных органических полимерных соединений, содержащихся во всех живых организмах. Эти кислоты принимают непосредственное участие в процессах передачи наследственных свойств живой клетки. [c.442]

    ПУРИНОВЫЕ ОСНОВАНИЯ - бесцветные кристаллические вещества с высокой температурой плавления, малорастворимы в воде. П. о.— органические природные соединения, производные пурина, входят в состав нуклеиновых кислот, нуклеотидов, нуклеозидов и некоторых коферментов. Свободные П. о. найдены во многих растениях, в печени, крови, молоке, камнях мочевого пузыря, в рыбьей чешуе и др. Наиболее распространены аденин, гуанин, гипоксаптин. Конечным продуктом пуринового обмена у большинства животных является мочевая кислота. Химические свойства П. о. определяются, главным образом, заместителями в пуриновом ядре. П. о. получают из нуклеиновых кислот, нуклеотидов, нуклеозидов, а также синтетически. [c.206]

    СМОЛЫ — сложные органические вещества бывают природными и синтетическими. Природные смолы выделяются растениями при нормальном физиологическом обмене. С. богаты тропические растения, а также хвойные. С.— аморфные вещества различного цвета и<елто-оранжевого (гуммигут), красного (драконовая кровь), коричневого (шеллак), от желтого до темно-бурого (канифоль, янтарь). В состав С. входят соединения различных классов смоляные, или ре-зиноловые кислоты, общей формулы СаоНзцОг, производные абиетиновой кислоты, смоляные спирты, или резииолы, индифферентные вещества, или резены, химическая природа которых еще мало изучена. С. применяют в мыловарении, для пропитки бумаги, в медицине и парфюмерии. В настоящее время природные смолы заменяют синтетическими — полиме- [c.230]

    Равновесие Доннана имеет большое биологическое значение. Так, в биологических клетках концентрация биополиэлектролитов (белка, нуклеиновых кислот) составляет 8—10%. В плазме крови содержится 7—9% белков. Однако кровь непосредственно не соприкасается с клетками. С ними соприкасается лимфа, заполняющая межклеточные и межтканевые пространства. Солевой состав лифмы почти не отличается от крови, но содержание полиэлектролитов (белков) в лимфе всего 0,01—0,03%. Именно поэтому в соответствии с (XIII.4.3) при введении соли в кровяную плазму лишь малая часть ее переходит в клетку, в которой поддерживается стабильный солевой состав. [c.407]

    Фосфор — один из важных элементов для живых организмов. Тело человека в среднем возрасте содержит около 1600 г фосфора в пересчете на оксид фосфора РаОв, в том числе около 1400 г в костях, 130 г в тканях мышц, 12 г в мозге, 10 г в печени, 6 г в легких, 44 г в крови. Без фосфора невозможно образование хлорофилла и усвоение растениями углекислого газа. Признаки недостатка фосфора в растениях темно-зеленая, голубоватая, тусклая окраска листьев с появлением при отмирании черных пятен, задержка фаз развития растений (цветения и созревания), угнетенный рост, утолщение клеточных стенок. Поэтому фосфор входит в состав ферментов, витаминов, внесение фосфорных удобрений в почву не только повышает урожай, но и улучшает качество продуктов. Начало промышленному производству фосфорных удобрений положено работами Ю, Либиха. Он предложил превращать нерастворимый в воде фосфат кальция действием серной кислоты в водорастворимый, легкоусвояемый растениями дигидрофосфат кальция. Первоначально сырьем для его получения служили кости животных, но уже в 1857 г. Ю. Либих показал, что столь же хорошее удобрение получается при обработке серной кислотой минеральных фосфатов. [c.161]

    Железо Fe(ls 2s 2p 3s 3p 3d4s ) — очень важный элемент для всего живого мира. Оно играет большую роль в окислительно-восстановительных процессах, протекающих в растительных и животных организмах, что связано с его способностью переходить из Fe (III) в Fe (II), и обратно. Железо — составная част1з гемоглобина крови. Входит в состав многих ферментов. В ряду напряжений располагается до водорода и сравнительно легко окисляется ионами водорода разбавленных кислот (НС1, [c.211]

    Глобин принадлежит к группе гистонов, так как он растворяется в разбавленных кислотах (изоэлектрическая точка 7,5). Примерно одну пятую часть молекулы белка составляют основные аминокислоты, среди которых преобладает лизин. В большинстае гистонов преобладает аргинин. Аминокислотный состав гемоглобина лошади приведен в табл. 42 (стр. 657). Содержание серы (щистива) в глобинах колеблется IB гемоглобине лошади— 0,39%. в гемоглобине кошки — 0,62%, в гемоглобине курицы — 0,86%. Гемоглобин здорового взрослого человека так же, как и гемоглобин лошади, не содержит изолейцина фетальный гемоглобин (HbF) содержит примерно восемь остатков этой аминокислоты. Гемоглобин S, который находится в крови больных серповидной анемией (болезнь, характеризующаяся массовым распадом эритроцитов), является продуктом врожденного нарушения нормального метаболизма. Гемоглобин S значительно менее растворим, чем гемоглобин А, его изоэлектрическая точка лежит заметно выше (на [c.671]

    Мальтозу гидролизуют кислотами и ферментами а-глю-козидазами (мальтазами). Фермент мальтаза входит в состав слюны, поджелудочного и кишечного сока, имеется в крови, печени и скелетных мышцах, встречается в дрожжах, бактериях, растениях. Фермент мальтаза, полученная из разного сырья, имеет различную активность и оптимальное pH при воздействии. Наиболее чистая мальтаза выделена из дрожжей (рНопт 6,75—7,25). [c.148]

    Фосфор являегся постоянной составной частью организма человека и жнвотных (составляет около 0,7% веса тела). Он входит в состав некоторых белковых веществ (нервной и мозговой ткани), а также Ko reii н зубов. В костях он находится в виде фосфатов кальция и магния, в плазме крови и других жидкостях организма в виде растворимых фосфат-ионов, в тканях и плазме — в виде органических соединении - нуклеинов, лсци тинов, фосфатидов. Взрослый человек ежедневно выделяет с мочой и калом около 1,5—1,75 г фосфора пли 3,5 г в пересчете на фосфорную кислоту это количество покрывается содержанием фосфора в потребляемой пище. Недостаток ( )ос(1юра приводит к расстройству роста и питании, размягчению и ломкости костей, нарушению деятельности центральной нервной системы. [c.50]

    Не очень разнообразную, но все же заметную группу жироподобных производных жирных кислот представляют воск.1, являющиеся сложными эфирами неразветвленных жирных кислот и жирных спиртов. В состав этих жирных" эфиров чаще всего входят пальмитиновая, церотиновая и маноцериновая кислоты, а также цетиловый и цериловый спирты. Все вышеуказанные спирты — неразветвленные первичные. Иногда в образовании восков участвуют и первичные спирты — такие как эйкозанол-2 и октадеканол-2. В состав некоторых животных восков (ланолин) входят сложные эфиры обычных жирных кислот и циклического спирта хо-лестерола. Сложные эфиры холестеро-ла и редких жирных кислот (например, фурановые жирные кислоты) достаточно часто встречаются в морских организмах, входят в состав плазмы крови человека. Кислотоупорные бактерии, [c.131]

    Содержится в свободном виде во всех зеленых растениях. Особенно много Г. в соке винограда (отсюда другое название — виноградный сахар). Входит в состав клетчатки, крахмала, декстринов, мальтозы и других углеводов, в небольших количествах обнаруживается почти во всех органах и тканях человека и жи вотных. В печени из Г. синтезируется гликоген. Г.— конечный продукт гидролиза дисахаридов и полисахаридов. В промышленности Г. получают гидролизом крахмала и клетчатки. Г. может восстанавливаться в шестиатомный спирт. Как и все альдегиды, Г. легко окисляется. Она восстанавливает серебро из аммиачного раствора оксида серебра и медь (II) до меди (I). Г. применяют в медицине, ее можно вводить непосредственно в кровь. Г. используют в кондитерской пр01мышлен-пости, для производства аскорбиновой и глюконовых кислот. [c.42]

    С биохимической точки spenifH простагландины характеризуются высокой скоростью распада. Соединение, изображенное на рис. 12-7 внизу справа, образуется при окислении 15-ОН группы в карбонильную группу, причем в результате этого процесса становится возможным восстановление прилежащей транс-двоиной связи. Далее для образования изображенной дикарбоновой кислоты необходимо протекание двух этапов процесса -окисления, а также ш-окисления. В целом картина еще сложнее. В зависимости от вида животного меняется состав и соотношение продуктов превращения простагландинов. Наиболее высокая активность ферментов распада простагландинов свойственна легочной ткани так, любые простагландины, попадающие в кровяное русло, исчезают из крови после однократного прохождения через легкие. Отсюда следует, что простагландины нельзя рассматривать как гормон в классическом смысле этого термина. Однако вполне вероятно, что они обладают локальным эффектом и, высвобождаясь из одного органа, оказывают воздействие на другой орган или прилежащую ткань. С другой стороны, не исключено, что основной эффект простагландинов проявляется в той клетке, где они синтезируются. [c.553]

    Так, при определении одного и того же элемента (например, кобальт, цинк, железо) в крови, пищевых продуктах или сплавах и минералах способ разложения образцов определяется соотъетствешю органической или неорганической природой объекта. Разложение и перевод в раствор проб силикатов проводят в зависимости от определяющего их состав соотношения MeO/SiOj. Если в составе силиката преобладают оксиды металлов, то пробу растворяют в кислотах, если — оксид кремния, то проводят сплавление или спекание. При определении в силикате содержания железа, титана, алюминия пробу сплавляют со щелочными плавнями при определении суммы щелочных металлов спекают с СаО и a Oj. [c.70]

    Более сложно происходит всасывание жирных кислот с длинной углеродной цепью и моноглицеридов. Этот процесс осуществляется при участии желчи и главным образом желчных кислот, входящих в ее состав. В желчи соли желчных кислот, фосфолипиды и холестерин содержатся в соотношении 12,5 2,5 1,0. Жирные кислоты с длинной цепью и моноглицериды в просвете кишечника образуют с этими соединениями устойчивые в водной среде мицеллы. Структура мицелл такова, что их гидрофобное ядро (жирные кислоты, моноглицериды и др.) оказывается окруженным снаружи гидрофильной оболочкой из желчных кислот и фосфолипидов. Мицеллы примерно в 100 раз меньше самых мелких эмульгированных жировых капель. В составе мицелл высшие жирные кислоты и моноглицериды переносятся от места гидролиза жиров к всасывающей поверхности кишечного эпителия. Относительно механизма всасывания жировых мицелл единого мнения нет. Одни исследователи считают, что в результате так называемой мицеллярной диффузии, а возможно, и пиноцитоза мицеллы целиком проникают в эпителиальные клетки ворсинок, где происходит распад жировых мицелл. При этом желчные кислоты сразу поступают в ток крови и через систему воротной вены попадают сначала в печень, а оттуда вновь в желчь. Другие исследователи допускают возможность перехода в клетки ворсинок только липидного компонента жировых мицелл. Соли желчных кислот, выполнив свою физиологическую роль, остаются в просвете кишечника позже основная масса их всасывается в кровь (в подвздошной кишке), попадает в печень и затем выделяется с желчью. Таким образом, все исследователи признают, что происходит постоянная циркуляция желчных кислот между печенью и кишечником. Этот процесс получил название печеночно-кишечной (гепатоэнтеральной) циркуляции. [c.367]

    Как отмечалось, а- и 3-глобулиновые фракции белков сыворотки крови содержат липопротеины и гликопротеины. В состав углеводной части гликопротеинов крови входят в основном следующие моносахариды и их производные галактоза, манноза, рамноза, глюкозамин, галактозамин, нейраминовая кислота и ее производные (сиаловые кислоты). Соотношение этих углеводных компонентов в отдельных гликопротеинах сыворотки крови различно. Чаще всего в осуществлении связи между белковой и углеводной частями молекулы гликопротеинов принимают участие аспарагиновая кислота (ее карбоксил) и глюкозамин. Несколько реже встречается связь между гидроксилом треонина или серина и гексозаминами или гексозами. [c.573]

    Содержание небелкового азота в цельной крови и плазме почти одинаково и составляет в крови 15—25 ммоль/л. Небелковый азот крови включает азот мочевины (50% от общего количества небелкового азота), аминокислот (25%), эрготионеина (8%), мочевой кислоты (4%), креатина (5%), креатинина (2,5%), аммиака и индикана (0,5%) и других небелковых веществ, содержащих азот (полипептиды, нуклеотиды, нуклеозиды, глутатион, билирубин, холин, гистамин и др.). Таким образом, в состав небелкового азота входит главным образом азот конечных продуктов обмена простых и сложных белков. [c.580]

    Общее содержание аминокислот в ткани мозга человека в 8 раз превышает концентрацию их в крови. Аминокислотный состав мозга отличается определенной специфичностью. Так, концентрация свободной глутаминовой кислоты в мозге выше, чем в любом другом органе млекопитающих (10 мкмоль/г). На долю глутаминовой кислоты вместе с ее амидом глутамином и трипептидом глутатионом приходится более 50% а-аминоазота головного мозга. В мозге содержится ряд свободных аминокислот, которые лишь в незначительных количествах обнаруживаются в других тканях млекопитающих. Это у-амино масляная кислота, К-ацетиласпарагиновая кислота и цистатионин (см. главу 1). [c.634]

    Распространение в природе. Аминосахара широко распространены в природе и играют исключительно важную роль в процессах жизнедеятельности. Они являются необходимыми структурными единицами муко-полисахаридов (см. гл. 20) и смешанных биополимеров (см. гл. 21). Наиболее часто встречается в природе Л-глюкозамин. Полимер глюкозамина хитин образует наружный скелет всех ракообразных и насекомых кроме того, глюкозамин входит в состав гиалуроновой кислоты, кератосульфата, групповых веществ крови, ганглиозидов и т. д. Наряду с Л-глюкозамином в состав различных мукополисахаридов входят также Л-галактозамин и значительно реже Л-талозамин полимер Л-галактозамина составляет основу хрящевой ткани. [c.269]

    Наиболее часто встречается D-глюкуроновая кислота. В свободном состоянии небольшие количества этого вещества найдены в крови и моче, но преимущественно D-глюкуроновая кислота в природных источниках находится в связанном виде. Различные токсические вещества, попадающие в организм, выводятся с мочой в виде глюкуронидов Так, например, при скармливании борнеола или ментола собакам в их моче появляются заметные количества соответствующих глюкуронидов D-Глюк-уроновая кислота входит в состав ряда растительных гликозидов, например тритерпеновых сапонинов, выделенных из аралии маньчжурской и некоторых других растений Она найдена в различных растительных полисахаридах (гемицеллюлозы, камеди) в некоторых бактериальных полисахаридах , а также в таких мукополисахаридах, как гиалуроновая кислота, гепарин, хондроитинсульфаты А и С В растительных полисахаридах D-глюкуроновую кислоту часто сопровождает 4-0-метил-0-глюк--уроновая кислота [c.299]

    Применение всех перечисленных приемов позволило определить природу связи между углеводной и пептидной частью в нескольких гликопротеинах. В настоящее время твердо установлено наличие О-гликозидной связи через оксиаминокислоты (тип Р) для муцинов подчелюстных желез, групповых веществ крови, комплекса гепарина с белком и др. и N-aцил-гликозиламинной связи через аспарагиновую и, вероятно, глутаминовую кислоту (тип Е) для овальбумина, орозомукоида и других гликопротеинов. Знаменательно, что для образования указанных гликопептидных связей необходимо присутствие специфических аминокислот — оксиаминокислот и двухосновных кислот, которые обязательно входят в состав природных гликопротеинов в количествах, иногда значительно превышающих их содержание в обычных белках. [c.573]

    Полный гидролиз групповых веществ крови показывает, что в их состав входит около 80—85% углеводов (галактоза, фукоза, N-ацетилглюкозамин и N-ацетилгалактозамин) и около 15—20% аминокислот, из которых пролин, треонин и серин составляют более половины. В некоторых образцах групповых веществ, в частности в групповых веществах из жидкости кисты, содержатся также N-ацетилнейраминовая кислота, которая, очевидно, в этом случае заменяет часть остатков фукозы. Групповые вещества различного типа А, В, Н я т. д.) очень мало отличаются друг от друга по составу, хотя некоторые детали все же можно отметить так, например, в групповом веществе Le содержание фукозы заметно понижено. В настоящее время установлено, что специфичность групповых веществ зависит от находящихся на периферии молекулы олигосахаридных цепей, которые являются иммунологическими детерминантами (см. ниже). Однако в целом структура групповых веществ, несмотря на значительное число исследований, остается неясной. При действии разбавленных кислот и оснований (щелочь, сода, гидроксиламин) групповые вещества отщепляют значительную часть углеводов Пептидная часть биополимера, напротив, отличается стойкостью и только в незначительной степени распадается под действием папаина и фицина . Эти данные позволяют отнести групповые вещества к гликопептидам типа III, в которых центральная пептидная цепь окружена присоединенными к ней олигосахаридными цепями , что было экспериментально подтверждено в самое последнее время полукинетическим методом исследования (см. стр. 569). При изучении хода гидролиза группового вещества А разбавленными кислотами и щелочами оказалось, что отщепляются лишь мелкие углеводные фрагменты, в то время как все аминокислоты остаются в высокомолекулярной части. Лишь в жестких условиях гидролиза, когда распаду подвергаются и пептидные связи, а также при избирательной деструкции пептидных связей высокомолекулярный фрагмент начинает дробиться и в гидролизате появляются аминокислоты. Подобная картина гидролиза может наблюдаться только в том случае, если пептидная часть составляет основу гликопротеина (тип III). [c.581]

    Другой хемотип — сложные высокоразветвленные соединения. Центральная цепь этих соединений не обязательно полисахаридной природы. Она может быть полипептидной, рибитфосфатной или состоять из смешанных полимеров. Определяющее значение для биологической функции имеют концевые олигосахаридные цепи, в состав которых обычно не входят уроновые кислоты или сульфоэфиры. Носителем отрицательных зарядов являются лишь остатки сиаловых кислот. Примерами таких соединений могут служить групповые вещества крови, муцин подчелюстной железы, 0-антиген грамотрицательных бактерий, полисахарид капсулы пневмококков типа XIV, декстраны. [c.609]

    Сиаловые кислоты представляют собой бесцветные кристал-1ческие вещества, хорошо растворимые в воде, не растворимые неполярных органических растворителях. Они служат композитами специфических веществ крови и тканей входят в состав шглиозидов мозга, участвующих в проведении нервных им- льсов. [c.393]

    Другие паразитические прокариотные организмы удается выращивать на искусственных средах, но состав таких сред необычайно сложен. Они содержат, как правило, белки или продукты их неглубокого гидролиза (пептиды), полный набор витаминов, фрагменты нуклеиновых кислот и т.д. Для приготовления питательных сред такого состава используют мясные гидролизаты, цельную кровь или ее сыворотку. Формы, способные расти при создании подходящих условий вне клетки хозяина, называют ф а-культативными паразитами. [c.83]

    Содержание ПВ и соответственно ГМЦ в клеточных стенках растительной пищи различно [89]. Оно минимально в белой пшеничной муке 727о-ного помола (3,5 /о) и максимально в отрубях (43,0%) [89], Их больше во фруктах, считая на сухую массу, и повышенное количество в овощах капусте — 35,5%, моркови — 28,4%, и т. д. Рекомендуемая суточная доза ПВ в питании — от 40 до 70 г, считая иа сухую массу, что при 60%-ном содержании эквивалентно 24—36 г ГМЦ. В то же время в связи с прогрессирующим рафинированием пищевых продуктов во второй половине XX в. человек стал потреблять все меньшее количество ПВ. Это привело к росту числа заболеваний. Недостаток ПВ в пище населения Европы, США достигает более 50%. Это определило развитие работ ио введению ПВ, обогащению пищи гемпцеллю-лозамп. Положительное влияние ПВ на многие физиологические функции — биохимические показатели, в том числе на обмен углеводов, липидный состав сыворотки крови и желчи, кишечно-печеночную циркуляцию желчных кислот, моторику толстой кишки и другие — показано во многих работах 60—80-х гг. [c.257]


Смотреть страницы где упоминается термин Кровь состав кислот: [c.417]    [c.96]    [c.31]    [c.128]    [c.255]    [c.37]    [c.88]    [c.405]    [c.578]    [c.113]    [c.312]    [c.237]   
Газовая хроматография - Библиографический указатель отечественной и зарубежной литературы (1952-1960) (1962) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Кислоты в крови

Кровь состав



© 2025 chem21.info Реклама на сайте