Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химотрипсин конформация

    С другой стороны, константа диссоциации фермент-субстратного комплекса Ks сохраняет постоянное значение при кислых и нейтральных значениях pH, но с дальнейшим увеличением pH она возрастает [13, 46]. Последнее объясняют тем, что правильная стереохимическая конформация активного центра обусловлена взаимодействием ионной пары (Asp-194)—СОО . .. " NHa — (11е-16), находящейся внутри ферментной глобулы (См. рис. 31). В результате депротонизации а-аминогруппы Пе-16 (с рКа — 8,5—9) происходит разрушение солевого мостика , что приводит к потере ферментом сорбционной способности. Это представление согласуется с данными рентгеновского анализа структуры кристаллического химотрипсина [17], однако ван<ность именно а-аминогруппы Пе-16 для катализа поставлена под сомнение в ряде работ ]47, 48]< [c.132]


    Первый тип предполагает необходимость сближения функциональных групп данной макромолекулы, разделенных большим числом звеньев, для осуществления какой-либо реакции, так как вероятность протекания реакции зависит от вероятности реализации необходимой для этого конформации и от времени ее жизни . Эффекты такого рода вызывают изменение скорости реакций в 10 —10 и характерны для ферментативных процессов. Примером реакции, протекающей с конформационным эффектом, может служить гидролиз нитрофениловых эфиров под влиянием фермента — а-химотрипсина (ХТ)  [c.56]

    Это определение не следует прямо переносить на конформации глобулярных белков. Например, у химотрипсина неупорядоченные области несравнимы со статистическим клубком. Более того, пары углов риф для каждого аминокислотного остатка принимают свои определенные значения. [c.381]

    Схема комбинированного метода, на первый взгляд, выглядит достаточно логично. В действительности же она не может быть реализована в отношении всех своих положений, что следовало из уже имевшихся к моменту появления метода экспериментальных данных. Первый пункт схемы невыполним, по крайней мере, по трем причинам. Во-первых, у большей части белков вторичные структуры составляют незначительную долю трехмерной структуры в среднем, в а-спирали глобулярных белков входит 25-30% остатков, а в -структуры - 15-20%. Во-вторых, встречающиеся в конформациях белков вторичные структуры, как правило, сильно искажены и лишь условно и при большом желании могут быть отнесены к регулярным. Насколько геометрические параметры реальных конформационных состояний остатков полипептидной цепи могут отличаться от параметров вторичных структур видно из табл. IV. 16, в которой приведены значения двугранных углов остатков некоторых сегментов последовательностей а-химотрипсина и лизоцима. Во всех работах, посвященных поиску эмпирических корреляций, эти сегменты отнесены к а-спиральным или -структурным. И наконец, в-третьих, надежность существующих алгоритмов предсказания, несмотря на оптимистические сообщения (см. ниже), не >50%, что исключает их практическое использование. [c.508]

    Биологическая эволюция заключается не только в замещении аминокислотных остатков в соответствующих молекулах из различных видов. Очевидно, что дублированный ген существовал в различные периоды, приводя к эволюции гомологичных белков из одного и того же гена наследственности. Так, примерно 40% аминокислотной последовательности трипсина и химотрипсина идентичны и примерно еще 10% представляет собой небольщие замещения. Поэтому неудивительно, что обе молекулы имеют сходные конформации и биологические функции. [c.282]


    Существует множество примеров зависимости катализа и связывания от конформационных изменений. Участок связывания химотрипсина решающим образом зависит от наличия солевого мостика между аспарагиновой кислотой-194 и концевой аминогруппой изолейцина-16 (см. рис. 24.1.14). В неактивном предшественнике химотрипсина, химотрипсиногене, например, каталитические группы расположены так же, как и в нативном ферменте, но гидрофобный карман отсутствует [49]. Последний формируется в результате индуцированных образованием солевого мостика изменений конформации аспарагиновой кислоты-194 и соседних остатков аминокислот — глицина-193 и метионина-192. Согласно кинетическим экспериментам, проведенным на химотрипсине, нечто подобное происходит при протонировании свободной формы (ЫНг) изолейцина-16. Форма фермента, характерная для высоких значений pH, неактивна, так как она не способна связывать субстрат. При быстром понижении pH раствора неактивной формы фермента с 12 до 7 связывание наблюдается, но только по прошествии определенного отрезка времени (менее секунды), во время которого фермент принимает активную конформацию [111]. В этом случае конформационное изменение должно предшествовать связыванию и явно слишком медленно для того, чтобы являться частью нормального механизма. [c.516]

    Ряд фактов действительно свидетельствует о конформационных превращениях ферментов при их взаимодействиях с субстратами. В присутствии субстратов некоторые ферменты становятся более жесткими, другие, напротив, более лабильными — легче денатурируются при нагревании. Субстраты индуцируют диссоциацию глутаматдегидрогеназы и гексокиназы на субъединицы. Под действием субстрата изменяется реакционная способность аминокислотных остатков фермента. Спектр поглощения химотрипсина меняется при его взаимодействии с субстратом и эти изменения могут быть интерпретированы как вызванные изменением конформации. Изменения конформаций проявляются и в спектрах люминесценции как ароматических аминокислотных остатков, так и сорбированных на белке красителей. Методами спектрополяриметрии установлены изменения а-спирально-сти,. возникающие при взаимодействиях ферментов с субстратами, коферментами и другими лигандами. Сведения о конформационных изменениях в ФСК дают также спектры ЭПР ферментов, содержащих парамагнитные метки, спектры ЯМР и т. д. [c.190]

    Конформацнонные превращения и их динамика проявляются и в других характеристиках люминесценции. Так, сродство а-химотрипсина в различных конформациях к люминесцирующему веществу (профлавину) сказывается на интенсивности свечения [186]. Положения максимумов в спектрах люминесценции полярных молекул в конденсированных полярных средах зависят от релаксационных свойств микроокружения. Теория дает выражение, связывающее положение центра тяжести полосы флуоресценции V с величинами т и Тг [187]  [c.325]

    Спектр поглощения химотрипсина меняется при его взаимодействии с субстратом, и эти изменения могут быть интерпретированы как вызванные изменениями конформации [82]. Сходные явления наблюдались и в ряде других случаев (см., например, [83]). Изменения конформаций проявляются и в спектрах люминесценции как ароматических аминокислотных остатков, так и сорбированных на белке красителей (см. [84]). Конформацион-ные изменения фосфоглюкомутазы при ее взаимодействии с субстратом глюкозо б-фосфатом находят свое выражение в спектрах поглощения и в спектрах люминесценции [68, 85]. [c.390]

    Следует отметить, что действие ферментов очень чувствительно к конформации макромолекулы и надмолекулярной структуре его. Например, если в результате денатурации и выпрямления цепи а-химотрипсина активные группы значительно удалятся друг от друга, то кооперативный эффект исчезает и скорость гидролиза падает в миллион раз. [c.333]

    Еще один пример проявления конформационного эффекта — это различная каталитическая активность природного катализатора химотрипсина при гидролизе сложноэфирной связи в молекулах нитрофениловых эфиров. Известно, что химотрипсин в нативной форме гидролизует сложноэфирную связь с достаточно большой скоростью. При денатурации химотрипсина, когда химическая последовательность звеньев сохраняется, но форма молекулы меняется, скорость гидролиза снижается в миллион раз. Это происходит потому, что в нативной конформации а-химотрипсина два из его аминокислотных остатков — гистидин и серии — находятся рядом, что позволяет им образовать каталитический центр, включающий комбинацию ОН-групп и имидазольных колец, обеспечивающую быструю двухстадийную реакцию. При изменении конформации гистидин и серии оказываются удаленными друг от друга, и активность катализатора падает [34, с. 346]. [c.45]

    Для понимания структуры активного центра необходимо знать последовательность аминокислот в полипептидной цепи, но этого еще недостаточно. Для группы ферментов, обладающих эстеразной активностью, установлено, что их активные центры состоят из аналогичных аминокислотных последовательностей, в состав которых входит остаток серина. Для изучения механизма ферментативного катализа они представляют большой интерес. Ряд данных свидетельствует о том, что в состав активного центра а-химотрипсина наряду с серином входит также гистидин. Однако данные исследований по расшифровке аминокислотной последовательности этого фермента показывают, что между реакционноспособным серином и ближайшим гистидином находится по меньшей мере 50 аминокислотных остатков. Таким образом, соверщенно ясно, что активность фермента обусловлена его конформацией. [c.396]


    При таком разрыве связи изменяется конформация белковой молекулы. Происходит это таким образом, что группы, участвующие в механизме каталитического акта, принимают нужную ориентацию в пространстве. У трипсина и химотрипсина такими группами являются активный остаток серина и два остатка гистидина их сближение показано на рис. 12. Связывающий и каталитический участки составляют активный центр вместе и, следовательно, они должны находиться поблизости друг от друга или перекрываться. Поскольку связывающий участок, как мы видели, уже имеется в проферменте, то ясно, что конформационные изменения, необходимые для создания каталитического участка и происходящие при активации, должны быть сосредоточены на очень небольшом отрезке молекулы. [c.95]

    Грамс-специфичность а-химотрипсина объясняется, по-видимому, стерическими эффектами. В цыс-конформации ацилфермента [c.86]

    В заключение необходимо обратить внимание на те трудности, которые возникают при изучении термодинамики и кинетики реакции денатурации из-за необратимости этого процесса для большинства белков. Известны лишь немногие случаи обратимой денатурации — например, для трипсина, химотрипсина, рибонуклеазы и ингибитора трипсина. Не следует думать, что немногочисленность известных случаев обратимой денатурации—это лишь следствие недостаточности наших знаний об условиях обращения процесса для большинства белков. Напротив, необратимость денатурации белков, построенных относительно более сложно и менее жестко , чем перечисленные выше, является закономерным следствием ничтожной вероятности полного восстановления чрезвычайно сложной системы связей, стабилизирующих конформацию полипептидных цепочек в нативной молекуле. Однако при рассмотрении обратимых реакций термодинамические и кинетические характеристики наиболее доступны и полнее выявляются. Возможно поэтому, что особый интерес представит в будущем выявление и исследование промежуточных состояний денатурируемого белка, сколь бы кратковременно ни было их существование. [c.193]

    Поддержание величины е в смесях на уровне их значений для водных растворов, однако, само по себе еще не обеспечивает сохранение нативной конформации многих белков, необходимой для проявления ферментативной активности. В водно-метанольных растворах, например даже в условиях, когда 8 = 80, наблюдается необратимое ингибирование таких ферментов, как дегидрогеназы и редуктазы. Такие ферменты, как трипсин, t-химотрипсин, амино-трансферазы и пероксидазы, сохраняют высокий уровень ферментативной активности в смесях, диэлектрическая проницаемость которых существенно отлична от 80. Такое поведение ферментов характерно для смесей глицерина с водой. [c.235]

    Как известно, ряд ферментов синтезируется в организме в неактивной форме предшественника фермента. В этом случае специфический белок-фермент образуется из неспецифического белка-предшественника, еще неспособного выполнять каталитическую функцию, и его превращение в биокатализатор происходит под влиянием субстрата, который играет ведущую роль в соответствующей перестройке специфического белка в фермент. Появление ферментативной активности в данном случае может быть сопряжено с изменением конформации полипептидной цепи, агрегацией субъединиц фермента, разрушением специфического ингибитора ферментов. Протеолитические ферменты, катализирующие различные процессы пищеварения в желудочно-кишечном тракте, например трипсин и химотрипсин, синтезируются в неактивной форме в виде трипсиногена и химотрипсиногена. Активация их происходит за счет протеолиза, катализируемого ферментом трипсином. Как видно, трипсин активирует пре-фермент и регулирует необходимое количество активной формы фермента. [c.438]

    Некоторые ферменты находятся в клетках и биологических жидкостях в неактивном или малоактивном состоянии. Такие ферменты получили название проферментов. Под действием определенных соединений они становятся активными — переходят в фермент. Механизмы такого превращения разнообразны. Часто профермент переходит в фермент при разрушении находящегося в нем ингибитора. Возможно превращение профермента в фермент в результате перестройки структуры и конформации его молекулы. Как известно, химотрипсин образуется в поджелудочной железе в виде каталитически неактивного химотрипсиногена. Это вещество превращается в активный химотрипсин лишь тогда, когда попадает в пищеварительный тракт животного. Происходит это под действием трипсина и заключается в гидролизе одной пептидной связи в первичной структуре фермента. Благодаря расщеплению пептидной связи полипептидная цепочка становится как бы менее стянутой, поэтому она расправляется и может принять ту третичную структуру, [c.13]

Рис. 3-35. Сравнение пространственной структуры эластазы (А) и химотрипсина (Б). У этих эволюционно родственных протеиназ одинаковы лишь те аминокислоты, которые расположены в выделенных цветом участках полипептидной цепи. Тем не менее конформации белков очень похожи. Обведены активные центры ферментов оба активных центра содержат активированный остаток серина (см. рис. 3-47). Молекула химотрипсина имеет несколько (более двух) концов цепи, поскольку она образована протеолитическим расщеплением химотрипсиногена, неактивного Рис. 3-35. <a href="/info/1840962">Сравнение пространственной</a> <a href="/info/1377812">структуры эластазы</a> (А) и химотрипсина (Б). У этих эволюционно родственных протеиназ одинаковы лишь те аминокислоты, которые расположены в выделенных цветом участках <a href="/info/31816">полипептидной цепи</a>. Тем не менее <a href="/info/35987">конформации белков</a> очень похожи. Обведены <a href="/info/99728">активные центры ферментов</a> оба <a href="/info/5969">активных центра</a> содержат <a href="/info/98606">активированный остаток</a> серина (см. рис. 3-47). Молекула химотрипсина имеет несколько (более <a href="/info/1696521">двух</a>) <a href="/info/626669">концов цепи</a>, поскольку она образована <a href="/info/1034549">протеолитическим расщеплением</a> химотрипсиногена, неактивного
    Рассмотрим семейство протеолитических (расщепляющих) ферментов, сериновые протеиназы, включающие в себя пищеварительные ферменты химотрипсин, трипсин и эластазу, а также многие из факторов свертывания - протеиназ, контролирующих процесс свертывания крови. При сравнении любых двух ферментов этого семейства оказывается, что примерно 40% положений в полипептидной цепи занимают одни и те же аминокислоты (рис. 3-34). Еще более поразительное сходство выявляется при сравнении их конформаций, определенных методом рентгеноструктурного анализа большинство поворотов и изгибов полипептидных цепей длиной в несколько сот аминокислот оказываются идентичными (рис. 3-35). [c.147]

    Один из возможных путей для получения ответа на поставленные вопросы, вероятно, состоит в использовапии простых модельных субстратов фермента а-химотрипсипа. С этой целью Хейн и Ниман [101] впервые попытались выяснить конформацию некоторых субстратов, присоедипенных к а-химотрипсину, используя молекулы с фиксированной конформацией, для моделирования конформации, которую принимает в активном центре типичный ациклический субстрат метиловый эфир Н-ацетил-ь-фенилаланина (ь-АРМЕ). Для этого Ниман изучал кинетические свойства о- и ь-1-кето-3-карбометокси-1,2,3,4-тетрагидроизохинолина (КСТ1). Это [c.233]

    Субтнлизин, сериновая протеаза бактериального происхождения, также проявляет, подобно а-химотрипсину, обращенную специфичность к D-K TI [103]. Это предполагает, что оба фермента обладают сходной специфичностью к конфигурации их субстратов. Такая общая специфичность ясно подтверждает близкую структурную аналогию первичных связывающих центров обоих ферментов, и, более того, она отражает эту аналогию. Близкая структурная аналогия объясняет, каким образом а-химотрипсин и субтилизин, имеющие абсолютно разное филогенетическое происхождение, в действительности замораживают свои субстраты в одинаковой активной конформации. [c.234]

    При высоких значениях pH скорость действия химотрипсина падает, и характер рН-зависимости указывает на существование в активном центре группы с рЛ[а от 8 до 9. Это значение рКа может относиться к N-кoнцeвoй аминогруппе Ие-16. Аминогруппа Пе-16 участвует в образовании одной из связей, расщепляемых при превращении зимогена в активный фермент. Эта аминогруппа образует ионную связь (ионную пару) с остатком Азр-194 (рис. 7-2), который находится рядом с сери-ном активного центра. Возможно, ионная связь способствует поддержанию фермента в нужной для реакции конформации. Депротонирование при pH выше 8—9 должно вызывать инактивацию [39]. [c.112]

    Иными словами, в белках пространственная форма основной цепи остатка типа Phe в значительной мере предопределяет положение его боковой цепи. Обратное влияние проявляется в уменьшении значений углов ф основной цепи, что также следует из расчета монопептида. Распределение по углам Xi = -60, 180 и 60° конформаций боковых цепей Phe и его стереохимических аналогов Туг, Тгр и His в белках составляет соответственно 56, 24 и 20% от их общего количества. Интересно, что согласно теоретической и экспериментальной оценкам приблизительно такие же веса трех ротамеров имеет свободная молекула метиламида К-ацетил- -фенилаланина. Наиболее вероятной величиной угла вращения вокруг связи С -С Х2 в монопептиде Phe является 90° (см. табл. 11.14). Такое же значение %2 чаще всего имеют остатки типа Phe в белках. Например, в миоглобине из 23 остатков этого типа угол %2. равный -90°,. имеют 16 остатков, %2 150° - 3 и - 30° - 4 в а-химотрипсине из 20 остатков угол Х 90° имеют 16. Из шести остатков на неспиральных участках в обоих белках с иными чем -90° значениями углов в пяти остатках углы близки к 150°. Теоретически такое положение ароматических колец также возможно только при %] = -60°. Действительно, во всех случаях, где Xi 150°, угол Xi близок к -60°. На а-спиральных участках белков боковые цепи остатков типа Phe имеют углы Xi —60 и 180° угол Xi - 60° в отношении ближних взаимодействий столь же вероятен, как и два отмеченных. Однако в а-спирали он не может реализоваться из-за наталкиваний, возникающих между ароматической группой и соседними боковыми цепями. Таким образом, в белках конформации всех остатков типа Phe близки к наиболее предпочтительным оптимальным конформациям метиламида М-ацетил- -фенилаланина. Распределение углов вращения в боковых цепях соответствует свободным энергиям ротамеров монопептида Phe. Идентичность распределения конформаций [c.187]

    Активация химотрипсиногена А более сложна схема (6), структуры даны схематически и не отражают молекулярных конформаций . Процесс включает расщепление четырех связей — одной трипсином и трех автокаталитически химотрипсином и удаление двух дипептидов Ser-14-Arg-15 и Thr-147-Asn-148 из внутренней части одноцепочечного зимогена. Дисульфидные связи [c.551]

    Можно думать, что в ФСК отбираются те конформации белка и субстрата, которые находятся в структурном соответствии друг с другом, обеспечивающем оптимальное значение свободной энергии взаимодействия [64, 65]. Структурное соответствие при образовании ФСК можно считать динамическим, индуцируемым. Таким образом, при образовании ФСК могут происходить изменения реальных конформаций белка и субстрата или одного из них. Васлов и Доэрти констатировали наличие конформационных эффектов при связывании химотрипсином молекул субстратов и конкурентных ингибиторов [66]. Структурное соответствие в ФСК до некоторой степени подобно соответствию в гетерогенном катализе (см. стр. 359). Исходя из своей мультиплетной теории, Баландин предложил качественную схему структурного соответствия фермента, кофермента и субстрата [67, 68]. [c.387]

    Изменения в стереорегулярности (эффект тактичности) и конформации (конформационный эффект), приводящие к взаимному сближению или удалению функциональных групп, также оказывают сильное влияние на реакционную способность. Атактический и сиидиотактический полиметилметакрилат гидролизуются значительно медленнее, чем изотактический. Подобное явление мы встречали при рассмотрении а-химотрипсина. Наконец, существенное значение для химической активности макромолекул имеют концентрационный, конфигурационный и надмолекулярные эффекты. [c.603]

    В. работе Клибанова, Мартинека, Березина (1974) сделано предположение, что этими ионогенными группами являются карбоксильная группа остатка аспарагиновой кислоты-194 и а-амино-группа остатка изолейцина-16, образующие солевой мостик, поддерживающий конформацию активного центра а-химотрипсина (Незз, 1971). Известно, что разрущение этого солевого мостика за счет протонирования карбоксильной группы или за счет депротонирования аминогруппы ведет к существенному изменению конформации активного центра фермента, приводящему к нарушению каталитической функции. [c.99]

    В последнее время появилась возможность изучать физические свойства белков такими методами, как температурный скачок, которые позволяют исследовать процессы с временами, соизмеримыми с временами каталитического превращения субстрата на ферменте, так что стало возможным непосредственно установить взаимосвязь между скоростями субстратзависи-мых конформационных изменений и скоростями самой реакции. В настоящее время имеется ун е несколько свидетельств в пользу существования изомеризации ферментов и ферментсубстратных комплексов, которые могут представлять собой конформационные изменения такого рода [49—52]. Скорость мономолекулярной изомеризации глицеральдегид-З-фосфатдегидрогеназы характеризуется константой порядка 1 с и является слишком медленной, чтобы этот процесс имел место при каждом обороте фермента по-видимому, этот процесс относится к явлениям контроля ферментативной активности. Рентгеноструктурный анализ лизоцима [28], химотрипсина [54] и карбоксипептидазы [55] дал прямое доказательство существования изменений в конформации фермента при взаимодействии с субстратами или ингибиторами. Гемоглобин, хотя и не является ферментом, но может быть поучительным примером использования всех этих методов для демонстрации конформационных изменений при взаимодействии этого белка с кислородом [56]. [c.243]

    Второй пример влияния конформации макромолекулы на реакционную способность представляет химотрипсин, являющийся одним из наиболее изученных ферментов и катализирующий гидролиз некоторых амидов и эфиров. Сведения о механизме, с помощью которого химотрипсин осуществляет свои функции, были суммированы Бендером и Кезди [1029]. Этот механизм особенно удобно изучать, используя в качестве субстратов питрофепиловые эфиры, так как изменение цвета в результате высвобождения свободного нитрофенола позволяет легко проследить ход реакции с помощью спектрофотометрии. Кинетические исследования этой системы показали, что вначале ацильная группа переносится от эфира к ферменту и что затем активный фермент регенерируется в результате очень быстрого сольволиза ацил-фермента [1030, 1031]. Показано также, что гидроксильная группа одного специфического серинового остатка химотринсина (СЬТ) действует в качестве акцептора ацильных групп, и отсюда процесс может быть представлен следующей схемой  [c.346]

    К числу ферментов с хорошо изученной пространственной структурой относится протеолитический фермент а-химотрипсин, механизм действия которого подробно изучен и рассматривается в гл. V. а-Хи-мотрипсин образуется из каталитически неактивного химотрипсино-гена А, представляющего собой единую полипептидную цепь из 245 аминокислотных остатков, последовательность расположения которых установлена в работах [35, 36]. Пространственное строение химотрип-синогена А поддерживается пятью S—S-связями. а-Химотрипсин содержит 241 аминокислотный остаток и возникает в результате отщепления (трипсином) двух дипептидов, как это показано на рис. 33. Благодаря этому надрывается единая цепь, разделенная на три участка А, В VI С, удерживаемых теми же дисульфидными и внутримолекулярными нековалентными связями. Пространственное строение зимогена и фермента отличаются очень незначительно, но активный центр формируется только после отрыва дипептида. Необходимое изменение конформации происходит при взаимодействии карбоксильной группы Asp 194 с вновь возникшей концевой МНг-группой Leu 16. Эта ионная пара затем входит в глубь молекулы, что схематически показано на рис. 34.  [c.118]

    Спектрофотометрические данные, полученные Диксоном и Нейратом [1], показали, что для ацетил-химотрипсина при pH 3 не наблюдается характерного адсорбционного максимума N-ацетилиыидазола при 245 ммк. Это говорит о том, что прямой нуклеофильный катализ имидазолом в разбираемой реакции мало вероятен, так как в противном случае удалось бы наблюдать спектр промежуточного соединения, соответствующего N-ацетилимидазолу. Вместе с тем высокая активность серина проявляется только в нативном ферменте. Например, ацетил-химотрипсин легко реагирует с гидроксиламином, образуя ацетилгидро-ксамовую кислоту, однако при денатурации белка 8М мочевиной ацетил-химотрипсин реагирует с гидроксиламином не быстрее, чем обычный эфир [2]. При обработке мочевиной исчезает лабильность О-ацетильной связи на стадии де-ацилирования фермента, так что скорость гидролиза ее становится сравнимой со скоростью гидролиза N, О-диацетилсеринамида [3]. Лабильность О-ацетильной связи восстанавливается при диализе, в результате которого удается удалить денатурирующий агент. Учитывая все сказанное, можно прийти к выводу, что серин в а-химотрипсине скорее играет роль вспомогательного субстрата, а высокая скорость распада промежуточного соединения обусловлена либо необычной конформацией ацил-серина в нативном ферменте, либо эффективным взаимодействием близко расположенной каталитической группы. [c.161]

    ТИПИЧНОЙ чертой этой структуры является высокая степень спиральности (до 70% всех аминокислотных остатков включаются в а-спиральные сегменты структуры). В Р-химотрипсине, напротив, а-спиральную конформацию имеет лишь очень небольшой С-концевой участок цепи (3—4%), а основная часть цепи свернута в структуру типа (3-складчатой. В лизоциме (рис. 25) имеются участки как с а-спиральной, так и с р-складчатой структурами. Для этого белка-фермента характерно наличие глубокой ш,ели, или впадины, которая создается при укладывании полипептидной цепи и имеет существенное значение в процессе ферментативного действия этого белка (см. главу Ферменты ). В структуре рибонуклеазы и карбоксиангидразы С почти не найдено спиральных участков. Зато в карбоксипептидазе А обнаружены обширные спиральные и складчатые области. [c.155]

    Изменения в стереорегулярности и конформации макромолекулы, приводящие к сближению или удалению функциональных групп, также оказывают сильное влияние на реакционную способность. Атактический и синдиотактический полиметилметакрилат гидролизуются значительно медленнее, чем изотактический белок в виде а-спирали дейтируется с меньшей скоростью, чем беспорядочный клубок. Подобное явление мы встречали при рассмотрении а-химотрипсина (стр. 246). [c.462]

    Динамические свойства внутриклеточной воды в значительной степени отражают состояние клеточных структур. Существует также ряд данных, указывающих на непосредственное участие небольших количеств воды в изменении конформации глобулярных белков. В следующей главе будут описаны подробно характеристики и модели динамической подвижности биомакромолекул. Сейчас лишь необходимо отметить, что функционирование белков тесно связано не только с характером их конформации, но, главное, с их конформационной подвижностью, зависящей от присутствия воды. Так, при низкой степени гидратации препаратов а-химотрипсина возникающие дополнительные контакты между поверхностными дегидратированными полярными группами приводят к увеличению жесткости глобулы а-химотрипсина и потере им ферментативной активности в диметилсульфоксиде. В сильно высушенных препаратах, вплоть до некоторого критического значения гидратации, вообще не наблюдается никакой активности. Восстановление последней при увеличении степени гидратации образца происходит резко в узком диапазоне увеличения числа молекул Н2О от 170 до 180 на одну молекулу белка. Очевидно, в этой области происходит растормаживание определенных степеней свободы, функционально важных для ферментативного акта. Существенно, что необходимое для этого процесса количество воды намного меньше, чем было бы нужно для завершения образования гидратной оболочки (Ю. И. Хургин). [c.237]

    Метод теоретического конформационного анализа был использован для изучения невалентных взаимодействий а-химотрипсина с рядом простейших субстратов, лизоцима с триацетилглюкозамином, рибонуклеазы с уридин- 2, З -циклофосфатом, карбоксипептидазы А с пептидными и эфирными субстратами. К сожалению, в силу ограниченной точности этот метод не всегда дает однозначный ответ о наличии напряжений в комплексе. Тем не менее обилий вывод из проведенных теоретических исследований состоит в следуюш ем. Хотя образование комплекса Михаэлиса сопровождается конформационными изменениями, однако посадка субстрата не вызывает в молекулах субстрата и фермента ни избыточного конформационного напряжения, ни образования какой-либо принудительной конформации. На а-химотрипсине было показано, что в предкаталитической стадии структурные элементы его активного центра находятся в ненапряженном состоянии. [c.423]

    Сложность построения реальной артины возникновения структурных повреждений в облученных белках заключается прежде всего в том, что. необходимо выявить те физико-химиче- скне процессы, в результате которых одиночное событие потери энергии в пределах белковой молекулы, т. е. поглощение структурой около 60 эВ, вызывает ее генерализованное повреждение, такое, как изменение конформации. Следует также объяснить причину селективного поражения отдельных структурных звень- ев, например только шести aм инo,кислот в первичной структуре рибонуклеазы, или серина и триптофана в молекуле химотрипсина. Первичное событие абсорбции энергии носит вероятностный характер, т. е. любая из аминакислот i равной вероятностью поглощает энергию излучения, а конечное структурное. поражение локализуется в специфических участках. Для объяснения зто<го эффекта, вероятно,. необходимо допустить возможность миграции энергии и заряда по полипептидной цепи вплоть до локализации в определенном структурном звене. [c.82]


Смотреть страницы где упоминается термин Химотрипсин конформация: [c.236]    [c.45]    [c.487]    [c.442]    [c.199]    [c.224]    [c.514]    [c.487]    [c.257]    [c.158]    [c.87]    [c.411]   
Структура и механизм действия ферментов (1980) -- [ c.32 , c.179 , c.181 , c.182 ]




ПОИСК





Смотрите так же термины и статьи:

Химотрипсин



© 2025 chem21.info Реклама на сайте