Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Диссоциация активация

    Выделение водорода из недиссоциированных молекул кислоты (так же как и из молекул воды) требует значительной энергии активации и возможно лишь в области весьма отрицательных потенциалов. В то же время непосредственный разряд ионов водорода Н+ совершается со значительно меньшими торможениями. Поэтому акт переноса заряда (15.55 6) предполагает предварительную стадию диссоциации уксусной кислоты, приводящую к образованию ионов водорода. Таким образом, здесь стадии переноса заряда предшествует чисто химическая стадия диссоциации кислоты. Если она замедлена, то вблизи электрода возникает дефицит ионов водорода по сравнению с равновесным и появляется реакционное перенапряжение. Уравнение (15.55 6) в действительности сложнее и само слагается из нескольких стадий, например переноса заряда с образованием атомов водорода, адсорбированных металлом Наде [c.321]


    Каталитические реакции очень разнообразны. Во многих реакциях каталитическое влияние проявляется в скрытой форме. Сюда прежде всего относятся реакции в растворах. Как мы видели, поляризация, диссоциация и ионизация веществ в растворах — виды активации веществ — происходят под действием растворителя, который, очевидно, играет в этом случае роль катализатора. Большое влияние на скорость и направление процессов оказывают ионы ОН3 и ОН.  [c.206]

    Это выражение может быть записано следующим образом (1 к /г + кг /1)- . Анализ, приведенный в разд. XI.5, показывает, что это выражение при любых условиях существенно не зависит от давления, т. е. реакции диссоциации 6 всегда идут быстрее, чем, так как первые ие требуют энергии активации и, следовательно, имеют больший частотный фактор. Таким образом, 2 - - = к я X яа к " + к "" = к -. Это [c.241]

    Теплота первой реакции равна 102 ккал. а второй — 347,5 ккал таким образом, энергия диссоциации связи С—Н в метане равна 102 ккал, а средняя энергия связи составляет 86,9 ккал. Последняя величина рассчитана по термохимическим данным и зависит от величины скрытой теплоты сублимации графита, а первая является экспериментальной величиной, полученной на основе кинетических измерений. Зависимость между ними заключается в том, что в данном случае сумма индивидуальных энергий диссоциации связи в СН , СНд, СНз которые сильно различаются между собой, должна быть равна четырехкратной средней энергии связи. Таблицы энергии связи, составленные, нанример, Паулин-гом [33], дают сведения о средней энергии связи и не имеют прямого отношения к проблемам разложения углеводородов, поэтому дальше будут рассматриваться только методы определения энергии диссоциации связи. Раньше всех стали изучать энергию диссоциации связи в сложных молекулах Поляни и сотрудники [7], которые исследовали пиролиз ряда иодидов в быстром потоке несуш,его газа при низких давлениях иодидов, В этих условиях, по их мнению, вторичные реакции не представляют важности, и измеренная" энергия активации соответствует энергии реакций  [c.14]

    Совершенно очевидно, что энергия активации обратных реакций равна нулю, отсюда изморенная энергия активации становится равной теплоте реакции, а также энергии диссоциации связи В—1 [c.14]

    Ими была определена энергия активации обратной реакции. Так как теплота реакции является разностью между энергией активации прямых и обратных реакций, то отождествление наблюдаемой энергии активации с энергией прямой реакции дает возможность рассчитать теплоты реакции. После этого, используя стандартные термохимические данные, можно-рассчитать энергию диссоциации связи Н—Н. Механизм реакции был лучше всего изучен для метана и достаточно хорошо для этана. Для этих случаев вычисленные энергии диссоциации имеют погрешность до 3 ккал. [c.15]


    Таким образом, теплота диссоциации адсорбированной молекулы гораздо ниже, чем теплота диссоциации молекулы, находящейся в объеме. Если считать, что энергия активации процесса диссоциации близка к энергии диссоциации, то скорость диссоциации молекул на поверхностях будет выше, чем скорость диссоциации в объеме. Поверхность будет играть роль катализатора. Но катализатор не смещает положения равновесия, следовательно, концентрация атомов в объеме, независимо от того, имеется поверхность или нет, будет одной и той же. Если же в объеме возможен процесс, связанный с потреблением атомов, то при наличии поверхности этот процесс будет идти быстрее, чем чисто объемный процесс. [c.83]

    Конкретный механизм использования энергии электронного газа для активации химического процесса, очевидно, в разных реакциях различный. В частности, механизм диссоциации молекулы водорода, вероятно, таков, каким он показан на рис. X, 2, При ударе электрона молекула водорода переходит из нормального синглетного состояния в триплетное состояние этого электрон должен обладать энергией минимум [c.241]

    Катализатор ускоряет протекание реакции, открывая возможность для нового пути реакции или для механизма с более низкой энергией активации. Роль катализатора заключается в том, что он поставляет энергию, не-обходи.мую для диссоциации реагента, либо помогает упорядочению реагентов в активированном комплексе. В первом случае понижается энтальпия активации (как, например, для Н2 на поверхности Р1). Во втором случае повыщается вероятность необходимого упорядочения реагентов по сравнению с вероятностью их случайного упорядочения в растворе. В любом случае реакция протекает быстрее, поскольку понижается, [c.393]

    Аналогичные нестабильные комплексы, содержащие водород, были постулированы во всех случаях, когда газообразный Нг активируется ионными растворами. Эта активация влечет за собой диссоциацию Нг (гетеролитическую или гомолитическую). [c.99]

    Образование переходного состояния—процесс энергетически более выгодный, чем полный распад вступающих в реакцию молекул (для большинства процессов энергия активации несколько меньше энергии диссоциации наименее прочной связи в молекулах исходных веществ). Вот почему образование активированного комплекса характерно для подавляющего большинства процессов .  [c.220]

    Частотный фактор для диссоциации дил ера циклопентадиена в газово) фазе равен 1,3 10 с , энергия активации 146,30 кДж. [c.381]

    ГИЯ отталкивания а я Ь — постоянные п = = 3 ч- 4 т = 9 ч- 10. Кривая 1 проходит через область с пониженной потенциальной энергией АН . Это область физической адсорбции. Кривая 2 характеризует изменение потенциальной энергии при адсорбции молекулы Аа на поверхности Р, сопровождающейся диссоциацией на атомы А и А". Кривая 2 имеет более глубокий минимум, чем кривая 1, и отвечает образованию химической связи, хемосорбции. Согласно рис. 202 хемосорбция сопровождается выделением теплоты АН . Однако возможно протекание хемосорбции с поглощением теплоты. Пересечение кривых 1 и 2 показывает переход от адсорбции молекулярной (физической) к адсорбции химической. Образующаяся при этом суммарная кривая (жирная кривая) имеет максимум, соответствующий энергии активации хемосорбции Хемосорбция может также протекать с энергией активации, близкой к нулю. Такое положение реализуется, если потенциальная кривая физической адсорбции будет, например, соответствовать кривой 3. [c.642]

    О. В то же время в гипотезе о сильных столкновениях предполагается, что частота столкновений, переводящих молекулу из состояния / во все другие состояния у, не зависит от /. Согласно же принципу детального равновесия активация молекул также должна быть преимущественно ступенчатой. Ступенчатый механизм активации молекул должен сказаться, в свою очередь, на скорости диссоциации. [c.212]

    Энергия диссоциации связи равна энергии активации распада молекулы на радикалы, так как обратная реакция соединения радикалов идет с нулевой энергией активации. [c.113]

    Фтср исключительно активен химически, он — сильнейший окислитель Высокая химическая активность фтора объясняется тем, что его мопекула имеет низкую энергию диссоциации (159 кДж/моль), в то время как химическая связь в больишнстве соединений фтора отличается большой прочностью (порядка 200—600 кДж/моль). Кроме того, энергия активации реакций с участием атомов фтора низка (< 4 кДж/моль). По образному сражению акад. А. Е. Ферсмана, фтор Бсесъедающий . В атмосфере фтора горят такие стойкие вещества, как стекло (в виде ваты), вода  [c.281]

    Диссоциация была изучена фотометрически по увеличению коицеитрации N63 при прохождении адиабатической ударной волны через смесь N204 в газе-носителе N3. Данный метод, как признают, является неточным, и в этой системе энергию активации (а следовательно, и частотный фактор) трудно измерить, но, по-видимому, можно ие сомневаться в том, что частотный фактор превышает величину сек 1. Эта реакция Показывает типичную зависимость от давления. Энтропия активации составляет около 10 кал моль-град, И это легко объяснить, если сопоставить указанную величину с полным изменением энтропии в реакции, составляющим около 45 кал моль -град (стандартные условия 25° С, давление 1 атм). Стандартное изменение энтропии, обусловленное поступательным движением, равно 32,4 кал моль-град, и на долю изменения, обусловлеи-ного вращением и колебанием, остается 12,6 кал моль-град. Последняя величина сопоставима с величиной энтропии активации 10 кал моль-град. Это указывает на то, что переходный комплекс подобен скорее свободно связанным молекулам N02, нежели молекуле N204. [c.232]


    Кистяковский совместно с Ван-Артсдаленом и другими [1, 20, 23] измерили энергию диссоциации некоторых соединений на основе детального изучения кинетики фотохимической реакции бромирования углеводородов. Было показано, что экспериментальное значение энергии активации относится к реакции  [c.14]

    Большое количество измерений энергии диссоциации связи было произведено Шпарцеы с сотрудниками [50] при пиролизе углеводородов, в быстропоточно систсме в присутствии значительного избытка толуола. Большая скорость потока обеспечивает отсутствие дальнейших реакций и, таким образом, кинетика процесса не искажается. Образующиеся свободные радикалы вступают в реакцию преимуш ественно с избыточным толуолом, что приводит к ингибированию радикальных цепей. С другой стороны, образующиеся радикалы бензила сильно стабилизуются резонансом и, следовательно, являются нереакционноспособными, подвергаясь только-димеризации. Характер реакции может быть проверен путем выделения дибензила и сопоставления количества его с выходом других продуктов реакции. Как и в случаях, указанных выше, наблюдаемая энергия активации приравнивается к энергии диссоциации изучаемой связи. Метод ограничивается соединениями с более слабой связью, чем связь С—И в толуоле, так как в противном случае реакция осложняется термическим разложением последнего. [c.15]

    Анализ полученных продуктов показывает, что вопреки мерам предосторожности побочные реакции все же имеют место, однако принимается, что их влияние на измеряемую энергию активации незначительно. К недостаткам этого метода следует отнести и то обстоятельство, что из-за большой скорости потока определяемое значение температуры газа не вполне достоверно. Наконец, давление реагирующих веществ может меняться лишь в ограниченном интервале, что затрудняет проверку, действительно ли реакция соответствует простой мономолекулярной реакции. Однако, несмотря на все недостатки, метод является весьма эффективным, и Э1]ергии диссоциации связи в лучших случаях могут быть измерены с точностью до 2—3 ккал. В других случаях предполагаемые механизмы реакций недостаточно- хорошо доказаны и результаты вызывают сомнение. Хорошей проверкой результатов определения энергии диссоциации спязи, полученных кинотпческнм нутом, яв гяются данные по взаимодействию электронов. Этот метод [18, 46, 47] состоит в наблюдении потенциалов появления (.4 ) в масс-стгоктрометре для следующих типов реакций  [c.15]

    Активация заместителя X нитрогруппами, находящимися в о- и п-положениях, настолько сильная, что нитроарильная группа ведет себя как ацильная, особенно в полинитросоединениях. Эта активация становится очевидной из рассмотрения констант диссоциации нитрофенолов (табл. 1). Ацильная группа, присоединенная к гидроксилу, ослабляет О—Н-связь и дает возможность атому водорода удалиться в виде иона, например в уксусной кислоте Ас—О—Н о- и п-мононитрофенолы в 10 раз более сильные кислоты, чем л -соединения. 3,5-Динитрофенол — наиболее слабая кислота из динитрофенолов — является единственным изомером, в котором ни одна из нитрогрупп не находится в сопряжении) [c.547]

    Структура литьевых эластомеров, полученных с применением диаминов, сложна (ароматические кольца, биуретовые звенья и водородные связи). Очевидно, связи с наименьшей потенциальной энергией диссоциации и обусловят пределы деформирования полимера. Экспериментально определенная мольная энергия активации диссоциации биуретовых звеньев составляет около 192 кДж/моль, а энергия диссоциации связи С—N в отсутствие разветвления (биуретов) 338 кДж/моль. Из этого можно сделать [c.546]

    Катализатором, наиболее широко используемым в промышленности, является ион арсенита, As(0H)a0 , который вводится в раствор карбоната калия, используемый для абсорбции СОа, в виде арсенита калия или AS2O3. Константа скорости для арсенита составляет около 5000 л1 моль -сек) при 25 °С, а энергия активации— около 5700 кал/моль. Так как каталитическим действием обладает лишь анион, а не недиссоциированная мышьяковистая кислота, то значение константы [ at] скорости реакции первого порядка будет уменьшаться при снижении pH до уровня, при котором диссоциация будет частично подавляться. Это может происходить в карбонат-бикарбонатных растворах при обычных температурах. Однако в промышленных условиях абсорбцию СОа растворами поташа проводят чаще всего при температуре около 100 °С. В таких условиях константа диссоциации, видимо, достаточно велика, чтобы обеспечить практически полную ионизацию арсенита во всех участках абсорбционного аппарата. Шарма и Данквертс дают информацию о влия- [c.243]

    Когда такие факторы, как природа субстрата, нуклеофила и уходящей группы, постоянны, активация аниона зависит от растворителя, а также от природы и концентрации лиганда. Бициклические криптанды, такие, как 5, оказывают более сильное влияние, так как они в большей степени охватывают катион, образуя тем самым более стабильные комплексы. В полярных апротонных растворителях крауны обусловливают усиление диссоциации. В других системах (например, грег-бутоксид натрия в ДМСО) ионные агрегаты разрушаются в результате комплексообразования с краунами, что приводит к увеличению основности алкоксида, измеряемой скоростью отщепления протона [101]. В менее полярной среде, такой, как ТГФ или диоксан, доминирующими частицами являются ионные пары. В этом случае краун-эфиры могут благоприятствовать образованию разделенных растворителем более свободных (рыхлых) ионных пар [38, 81] с более высокой реакционной способностью [102]. Даже в гидроксилсодержащих растворителях при добавлении краунов наблюдаются удивительные эффекты, так как изменяются структура и состав сольватной оболочки вокруг ионной пары и ионные агрегаты частично разрушаются. Например, сильно изменяется соотношение син1 анти-изомеров при элиминировании, катализируемом основаниями [103]. [c.40]

    Такой механизм называется диссоцштивным и обозначается 8 1, поскольку это нуклеофильное замещение, в котором наиболее медленная (скоростьопределяющая) стадия включает диссоциацию отдельной молекулы. Различие между этими механизмами должно проявляться в энтропии активации, если ее вычислить из уравнения (22-16) по экспериментальным данным о константах скорости. Механизм 8 2 должен характеризоваться больщой отрицательной энтропией активации, поскольку активированный комплекс образуется из двух молекул. В отличие от этого механизм 8 1 должен характеризоваться почти нулевой энтропией активации, потому что в этом случае активированный комплекс лищь незначительно отличается от молекулы реагента. [c.379]

    Что касается роли реакций разветвления, то во всей этой области параметров она выражена довольно слабо, и определяющими стадияьш являются стадии зарождения. Скорость процесса в целом над третьим пределом w WgV, где Wg — скорость стадий зарождения, в качестве которых могут выступать реакции 1, 6, 7, 9, 18, 22. Реакция 22 практически термонейтральна 1 ккал/моль [48]), реакции 7 и iS сильно эндотермичны, т. е. идут с большим поглощением тепла — соответственно 20 и 57 ккал/моль [96, 97]. Их энергии активации хотя и велики, однако меньше энергии диссоциации реакций 6 и 7. (Это косвенно указывает на то, что роль реакций б, 7 здесь незначительна.) Экспериментально показано [107], что добавки Ог влияют на скорость образования HjO так же, как и добавки аналогичных количеств N3, т. е. кинетически О2 ведет себя аналогично нейтральному разбавителю. Это — прямое доказательство малой роли реакции [c.302]

    Линейные корреляции формулируются как принцип линейных соотношений свободной энергии (ЛССЭ), который применяется для создания количественной теории органических реакций [29, 30]. Эта теория базируется на трех известных уравнениях уравнении Бренстеда, связывающем скорость каталитической реакции с константой диссоциации катализирующей кислоты (основания) уравнении Гаммета — Тафта, связывающем скорости однотипных реакций с индуктивными, стерическими и другими эффектами заместителей в гомологическом ряду соединений уравнении Поляни—Воеводского—Семенова, связывающем энергию активации взаимодействия радикала и молекулы с тепловым эффектом этой реакции в ряду однотипных превращений. [c.158]

    Повышенная энергия Движения электронов может достигаться при поглощении видимого света (или других электромагнитных колебаний) и переходе электронов на волее высокий энергетический уровень (как, например, при активации хлора в реакции Н2- -С12 = 2НС1). Энергия электронов в атомах может повышаться при разрыве валентной связи, например при диссоциации молекулы водорода на атомы или при образовании других атомов с ненасыщенной валентностью или свободных радикалов. Такая активация может осуществляться и при химических взаимодействиях (как, например, в реакции Ыа + С12 = НаС1 + С1) и при ударах молекул о стенку сосуда и пр. Наконец, молекулы могут активироваться действием электрического разряда, ультразвуковыми колебаниями, действием излучений различного рода и другими путями. [c.479]

    В настоящее время нужно считать установленньиг, что активация двухатомных молекул происходит ступенчато [98, 4681. В первых моделях активации предполагалось, что возбуждение молекул АБ происходит в основном за счет превращения относительной поступательной энергии АВ и М в колебательную энергию АВ (см. [98, 44[), причем вращение молекул приводит к понижению энергии диссоциации Ед на З1екоторую величину АЕ(]), зависящую от углового момента молекулы. В этом приближении для дис получается следующее выражение  [c.112]

    С точки зрения механизма фотохимической реакции существенное значение имеет вопрос о том, каков результат первичного воздействия света на молекулу поглощающего вещества. В зависимости от частоты света и структурных особенностей поглощающих свет молекул в резу.ггьтате фотохимической активации может произойти возбуждение, ионизация или диссоциация молекулы. Часто природа первичного фотохимического акта может быть установлена на основании данных о структуре спектра поглощения. [c.158]

    Роль фотонов, являющихся активирующим фактором в фотохимических реакциях, а также в реакциях, протекающих в электрическом разряде, играют быстрые электроны и в значительно меньшой степени — ионы. Активирующая роль быстрых электропов состоит в том, что при соударении электрона с молоку.той за счет эпергии электрона возникает возбужденная молекула, молекулярпый ион или происходит диссоциация молекулы па нейтральные или ионизованные осколки (атомы, радикалы, ионы). Вероятность передачи эпергии, т. о. вероятность активации электронным ударом, обычно характеризующаяся величиной соответствующего эффективного сечения, зависит от энергии электропов, являясь функцией ял, и строения молекулы (функция возбуждения или функция ионизации). [c.173]

    Суммирование этих уравнений дает Hj Gl = 2HG1, откуда следует, что реакция образования хлористого водорода может дойти до равновесия при любой концентрации активных центров С1 и Н, и так как энергия активации указанных выше процессов значительно меньше энергии активации процесса lj = 2С1 (равной теплоте диссоциации молекул lj 57,3 ккал), то за время реакции концентрация активных центров существенно не изменится. Таким образом, рассматриваемая реакция идет практически при неизменном числе частиц, из чего можно заключить, что скорость детонации смеси H -Ь ia не будет зависеть от давления. Как видно из данных табл. 13, это заключение подтверждается на опыте, так как при повышении начального давления смеси с ро=200 тор до Ро = 760 тор скорость детонации изменяется всего лишь на 0,7%. [c.244]

    Энергия активации незначительно зависит от присутствия катализатора (особенно это характерно для кислот с большим молекулярным весом). Для этерификации ДЭГ индивидуальными кислотами от Са до Сэ энергия активации изменяется от 3,27 до 14,86 ккал/моАЬ и для реакции этих же кислот с ТЭГ от 6,23 до 14,82 ккал1моль. Небольшие изменения энергии активации образования эфиров индивидуальных кислот, например, капроновой и ДЭГ (Е = 10,55 ккалЫоль без катализатора и Е = 8,90 ккалЫоль в присутствии КУ-2), можно объяснить тем, что в отсутствие катализатора протекает каталитическая реакция с участием водородных ионов, образовавшихся за счет диссоциации карбоксильных групп. В присутствии катализатора реакция протекает значительно бысрее за счет повышения концентрации водородных ионов. Более низкие значения энергий активации образования эфиров ТЭГ и высокомолекулярных кислот по сравнению с ДЭГ, видимо, можно объяснить влиянием большей основности триэтиленгликоля. [c.109]

    Величины кажущейся энергии активации и предэкспоненциального множителя процессов диссоциации и восотановления ШЖ1Р были определены по /1з7. [c.15]


Смотреть страницы где упоминается термин Диссоциация активация: [c.234]    [c.222]    [c.340]    [c.363]    [c.506]    [c.534]    [c.9]    [c.13]    [c.400]    [c.256]    [c.310]    [c.132]    [c.150]    [c.15]    [c.112]    [c.582]    [c.206]   
Химия природных соединений (1960) -- [ c.462 , c.487 , c.494 ]




ПОИСК





Смотрите так же термины и статьи:

Определение энергии активации процесса диссоциации органических соединений на свободные радикалы

Энергия активации диссоциации

Энергия активации диссоциации водородной связ

Энергия активации диссоциации дисульфида желез



© 2025 chem21.info Реклама на сайте