Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Источник свободных атомов

    Серии служит также основным источником глицина (стадия г) и одноуглеродных остатков, используемых для синтеза метильных и фор-мильных групп. Основной путь образования глицина из серина [70] — это реакция, катализируемая сериноксиметилазой (стадия г, рис. 4-12) в меньшей степени превращение идет через образование фосфатидил-серина, фосфатидилхолина и свободного холина [уравнение (14-30)]. Вследствие ограниченной способности нашего организма к синтезу метильных групп холин во многих случаях должен обязательно поступать в организм с пищей, в связи с чем его причисляют к витаминам. Однако в присутствии достаточных количеств фолиевой кислоты и витамина В12 организм уже не испытывает абсолютной потребности в холине. Холин может быть использован непосредственно для превращения обратно в фосфатидилхолин (рис. 12-8), но его избыток может подвергаться дегидрированию в бетаин [уравнение (14-30)]. Последнее соединение, содержащее четвертичный атом азота, является одним из немногих метаболитов, которые, подобно метионину, могут поставлять метильные [c.118]


    Из приведенной схемы процесса мочевинообразования нетрудно видеть, что один из атомов азота мочевины имеет своим источником свободный аммиак (через карбамоилфосфат) второй атом азота поступает из ас-партата. Аммиак образуется главным образом в процессе глутаматдегидрогеназной реакции. В процессе пополнения запасов аспартата участвуют три сопряженные реакции сначала фумарат под действием фумаразы присоединяет воду и превращается в малат, который окисляется при участии малатдегидрогеназы с образованием оксалоацетата последний в реакции трансаминирования с глутаматом вновь образует аспартат. [c.450]

    Убыль свободной энергии в самопроизвольных процессах может служить (или фактически является) источником работы. Поэтому в изохорно-изотермических условиях критерием самопроизвольного протекания процесса может служить положительная величина работы А т,т а в изобарно-изотермических условиях — положительное значение полезной работы А т,р или соответственно отрицательные значения АР или АС. При равновесии Ат,ъ = —АР = О или А т,р = —АО = 0. [c.109]

    Основным видом связи атомов в молекуле является ковалентная связь. Посмотрим, как образуется такая связь на примере двух атомов водорода. Каждый свободный атом имеет по одному электрону на нижнем уровне (15). При сближении атомов между ними начинается взаимодействие. Можно откладывать энергию взаимодёйствия взм этих атомов в зависимости от расстояния между ними (рис. 159). На больших расстояниях атомы независимы друг от друга ( взм =0), но по мере сближения между ними начинают действовать силы притяжения или отталкивания, в зависимости от взаимной ориентации спинов. Если спины параллельны, то электроны находятся в одинаковом состоянии (все четыре квантовых числа равны) и поэтому стремятся возможно дальше находиться друг от-друга в пространстве. Ядра, имеющие одинаковый электрический заряд, отталкиваются друг От друга. Поэтому для сближения атомов надо затратить энергию за счет какого-нибудь дополнительного источника. Энергия взаимодействия атомов растет, когда внешняя сила заставляет их сближаться (пунктирная кривая на рис. 159). Если же спины обоих электронов направлены в равны е/ с т о р о и ы, то они стремятся образовать устойчивую оболочку с суммарным спином, равным нулю, подобную оболочке атома гелия, который также имеет два электрона на уровне 1 2. Образование такой оболочки приводит к появлению сил притяжения между атомами. Энергия системы в этом случае убывает по мере сближения атомов, так что часть ее должна быть отвё- [c.313]


    При спектральном анализе о качественном и количественном составе вещества мы судим по излучению анализируемой пробы. В источнике света одновременно излучается большое количество атомов и ионов. Но для того чтобы понять природу спектра, надо рассмотреть, как излучает отдельный атом или ион. Свободные (не взаимодействующие друг с другом и с другими частицами) атомы и ионы имеют строго определенное строение и излучают вполне определенные порции света. Поэтому для понимания природы эмиссионных спектров нужно знать как строение свободных атомов и ионов, так и строение самого света. Знакомством с его природой и свойствами начнем изучение спектрального анализа. [c.13]

    Действительно, нейтрон, связанный в ядре, обладает массой 1,000 а. е. м., в то время как свободный нейтрон имеет массу 1,009. Следовательно, энергия связи, соответствующая разнице 1,009—1,000=0,009 а. е. м., по уравнению Эйнштейна (А =с Ат) эквивалентна энергии 9 Мзв.Другими словами, для образования свободного нейтрона ядро должно поглотить у-квант с энергией 9 Мэв. Естественные радиоактивные источники у-излучения и большинство искусственных у-источников, используемых в различных приборах автоматического контроля и регулирования технологических процессов, испускают у-лучи меньшей энергии. [c.41]

    ТОГО, чтобы сделать обоснованное предположение о тех взаимодействиях, которые являются главными источниками связывания. Тем не менее, как было показано при рассмотрении связи металл — я-аллильный лиганд можно в первом приближении выбрать те комбинации орбиталей металла и бутадиена (рис. 17), где перекрывание между орбиталями будет значительным. Интересно рассмотреть на основании метода МО некоторые предположения о характере связи бутадиен — металл, которые на рис. 18 представлены с помощью теории валентных связей. На этом рисунке структура А отражает тот случай, когда электроны локализованы так же, как в свободном бутадиене [5] структура Б показывает значительную локализацию электронов как на имеющей ст-характер связи металла с концевыми атомами углерода, так и на связи между Сз—Сз-ато-мами углерода диена. Структура Б была предложена на основании аномального вида спектров ПМР некоторых диеновых комплексов [15]. Структура В отражает полную делокализацию электронов бутадиена. Можно показать, что в рамках теории молекулярных орбиталей структура А означает, что основной вклад в образование связи с металлом вносят г]) - и особенно 1(з2-орбитали бутадиена, в то время как из структуры Б видно, что связывание АО металла и грз-МО лиганда также значительно. В структуре В все три орбитали бутадиена (1]31, г1)2 и г1)з) принимают одинаковое участие в образовании связи с металлом. [c.99]

    Карякин и сотрудники в серии исследований изучали различные комбинации и приемы ато.мно-абсорбционного анализа. Так, напрнмер, в качестве первичного источника они выбрали горячие излучающие стенки кратера [27], лазер в режиме свободной генерации сочетали с импульсной лампой с полым катодом, а также применяли специальный способ подготовки образца, чтобы увеличить эффективность испарения [28]. Кроме того, ими проводилась дополнительная атомизация паров, образующихся под действием лазерного излучения, в ходе двухступенчатого процесса [29]. [c.89]

    В табл. 67 приведены некоторые результаты, лолученные в опытах с перекисью бензоила в качестве источника свободных радикалов. В автоклаве с мешалкой (изготовленном из соответствующего материала) к 100 г 18,5%-ной соляной кислоты добавляют 0,5 г перекиси бензоила и действуют этиленом при начальном давлении 200 ат. После нагрева до 100° давление этилена поддерживают на уровне около 500 ат. Спустя примерно 11 час. образовавшиеся хлористые алкилы обрабатывают эфиром. При этом остается нерастворенной часть продуктов реакции, состоящая из хлоридов высокомолекулярных алкилов, содержащих 40—50 углеродных атомов в молекуле. [c.196]

    Обобщим этот пример. Пусть за счет внешнего источника энергии (свет, электроразряд, нагревание, а-, - или у-излу-чение, электронный удар) образуются свободные радикалы или атомы, обладающие ненасыщенными валентностями. Они взаимодействуют с исходными молекулами, причем в каждом звене цепи вновь образуется новая активная частица. Путем попеременного повторения одних и тех же элементарных процессов происходит распространение реакционной цепи. Ее длина может быть очень большой (в рассматриваемом примере на каждый поглощенный квант образуется до 100 ООО молекул НС1). Столкновение двух одинаковых радикалов при условии, что выделяющаяся при этом энергия может быть отдана третьему телу, приводит к обрыву цепи. Причиной обрыва может служить не только рекомбинация свободных радикалов iXII), но и их захват стенкой реакционного сосуда, взаимодействие радикала с примесями (если они не служат источником свободных радикалов), а также образование малоактивного радикала (обрыв в объеме). Вот почему скорость цепной реакции очень чувствительна к наличию посторонних частиц и к форме сосуда. Так, содержание в хлороводородной смеси долей процента кислорода в сотни ра уменьшает длину цепей, а поэтому и скорость синтеза атом Н, легко реагируя с О2, образует малоактивный радикал HOj, не способный вступать в реакцию с На [c.116]


    Если эта реакция проводится в темноте и в отсутствие источника свободных радикалов (например, пероксида или кислорода), то образуется только 2-бромопропан. Это присоединение протекает по ионному механизму. Сначала положительно заряженный конец молекулы бромоводорода (т. е. атом водорода) захватывается я-электронами двойной связи. При этом связь Н— Вг разрывается и протон присоединяется к концевому атому углерода. В результате на среднем атоме углерода появляется положительный заряд, притягивающий анион брома (образовавшийся из другой молекулы НВг). Эта реакция называется [c.121]

    В течение последних десяти лет опубликовано значительное число работ в области гомолитических или СЕободнорадикальных реакций замещения в ряду бензила и его производных [1,2]. В резулыаге этил работ, выполненных не только в нашей стране, но и в США, Германии, Японии и СССР, стало возможным определить как относительные общие скорости реакции для большого числа моноциклических ароматических соединений, так и факторы нарциальных скоростей реакций для различных положений, способных к замещению в пределах одной молекулы. В основном эти данные были получены при изучении реакций фенилирования с использованием перекиси бензоила в качестве источника свободных радикалов. Способность перекиси бензоила давать свободные фенильные радикалы была обнаружена в 1934 г. [3] и был предложен механизм реакции фенилирования, включающий присоединение и последующее отщепление [4, 5]. Недавно этот механизм процесса фенилирования был подтвержден Милятинской, Багдасарьяном и Израилевич [6]. Они нашли, что при распаде перекиси бензоила в дейтеробензоле дифенил образуется путем присоединения фенильного радикала к молекуле бензола вновь образовавшийся радикал I затем теряет атом водорода (или дейтерия) без изотопного эффекта [c.313]

    Таким образом, задача сводится к сравнению устойчивости обоих карбокатионов с положительным зарядом на центральном атоме углерода (а) и положительным зарядом на крайнем метиленовом углероде (б). Две метильные группы вследствие своей нуклеофнль-ности будут компенсировать положительный заряд на вторичном атоме углерода в большей степени, чем одна метиленовая группа — на первичном атоме углерода, следовательно, положительный заряд в катионе (а) делокализован в большей степени, он обладает меньшим запасом свободной энергии и устойчивее катиона (б), поэтому протон атакует крайний атом углерода пропилена. Однако американский ученый М. Хараш в 1938 г. обнаружил, что в присутствии источников свободных радикалов перекисей (стр. 167), например метильных СНз, галогеноводородные кислоты присоединяются не по правилу Марковникова (перекисный эффект Хараша). Причина заключается в том, что изменение условий реакции изменяет ее механизм, который становится радикальным, и образуются иные конечные продукты. [c.64]

    Таким образом, атомы водорода, образуюнц1еся при облучении в результаге отрыва от радикалов п.ш1 молекул, при низких температурах вступают с разнообразными химическими соединениями в реакции присоединения, замещения или отрывают другой атом водорода. Подобные процессы, очевидно, играют еще большую роль при облучении этих соединений при более высоких температурах и в жидкой фазе. Рассмотренные реакции атомов водорода являются одним из главных источников свободных радикалов в облучаемых средах. [c.355]

    Как было показано в гл. 2, свободный атом может принимать энергию от внешнего источника и возбуждаться-, это означает, что один из его электронов переходит с основного на более высокий энергетический уровень. Возвращаясь в основное состояние, атом испускает фотон с энергией, соответствующей определенной ч астоте или длине волны. [c.190]

    И ПОД давлением 20—50 ата к продуктам реакции добавляли затем воду, чтобы выделить кислоту в свободном виде [11]. В дальнейшем было установлено, что окись углерода может присоединяться к олефинам в присутствии воды, спиртов, аминов и других соединений, образуя соответственно кислоты, стожные эфиры и амиды. Источником окиси углерода служат карбонилы металлов, выделяющие ее в присутствии кислот мож1ю также проводить каталитическую реакцию с газообразной окисью углерода, используя соль металла, способную в условиях процесса образовывать карбонил [12]. Больше всего внимания уделялось синтезу кислот в присутствии карбонила никеля процесс проводили при 200—300° и 150 ат. Этим способом можно превратить этилен в пропионовую кислоту или ее ангидрид. [c.197]

    Для более углубленного исследования механизма развития коррозионных язв, ЯВЛЯЮП1ИХСЯ, по мнению многих исследователей, источником зарождения трещин [25], было проведено изучение образования язв на плоских образцах из стали 17Г1С, частично покрытых пленочной изоляцией, в условиях одноосного нагружения величиной 0,9 ат в карбонат-бикарбонатной среде (1н. Ма СОз + 1н. ЫаНСОз). Время экспозиции составляло 2000 ч, а величина наложенного потенциала - минус 1,0 В (ХСЭ). Температура в электрохимической ячейке изменялась по режиму 60-50 °С - 12 ч, 20 °С - 12 ч. Через 100 ч экспозиции на свободной от изолирующей пленки поверхности было обнаружено равномерное подтравливание стали, аналогичное наблюдаемому в очаговых зонах разрушения магистральных газопроводов по причине КР, а через 1000 ч - глубокие язвы (рис. 2.4). При этом под отслоившейся изоляцией наблюдалось подтравливание стали, аналогичное наблюдаемому при 100-часовой экспозиции. Во всех случаях травление стали происходило вдоль текстуры прокатки. Внутри коррозионных язв обнаружены отложения солей угольной кислоты белого цвета. При дальнейшей экспозиции область язвенной коррозии покрывалась черной [c.78]

    Атомизации соединений натрия в пламенах. Степень атомизации соединений натрия в различных пламенах стали оценивать сравнительно недавно [200, 347, 583, 638, 694, 789, 911, 1045, 1080, 1268]. Во всех более ранних монографиях отмечали термическую нестойкость соединений натрия в пламенах [397]. В работе [1268] рассчитана концентрация атомов натрия в изолированном воздушно-ацетиленовом пламени горелки Меккера, равная 1,17-10 ат/см при следующих параметрах распылительной системы скорость подачи раствора 3,85 мл/мин, эффективность распыления 4,9 мл/мин, расход воздуха 166 см /с, ацетилена 23 см /с, воды 3,14-10 мл/с, температура пламени 2320 К, начальная концентрация натрия в растворе 10" М. Проверена концентрация свободных атомов натрия с использованием в качестве источника света сплошного излучения. Экспериментально полученные близкие значения указывают на полноту атомизации. Расхождения с результатами Ранна объяснены неучетот сверхтонкой структуры линии с линейчатым источником [1080]. Концентрацию свободных атомов определяли методом атомной абсорбции. [c.117]

    Для того чтобы синтезировать привитой сополимер по механизму, включающему передачу цепи, необходимо наличие в нолимеризующейся системе трех компонентов, а именно способного полимеризоваться мономера, полимерных цепей, на которые прививается этот мономер в качестве боковых цепей, и источника образования свободных радикалов или катализатора, который способен отрывать атом от полимерной цепи для инициирования цепной реакции. Эффективность метода получения привитых сополимеров в результате реакции передачи цепи непосредственно зависит от структур мономера, полимера и от природы инициатора. [c.264]

    Большую роль в решении этой задачи играют исследования и разработка ИК-лазеров с оптической накачкой. Активными средами таких лазеров могут быть многие органические соединения в газовой фазе, что позволяет получить разнообразные частоты ИК-генерации. Поиск и использование активных сред, способных работать при давлениях 1—3 МПа, когда в результате перекрывания соседних линий излучения из-за столкновительного ушире-иия становится возможной непрерывная перестройка частоты генерации, могут привести к созданию ИК-лазеров с перестраиваемой частотой, свободных от недостатков и трудностей, с которыми связана работа электроразрядных газовых лазеров повышенного давления (неоднородность электрического разряда в газе, оптическая неоднородность активной среды). Оптическая накачка является мягкой , неразрушающей активную среду накачкой, что позволяет использовать в качестве активных сред дорогостоящие вещества (например, обеспечивающие непрерывную перестройку частоты генерации смеси изотопически замещенных молекул одного вида [56, 57]). Наконец, такая накачка может быть весьма селективной, т. е. возбуждать только наиболее благоприятный для генерации на данном переходе исходный уровень, что важно для эффективности лазера и установления механизма генерации. Источниками оптической накачки здесь слул<ат прежде всего известные лазеры ИК-Диапазона спектра, но также лазеры видимого диапазона и даже импульсные лампы. [c.177]

    IV. Амидный азот. Поскольку в большинстве нефтей имеются свободные азотистые основания и поскольку все они содержат третичный атом азота, естественно было предположить, что имевшиеся в материнском веществе нефти первичные и вторичные амины и аминокислоты, как вещества более реакционноспособные, подверглись каким-то дальнейшим превращениям и возможно послужили источником для образования нейтральных азотистых соединений нефти. Такими нейтральными азотистыми соединениями являются, например, амиды РСОЫНН и КСОЫН К", образование которых представляется вполне возможным как за счет аминокислот, так и за счет взаимодействия аминов с присутствующими обычно в нефтях карбоновыми кислотами. Исходя из этого предположения, мы исследовали некоторые нефти на содержание амидного азота. Для определения амидного азота был применен ЫА1Н4, который гладко восстанавливает амиды по уравнению [10] [c.72]

    В 1969 г. методом рентгеноструктурного анализа структуру цитохрома с удалось существенно уточнить, однако осталась неясной природа одного из двух аксиальных лигандов гемового железа. Другой лиганд был идентифицирован как гистидиновый остаток. При исследовании восстановленного цитохрома с из девяти источников в каждом из них был обнаружен резонансный сигнал, смещенный в сильное поле на 3,3 м. д. от внутреннего стандарта ДСС [(СНз)з51СН2СН2СН2502 Ыа ] [26]. После тщательной калибровки по стандартам было показано, что интенсивность этого пика соответствует трем протонам. В совокупности с малой шириной сигнала это привело к выводу, что резонансная линия обусловлена свободно вращающейся метильной группой. Величина сдвига в сильное поле свидетельствует о том, что метильная группа должна находиться по соседству с гемовым кольцом и вблизи от оси симметрии гема, вдоль которой ожидаются наибольшие сдвиги. Был сделан вывод, что этот резонансный сигнал с химическим сдвигом 3,3 м. д., который, по-видимому, не может быть связан ни с каким из соседних протонов, принадлежит метильной группе метио-нинового остатка, атом серы которого непосредственно связан с железом [26, 27]. Так как метионин уже был идентифицирован как шестой лиганд в кристаллической структуре окисленного цитохрома с, было сделано важное заключение о том, что при переходе от окисленного к восстановленному цитохрому с не происходит изменения состава лигандов гемового железа. [c.397]

    Реакция (а) приводит к 1- и 2-фенилнафталинам, реакция (б) —к 1- и 2-нафтилбензоатам и реакция (в) — к 1- и 2-нафтильным радикалам, которые, в свою очередь, действуют как арилирующие агенты по отношению к имеющемуся в избытке нафталину, давая 1, Г-динаф-тил- и 1, 2 -динафтил, и 1, 2 -динафтил и 2, 2 -динафтил, соответственно. Пропорции, в которых образуются 1- и 2-изомеры при реакциях фенилирования и бензоилоксилирования, указывают на большую реакционную способность положения 1 по отношению к свободнорадикальной атаке в соответствии с теоретическими предсказаниями, основанными на атомных энергиях локализации и значениях свободных валентностей. Пропорции, в которых образуются три динафтила (1, I -> 1,2 - 2,2 -), согласуются с предположением, согласно которому а) для отрыва атома водорода, как и для замещения, положение I более реакционноспособно, чем положение 2, и б) последовательность реакционной способности 1" и 2-положений в нафталине (1- > 2-) остается приблизительно одинаковой как для фенилирования, так и для нафтилирования. Предполагается, что радикалом, отрывающим атом водорода от нафталинового ядра, является бензоилокси-радикал, а не фенильный, так как среди продуктов реакции не обнаружено бензола. Таким образом, бензоилокси-радикал может реагировать с молекулой нафталина по двум направлениям с прямым замещением (путем присоединения с последующим отщеплением атома водорода) или с отрывом водорода. Вышеприведенный механизм подтверждается тем наблюдением, что, по-видимому, динафтилы не образуются в тех случаях, когда используемый источник фенильных радикалов не дает в качестве промежуточного соединения бензоилокси-радикала. Возможны и другие механизмы образования динафтила, но все они менее вероятны. [c.318]

    НИЯ и отдачи ядра должны быть достаточно большими для отрыва электронов от атома, и можно ожидать, что атом перейдет в состояние с наиболее устойчивой конфигурацией. Хорошим примером отделения продуктов облучения от материала мишени, основанного на изменении степени окисления, является отделение активного теллура. Теллур в форме НеТеОв можно облучить либо нейтронами, либо гамма-лучами, причем атомы активного теллура, получающиеся по (у, п)- или п, 7)-реакциям, как оказалось, имеют степень окисления (+1У). Так как теллур со степенью окисления (+1У) легче восстановить, чем теллур со степенью окисления (-+-У1), то, использовав ЗОа для избирательного восстановления теллура с более низкой степенью окисления до свободного состояния, можно провести разделение. Этот метод был использован и для нескольких других элементов он может быть, по-видимому, применен в любом случае, когда атом элемента в менее устойчивом окисленном состоянии не обменивается слишком быстро с атомом того же элемента в более устойчивом окисленном состоянии. Очень важным применением этих реакций обогащения является получение радиоактивных источников. Как известно вид бета-спектра зависит от толщины источника. Это объясняется энергетическими потерями бета-лучей во время их прохождения сквозь массу образца. Действительно, бета-лучи с низкой энергией могут быть полностью поглощены в толстом источнике. По этой причине используют источники с ничтожно малой толщиной. Они постоянны в отношении поглощения бета-лучей. Однако, когда требуется знать энергию бета-лучей, то необходимо иметь образцы с большой удельной активностью. Именно для их получения и важны реакции типа Сциларда — Чалмерса. [c.421]

    Возбужденный атом натрия является источником наблюдаемого свечения. Реакция (I) протекает быстро, так как к ней ведет каждое столкновение она не требует активации ( 358, т. I). Она является причиной образования плотного осадка на стенках трубки около места входа в нее галоида. Эта реакция в случае Na С1а дает лишь 34 б. кал, что недостаточно для возбуждения свечения паров натрия, на которое требуется 48 б. кал. Поэтому в этой зоне свечение не наблюдается. Вторая реакция дает 70 б. кал, что ведет к возбуждению, которое и происходит в более далекой зоне трубки, где наблюдается сильное свечение, но уменьшается плотность осадка хлористого натрия, так как эта реакция идет более медленно, чем первая. Образование свободных атомов хлора было доказано химическим путем (образование НС1 при прибавлении водорода). Что же касается молекул Nag, входящих в реакцию (II), то их присутствие может быть подтверждено разными способами. При нагревании свечение уменьшается вследствие термической диссоциации молекул Nag, причем по величине этого уменьшения можно было судить о степени диссоциации, а отсюда, применяя уравнение изохоры, о теплоте ее. Последняя была найдена в согласии со спектро- [c.517]

    Уравнения электродных процессов для всех полуэлементов пишутся так, что восстановленная форма (нейтральный атом) стоит в левой части, а электроны и ионы — в правой части уравнения. Схемы гальванических элементов пишутся так, что окислительные электроды, или электроды, на которых электроны выделяются, помещаются с левой стороны, а восстановительные электроды, или электроды, на которых электроны поглОщаются, пишутся с правой стороны. Если сумма потенциалов полуэлементов, расположенных указанным образом, положительна, то реакция, протекающая в элементе, может итти самопроизвольно и свободная энергия системы убывает. Если эта сумма отрицательна, то процесс не может протекать в указанном направлении без применения внешней электродвижущей силы и расхода электрической энергии из некоторого внешнего источника. Рассмотрим, orAa Ho > с этими положениями, процессы, протекающие в элементе, [c.97]

    Серьезным недостатком спектроскопии насыщения является то, что в процессе поглощения участвует очень малая доля пробы (например, те атомы, которые движутся перпендикулярно лучам лазеров) и только часть из них участвует в насыщающем взаимодействии. Разработанный недавно метод двухфотонного поглощения не имеет этого недостатка [78—82]. Хотя вероятности двухфотонного поглощения низки, высокая спектральная мощность лазерных источников позволяет довольно легко детектировать этот процесс. Если два фотона, участвующие в процессе поглощения, соответствуют одной и той же длине волны и движутся в противоположных направлениях, то вклады доплеровского уширения первого порядка гасятся у каждого молекулярного (атомного) центра и наблюдаются естественные щирины линий. В отличие от рассмотренного выще случая однофотонной спектроскопии насыщения все ато.мы или молекулы в лазерном пучке могут участвовать в процессе поглощения, и поэтому сигналы могут быть достаточно сильными. Установка для наблюдения двухфотонных, свободных от доплеровского уширения переходов достаточно проста и изображена на рис. 8.19. Вклады от двух фотонов, движущихся в одном и том же направленип, малы, поскольку сечения ушпрены за счет доплеровского эффекта. Очень узкие естественные ширины линий ( 50 МГц), наблюдаемые ири двухфотонных поглощениях, дают возможность проводить детальный анализ даже изотопов (см. ниже) или ядерных изомеров и могут быть селективно модулированы посредством слабых полей [83] (рис. 8.20). [c.572]


Смотреть страницы где упоминается термин Источник свободных атомов: [c.228]    [c.79]    [c.228]    [c.52]    [c.28]    [c.44]    [c.129]    [c.421]    [c.422]    [c.205]    [c.10]    [c.266]    [c.276]    [c.713]    [c.318]    [c.395]    [c.312]    [c.101]    [c.375]   
Смотреть главы в:

Аналитическая химия Том 2 -> Источник свободных атомов




ПОИСК





Смотрите так же термины и статьи:

Свободные атомы



© 2024 chem21.info Реклама на сайте