Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Разделение щелочной группы (раствор

    Разделение четвертой группы катионов на подгруппы. К раствору 2 прибавляют водный раствор аммиака до щелочной реакцин и ацетатную бус )ерную смесь до слабокислой реакции (рН< 3). Затем добавляют раствор (NH4)2S, при этом выпадает осадок сульфидов, который отделяют центрифугированием  [c.139]

    Выбор группы методов концентрирования для конкретного анализируемого чистого вещества, с одной стороны, зависит от свойств элементов основы и примесей. Например, концентрирование при анализе щелочных и щелочноземельных металлов проводится, в основном, путем группового выделения примесей (экстракцией, ионным обменом, соосаждением с коллектором и пр.). Для элементов, расположенных в середине Периодической системы, и переходных металлов в высших степенях валентности характерно образование летучих соединений с ковалентным Типом связи и для целей концентрирования при анализе названных элементов и их соединений часто могут быть использованы методы испарения (сублимации) основы. Переходные металлы (с достраивающимися электронными -оболочками) склонны к комплексообразованию в растворах и для их отделения перспективны экстракционные и ионообменные методы. Разделения в группах редкоземельных и актинидных элементов (с достраивающимися /-оболочками) требуют использования высокоэффективных хроматографических методов, в частности, метода ионообменной хроматографии. С другой стороны, важное значение для выбора метода концентрирования имеют физико-химические свойства анализируемого соединения (летучесть, плавкость, растворимость). Так, соединения, которые с трудом переводятся в раствор, следует подвергать обогащению методами испарения или направленной кристаллизации. Те же методы, не связанные с химической обработкой пробы, если они могут обеспечить концентрирование нужных примесей, следует применять и при анализе прочих чистых соединений. [c.319]


    Осаждения добавлением сульфид-ионов имеют очень важное значение в количественном анализе не только для выделения отдельных элементов, но и для отделения групп элементов друг от друга. Осаждения могут быть проведены при самых различных условиях как в отношении концентрации ионов водорода, так и в отношении других особенностей раствора, в зависимости от преследуемых целей. Например, изменяя концентрацию ионов водорода, можно мышьяк (V) отделить от свинца, свинец от цинка, цинк от никеля, никель от марганца й марганец от магния. В щелочных растворах некоторые сульфиды образуют растворимые соединения, что может быть использовано для разделения элементов внутри группы, например для отделения свинца от молибдена. Разделения внутри группы возможны также путем превращения одного или нескольких ее членов в комплексные анионы, которые не реагируют с сульфид-ионами, например отделение кадмия от меди в растворе цианида, меди или сурьмы (III) от олова (IV) в растворе фтористоводородной кислоты, и сурьмы от олова в растворе, содержащем щавелевую кислоту и оксалат. [c.83]

    РАЗДЕЛЕНИЕ ЩЕЛОЧНОЙ ГРУППЫ (РАСТВОР IV) [10] [c.471]

    Обнаружение щелочных и щелочноземельных металлов. Для разделения щелочных и щелочноземельных металлов готовят 10%-ный раствор пробы в 2 М НС1, не содержащий ионов других аналитических групп. При этом применяют хроматографиче- [c.85]

    Катионы щелочной группы (Ы+, Ыа+, К+, М 2+) разделяют на слое силикагель — крахмал. Одновременно на пластинку наносят контрольные пробы этих же катионов по 0,005 мл 1 М растворов их ацетатов, слегка подкисленных уксусной кислотой. Подвижная фаза — 100 мл абсолютного этанола и 1 мл уксусной кислоты. Время разделения — 50 мин. [c.145]

    Среди аналитических разделений в солянокислом растворе из вестно отделение магния от кальция [11, 45 ] и кальция от стронция. Последнее разделение удобно проводить в 2,ЪМ НС1. Щелочные металлы, магний, алюминий и железо элюируются раньше, чем кальций поэтому они не мешают анализу [2, 40, 66]. Щелочноземельные металлы просто отделяются от металлов, дающих устойчивые хлоридные комплексы, т, е. от металлов платиновой группы, урана (VI), меди (II), ртути (II), цинка и кадмия. Эти металлы могут быть легко элюированы, например iM H l [33, 41 ]. [c.310]


    Среди труднолетучих, растворимых лишь в эфире, веществ группы ТЛ1 могут присутствовать в основном углеводороды, спирты, галоидопроизводные, простые и сложные эфиры, альдегиды и кетоны, карбоновые кислоты, фенолы, нитросоединения и основания. Эфирный раствор исчерпывающе экстрагируют соляной кислотой и щелочью экстракты, подкисленные или подщелоченные, снова обрабатывают эфиром этим путем можно добиться весьма глубокого разделения. Среди труднолетучих, растворимых как в воде, так и в эфире, веществ ТЛ II могут быть жирные кислоты, полигидроксильные соединения, енолы, оксимы, амиды кислот, аминокислоты, аминофенолы. Можно пытаться разделить их путем извлечения эфирного раствора кислотами и щелочами. При этом часто бывает целесообразно произвести дробное извлечение, обрабатывая по очереди бикарбонатом, карбонатом и едкой щелочью, или, наоборот, щелочной водный раствор подкислить, затем с помощью бикарбоната насытить раствор углекислотой и затем экстрагировать эфиром. При этом следует применять преимущественно специальные приборы для экстракции. [c.18]

    Разделение IV и V групп. Промытый осадок сульфидов обработайте 10 каплями щелочного раствора Na S при слабом нагревании в течение 2—3 мин. и перемешивании. При этом сульфиды ионов V группы растворяются с образованием соответствующих тиосолей, тогда как сульфиды ионов. IV группы остаются в осадке. Разбавив содержимое про рки 10 каплями воды, осадок отцентрифугируйте и отделите оГ раствора. Затем обработайте осадок сульфидом натрия еще раз. Центрифугаты от обеих обработок соедините и исследуйте по п. 6. [c.436]

    Мышьяк(1П) и мышьяк(У) осаждением сероводородом из кислых растворов могут быть отделены от элементов, пе входящих в сероводородную группу. Для отделения элементов группы меди от мышьяка сначала проводят совместное осаждение их сероводородом из кислого раствора, затем обрабатывают смесь сульфидов раствором сульфида щелочного металла для переведения мышьяка в соответствующую растворимую тиосоль. Можно также проводить разделение осаждением сульфидов в ще.точном растворе, сразу получая тиосоль мышьяка в растворе. [c.116]

    Как анализируют щелочный раствор, получаемый при разделении III группы катионов на подгруппы с помощью окисления в щелочной среде Напишите уравнения реакций. [c.61]

    Поскольку разные ионы обладают разной подвижностью, на основе электрофореза возможно разделение веществ, молекулы которых могут быть заряжены. К их числу относятся важнейшие биополимеры— белки и нуклеиновые кислоты. Белки содержат, как правило, много NH2- и других групп, способных присоединять протоны и тем самым заряжаться положительно. Они содержат также много карбоксильных групп (СООН), которые, ионизуясь, дают отрицательно заряженные ионы СОО . Степень протонирования и степень ионизации отдельных групп, а следовательно, и заряд белковой молекулы зависят от pH среды. В кислой среде белки заряжены положительно, в щелочной — отрицательно. Нуклеиновые кислоты содержат остатки фосфорной кислоты, которые уже в слабо кислой, а тем более в нейтральной и щелочной средах ионизированы, т. е. несут отрицательный заряд, в связи с чем нуклеиновые кислоты находятся в растворе в виде полианионов. Поэтому электрофорез является важнейшим методом препаративного разделения и анализа смесей белков и смесей нуклеиновых кислот. [c.330]

    Для разделения катионов на аналитические группы пользуются различными методами. Наиболее распространены щелочной и сероводородный методы. Щелочной метод основан на различном отношении основных и амфотерных гидроксидов к щелочам, а сероводородный — на различной растворимости сульфидов металлов при различных pH раствора. В данной работе рассматривается сероводородный метод. [c.257]

    В кислом растворе (2 н. кислота) тиоацетамид осаждает катионы IV и V аналитических групп мышьяка (III), сурьмы (III), олова (П), ртути (II), меди (П), свинца (II), серебра (I) в щелочной среде осаждаются катионы III группы алюминий (III), железо (111), хром (III), кобальт (П), никель (II), марганец (II) и цинк (11). Применяют его также для разделения катионов. [c.207]

    Не утратили практического значения классические методы, основанные на различной растворимости сульфидов или гидроокисей. металлов, хотя эти. методы пригодны главным образом для группового разделения. Кобальт находится в И1 аналитической группе катионов. Осаждение с сероводородом в кислой среде позволяет отделять катионы IV и V групп от кобальта. Сульфид аммония применяется для отделения кобальта совместно с другими катионами П1 группы от щелочных и щелочно-зе.мельных. металлов. Воз.можны также разделения внутри П1 группы, если тщательно регулировать кислотность раствора в процессе осаждения. Известны, например, методы осаждения цинка сероводородом в присутствии кобальта в слабокислом растворе, отделения кобальта от марганца и др. Сероводородный метод был усовершенствован Остроумовым, который предложил осаждать сульфиды кобальта (и никеля) из пиридиновых растворов это дает возможность достигнуть более четкого разделения и получить сульфиды в виде хорошо отфильтровываемых плотных кристаллических осадков. [c.60]


    Рассмотренные выше обстоятельства приходится учитывать в процессе разделения белков и пептидов [106, 107]. При КЗЭ белков с немодифицированным капилляром рекомендуется после каждого проведенного разделения при вводе пробы из биологических матриц тщательно промывать капилляр раствором едкого натра. При этом молекулы, адсорбированные на стенках капилляра, удаляются. Если значения pH вьппе изоэлектрической точки (р/), то белки находятся в анионной форме, т.е. имеют тот же заряд, что и стенки кварцевого капилляра. Предпочтительный pH буфера составляет 9-11. При pH < 2 адсорбция белков уменьшается вследствие протонирования силанольных групп. Возникают проблемы иного рода очень малый ЭОП и возможная денатурация белков. Для предотвращения сорбции белков стенками капилляра к буферу добавляют соли щелочных металлов, низших полиаминов, цвиттер-ионов, обладающих большой буферной емкостью. Перспективно использование неионных ПАВ в качестве динамических покрытий. [c.350]

    Ионнты — твердые нерастворимые вещества, способные обменивать свои ионы на ионы из окружающего их раствора. Обычно это синтетические органические смолы, имеющие кислотные или щелочные группы. И, разделяются на катиониты, поглощающие катионы, и аниониты, поглощающие анионы. Широко применяются И. для опреснения вод, в аналитической химии для разделения веществ (см. Хроматография), в химической технологии. [c.58]

    В ВОДНЫХ суспензиях. Таким образом, несмотря на то что такой мелкокристаллический препарат удобен при разделении микроколичеств веществ [7], для лабораторных или заводских работ необходимо использовать соответствующий наполнитель. Смит показал, что смесь фосфоромолибдата аммония с асбестом, применяемым для т 1глей Гуча, в соотношении 1 1 может быть использована для разделения макроколичеств щелочных металлов (рис. 21 и 22). Смеси ионообменника с асбестом позволяют получать нужные скорости элюата даже при умеренном давлении. При продолжительной работе колонки сама смесь при этом не разделяется, а асбест вносит совсем незначительный вклад в обменную емкость. Успешное разделение следовых количеств щелочных металлов подтвердилось и на больших количествах. И так как более легкие элементы образуют довольно растворимые соли, в связи с чем незначительно сорбируются ионообменником, то это обстоятельство позволило также отделить следовые количества тяжелых щелочных металлов от значительно больших количеств легких элементов этой группы, которые сильно перегрузили бы колонку, если бы они сорбировались. Подобные соображения применимы также в случае отделения тяжелых щелочных металлов от многовалентных катионов в кислых растворах, в которых последние плохо сорбируются. Очень высокая селективность цезия позволяет количественно выделить его из 20 л морской воды с помощью колонки, содержащей всего лишь 2 г смеси фосфоромолибдата аммония и асбеста, несмотря на очень большие количества натрия и калия, присутствующих в растворе. Колонки с фосфоромолибдатом аммония можно также использовать для выделения радиоактивного цезия из дождевой, речной и морской воды [12]. При разделении щелочных металлов с линейной скоростью около 1 M MUH на хроматограммах получаются достаточно симметричные кривые с резким спадом на концах. [c.100]

    Разделение обработкой сульфидом щелочного металла. Отделить элементы сероводородной группы, не образующие растворимых сульфо-анионов, можно либо обработкой всей осажденной группы растворой сульфида щелочного металла, либо осаждением сульфид-ионами в щелочном растворе. Последнее значительно лучЩе, потому что полное растворение многих осажденных сульфидов (например, сульфидов селена, теллура и молибдена) обработкой раствором сульфида щелочного металла происходит с трудом и часто даже невозможно. Способ, каким проводят осаждение сульфид-ионами в щелочном растворе, зависит от растворимости осадка в таком растворе. Если практически все растворяется, как, например, составные части нечистого молибдена в аммиаке или продажного олова в растворе едкого натра, то осаждение лучше всего проводить, обрабатывая щелочной анализируемый раствор сероводородом или сульфидом щелочного металла. Если же большая часть сульфидов не растворяется, как, например, компоненты броцзы при обработке едким натром, то тогда лучше прилить слабокислый анализируемый раствор к раствору сульфида щелочного металла, взятому в избытке. Употребления растворов полисульфидов следует избегать, кроме тех случаев, когда нет лучшего способа разделения (например, длд выделения сульфида ртзпи приходится пользоваться полисульфидом аммония). Применение нолисульфи-дов не является необходимым, если элементы, образующие сульфосоли, находятся в состоянии их высшей валентности. [c.93]

    Разделение щелочных и щелочноземельных металлов (группы V и VI). Щелочные и щелочноземельные металлы сорбируются в стеклянной колонке 6 с катионитом КУ-2 в ЫН4°-форме из водного раствора (диаметр колонки 2 мм, высота слоя смолы 100 мм). Колонка предварительно должна быть промыта 50 каплями 8N НС1, 30 каплями воды и 40 каплями 2 N NH4 I. [c.97]

    Непрерывное электрофоретическое разделение смесей радиоактивных изотопов редкоземельных элементов [73, 74] производилось в приборе [70], в котором пористым наполнителем служил кварцевый порошок. В качестве электролитов использовались растворы лимонной кислоты с концентрацией 0,1 % и двунатриевой соли этилендиаминтетрауксусной кислоты с концентрацией 0,01% и pH = 1,86. Продолжительность разделения смеси N(11 — Рш — Еи152 154 равнялась 86 мин. Непрерывный электрофорез применялся также для разделения и анализа редкоземельной группы осколков фотоделения 1) [75]. Аналогичная методика может быть использована для анализа объектов, загрязненных искусственными радиоактивными элементами. При этом анализ с использованием электрофореза должен складываться из двух основных операций радиохидшческого выделения определенной группы элементов (например, группы щелочных и ще-лочнозсмэльных металлов, редких земель и т. д.) и электрофоретического разделения выделенных групп на отдельные элементы. [c.37]

    Анионы или кислоты, осаждающие большую группу катионов, называют групповыми реактивами. Такими реактивами являются, например, гидроксид щелочного металла NaOH, сероводородная кислота H2S и др. Последовательное применение групповых реактивов позволяет провести количественное разделение сложной смеси катионов на несколько аналитических групп. Применение групповых реактивов упрощает проведение анализа, позволяя разрабатывать универсальные схемы анализа, предусматривающие наличие в пробе самых различных комбинаций элементов. В то же время отсутствие осадка при действии группового реактива говорит об отсутствии в анализируемом растворе целой группы ионов. [c.156]

    Разделение катионов I и II аналитических групп. 15—25 капель анализируемого раствора помещают в коническую пробирку и добавляют несколько капель раствора аммиака до щелочной реакции, а затем по каплям раствор NH4 I до получения раствора с рН =9, Смесь нагревают на водяной бане до 60 — 70°С, добавляют к ней 10—12 капель раствора (NH4)2 03, хорошо перемешивают и полученный осадок с раствором выдерживают на водяной бане в течение 1—2 мин при той же температуре. Осадок центрифугируют, а к раствору, не сливая его с осадка, добавляют одну каплю раствора (NH4).j 0 , для определения полноты осаждения карбонатов второй группы. Появление мути означает, что полнота осаждения не достигнута в этом случае к раствору добавляют 2—3 капли раствора (ЫН4)2СОз, вновь выдерживают на водяной бане и повторно центрифугируют. После достижения полноты осаждения центрифугат осторожно сливают с осадка в отдельную пробирку и сохраняют для анализа катионов первой группы. [c.253]

    Многие реакции в качественном анализе и титриметрическом методе осаждения (аргентометрия, меркурометрия) основаны на образовании мало растворимых соединений ( 19, 21). Повышенная растворимость галогенидов щелочных металлов объясняется ослаблением сил взаимодействия между ионами в кристаллической решетке. С этим связано отсутствие группового реагента на щелочные металлы. Вещества со слоистыми или молекулярными решетками растворяются лучше, чем вещества с решеткой координационной структуры. Это используют в химическом анализе для разделения катионов подгруппы соляной кислоты от катионов подгруппы сероводорода. Катионы серебра и свинца (II) образуют хлориды, имеющие решетки координационной структуры и поэтому менее растворимы. Хлориды СиС и СсЮЦ имеют слоистые решетки и поэтому хорошо растворимы, как и близкий к ним по строению решетки 2пС 2. Растворимость солеи связана также с радиусами их ионов. Соли с большими катионами и малыми анионами хорошо растворимы, а соли с малыми катионами и большими анионами — плохо (Яцимирский). Растворимость вещества зависит от соотношения полярностей растворенного вещества и растворителя. Установлено также, что растворимость солей зависит от их химической природы, например, для гидроокисей, сульфатов, хлоридов, фторидов элементов 1-й и 2-й групп периодической системы  [c.69]

    Для дальнейшего применения газа большое значение имеют превращения сернистых соединений, присутствующих в коксовом газе, на катализаторах гидрирования. Они легко растворяются в воде, которая конденсируется из газа в специальных аппаратах перед блоками разделения, в щелочном растворе в скруббере, расположенном после аппаратов гидрирования, и полймеризуются. Большая их часть попадает в этиленовую фракцию и загрязняет богатый -газ. Установлено, что на катализаторах платиновой группы серни- [c.441]

    При введении бензина в омыляющую ванну скорость реакции щелочного алкоголиза ПВА увеличивается (рис. 4.5), особенно после разделения раствора на две несмешивающиеся фазы. До тех пор, пока смесь остается гомогенной, ускорение реакции может быть вызвано уменьшением степени сольватации ацетатных групп ПВА метанолом в присутствии апротонного растворителя (см. раздел 4.2). С отделением бензинового слоя возрастает концентрация щелочного катализатора в растворе ПВА, так как NaOH нерастворим в бензине. Ускорение процесса омыления ПВА при добавлении бензина позволяет осуществить реакцию в присутствии небольших количеств катализатора. На рис. 4.6 показана кинетика щелочного алкоголиза ПВА при различных концентрациях NaOH. [c.86]

    Таким образом, у данного типа ионообменников наблюдается переход от анионного обмена в кислом растворе к катионному обмену в щелочном растворе. Подобного перехода не наблюдается, если М — элемент с низкой основностью, например кремний. Переход от одного типа обмена к другому происходит в определенном интервале значений pH, зависящем от основности иона металла. Отсутствие резкого перехода, отвечающего этому изменению (здесь уместно сравнение с изоэлектриче-ской точкой амфотерных ионов), и возможность в некоторых случаях одновременно и катионного и анионного обмена при определенном значении pH дают основание предполагать, что ионообменные группы неравноценны. Силикагель обладает только катионообменными свойствами [20] высокое электронное сродство у четырехвалентного иона кре.мния проявляется в форме очень слабой основности гидроксильных групп. Атомы водорода последних легко заменяются катионами даже в кислых растворах, особенно теми, которые легко координируются с кисло- родом. На рис. 24 представлено влияние pH раствора на величины коэффициентов распределения различных ионов при сорбции нх на силикагеле. Из этих данных следует, что указанные ионы можно разделить при определенных значениях pH раствора. Этот метод был использован [21] для разделения урана, плутония и трехвалентных металлов (продукты деления) из растворов, полученных при растворений облученрого урана кислоте. Значения коэффи- [c.119]

    Цианокобаламин имеет полиамидный характер, что установлено по выделению аммиака (6 молей) при кислом гидролизе [11, 27, 88] и данным инфракрасного спектра. При анализе продуктов гидролиза цианокобаламина в кислых, нейтральных и щелочных растворах эф ктивно применен метод электрофореза и хроматографического разделения. Электрофорез на бумаге при pH 6,5 и 10 позволил разделить продукты расщепления на отдельные соединения по их ионным зарядам. Ступенчатый гидролиз в холодной разбавленной соляной кислоте показывает присутствие трех амидных групп, относящихся, по-видимому, к боковым цепям пропионовых кислот. Получены три одно-, три двух-, одна трех- и одна четырехосновная кислоты, содержащие нуклеотидную часть молекулы витамина эти кислоты были превращены с хлоругольным эфиром в смешанные ангидриды и затем с аммиаком в цианокобаламин [27]. [c.587]

    Пятая группа содержит магний и щелочные металлы они не осаждаются вышеприведенными реактивами. Если осаждение углекислым ам.монием пр0из1В0дить в концентрированном растворе, содержащем спирт, то магний осаждается вместе с четвертой группой. Такой прием разделения последних двух групп в некоторых отношениях выгоден. [c.101]

    Если хлорангидрид кислоты сравнительно устойчив к действию воды и холодного водного раствора щелочи, введение ацильной группы может быть осуществлено по способу Ш о т-т е н а и Б а у м а н а 12. Амин суспендируют в приблизительно 10%-ном водном растворе гцелочи и обрабатывают хлорангидридом кислоты, взятым 3 1,25—1,5-кратном против теории количестве. При этом реакционную смесь перемешивают или взбалтывают, пока большая часть хлорангидрида не прореагирует. Избыток хлорангидрида разлагают слабым нагреванием реакционной смеси. Образовавшееся трудно растворимое ацильное производное отфильтровывают, промывают водой до полного удаления щелочи и перекристаллизовывают из < подходящего растворителя. Важно, чтобы в процессе реакции водный раствор все время обладал щелочной реакцией. Этот метод с успехом применяется для хлорангидридов ароматических кислот, арилсульфоновых кислот и пирослизевой кислоты. Следует отметить, что сульфонильные производные первичных аминов растворимы в щелочах, а сульфонильные производные вторичных аминов нерастворимы. На этом основан способ распо.знавания и разделения первичных И вторичных аминов [c.344]

    Особенно широко в последние годы исследуют сорбенты, содержащие соли легкогидролизующихся элементов с многоосновными кислотами фосфорнокислые соли 2г, Т1, 8п, и (VI), 8Ь(У), соли полифосфорных кислот. Из сорбентов подобного типа наиболее исследован фосфат циркония, сорбция на котором происходит в результате обмена водорода группы Р—ОН. Ценно свойство сорбента поглощать цезий из кислых растворов. Избирательность поглощения цезия позволяет сорбировать его из растворов, содержащих значительные количества Ма, А1, Ре. Десорбция осуществляется при 50—90° С растворами МН4МОз, NH4 1 или ННОз- Другие щелочные металлы десорбируются значительно легче цезия, что используют для их разделения. Селективность фосфатциркониевого сорбента по отношению к цезию увеличивается при введении в его состав 20% фосфоро-вольфрамата или фосфоромолибдата аммония. [c.181]

    Динитрофенилпроизводные гексозаминов имеют некоторое применение для идентификации и разделения. Ллойд и Стэси [11] показали, что эти производные представляют интерес для сиитеза гликозидов, когда реакция конденсации с незащищенными гексоз-аминами осуществляется с низким выходом. Эти производные получают нагреванием хлоргидрата гексозамина с ДНФ и бикарбонатом натрия. Динитрофенильная группа устойчива в 1 н. соляной кислоте и в растворе aм iиaкa в метаноле, но легко отщепляется на щелочной смоле амберлит IRA-400-OH. Вольфром с сотр. использовали эту защитную группу в синтезе аномерных 9-(2-амино-2-дезокси-о-глюкопиранозил)-аденинов [12] и 1-(2-амино-2-дезокси-р-о-глюкопиранозил)-тимина [13]. [c.156]

    Для анализа небольшой объем раствора катионов III группы (3 капли) помещают в коническую пробирку и проводят разделение катионов на пода-руппы щелочным методом, добавляя избыток щелочи. Образовавшийся осадок Fe(0H)2, Ре(ОН)з, Со(ОН)2, Ni(0H)2 и Мп(0Н)2 отделяют центрифугированием. К раствору, содержащему алюминат-, хромит- и цинкат-ионы, добавляют избыток раствора хлорида аммония. Выделившийся осадок А1(ОН)з и Сг (ОН)з отделяют центрифугированием. В растворе открывают цинк известными частными реакциями, предварительно создав необходимые для этого условия. [c.127]


Смотреть страницы где упоминается термин Разделение щелочной группы (раствор: [c.100]    [c.14]    [c.149]    [c.280]    [c.352]    [c.74]    [c.108]    [c.111]    [c.181]   
Смотреть главы в:

Хроматография в тонких слоях -> Разделение щелочной группы (раствор




ПОИСК





Смотрите так же термины и статьи:

Разделение на группы

Растворы разделение

Растворы щелочные



© 2024 chem21.info Реклама на сайте