Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фактор сероводорода

    Биохимическая очистка [5.21, 5.24, 5.33, 5.55, 5.64, 5.72]. Метод основан на способности микробов использовать в процессе своей жизнедеятельности различные растворимые органические и неокис-ленные неорганические соединения (например, Сг +, аммиак, нитриты, сероводород). Поэтому применение биохимического метода дает возможность удалять из сточных вод разнообразные токсичные органические и неорганические соединения. Если скорость биохимического процесса определяется условиями подвода кислорода и поверхностью микробных тел (диффузионные факторы), те применяют аэротенки — смесители с пневматической или механической аэрацией. При пневматической аэрации часть органических соединений может десорбироваться в атмосферу. Если скорость биохимического процесса зависит только от кинетических факторов и практически не зависит от наличия кислорода и числа микробных тел, то применяют биофильтры, окислительные пруды и водоемы. [c.496]


    Схемы промышленных установок по разделению углеводородов различаются между собой в зависимости от состава перерабатываемого сырья, требуемой глубины извлечения компонентов и других факторов. В качестве примера схем современных крупных газобензиновых заводов можно привести схему газобензинового завода фирмы Филлипс петролеум , перерабатывающ,его попутный газ с двух промысловых компрессорных станций и одной газосборной станции, расположенной на самом заводе (рис. 2). Очиш енный от сероводорода газ компримируется до 56 ати и при этом давлении поступает на извлечение тяжелых углеводородов в два параллельно работающих абсорбера. Насыщенное масло из абсорберов проходит через теплообменники, где нагревается горячим регенерированным маслом и направляется в выветриватель для удаления неконденсирующихся газов. После выветривателя насыщенное масло нагревается в змеевике трубчатой печи до 215° и поступает в десорбер высокого давления, работающий под давлением 17,5 ати. В десорбере из масла удаляется основная часть тяжелых углеводородов. Окончательная десорбция углеводородов протекает во втором десорбере при давлении 2,8 ати. Отпаривание углеводородов в обоих десорберах производится при помощи острого пара. [c.22]

    В большинстве контрактов на газ предусматривается снижение концентрации сероводорода в очищенном газе до 6 г на 1000 м газа. На удачно сконструированной установке эта величина довольно легко достижима. Основными причинами, которые не позволяют получить газ указанной степени чистоты,— коррозия, потери раствора и нарушения режима эксплуатации установки. К уменьшению этих пен елательных факторов иеобходимо стремиться нри проектировании установок. [c.269]

    Гидрогенизирующий газ должен содержать достаточно большое количество (около 95%) водорода возможна, но не обязательна подача пара, поскольку осаждение углерода на коксовой мелочи исключает необходимость борьбы с его образованием. Наличие сернистых соединений как в гидрогенизирующем газе, так и в сырье не оказывает влияния на технологию, поскольку в данном сырье процесс конверсии углеводородов является полностью некаталитическим. Однако уходящие газы должны быть очищены, и стоимость отмывки сероводорода иногда является лимитирующим фактором и зависит от количества удаляемой серы. [c.122]

    Качество и эффективность катализаторов перевода H2S и SO2 в серу являются основой для обеспечения не только высокого выхода серы, но и основным фактором экологической безопасности процессов переработки сероводорода, извлекаемого из природных и попутных газов. На протяжении всего развития методов получения серы из сероводорода велись работы по увеличению степени конверсии, применению новых, более совершенных и длительно работающих катализаторов. [c.105]


    Катализатор на основе окиси цинка во время работы превращается в сульфид цинка, который поддерживает активность в процессе разложения сераорганических соединений, но абсорбция сероводорода прекращается, когда окись цинка полностью отрабатывается. На этой стадии катализатор необходимо заменить. Максимальное использование этого катализатора как абсорбента зависит от следующих факторов  [c.67]

    На одной из установок АВТ изучено влияние режимных показателей при переработке высокосернистых нефтей (типа арланской) на концентрацию сероводорода в барометрической воде. Так как основным фактором, влияющим на образование сероводорода, является температура, то на одной из АВТ изменяли температуру сырья на выходе из вакуумной печи от 385 до 410 °С, не изменяя остальных режимных показателей. Правда, при температуре выше 400 °С наблюдалось небольшое уменьшение вакуума. [c.224]

    Далее по уменьшению значимости влияния следуют такие факторы, как содержание и парциальное давление кислых компонентов, а также температура транспортируемой среды. Согласно [3], характер коррозионных процессов существенно изменяется в зависимости от соотношения парциальных давлений кислых компонентов в системе при повышении парциального давления сероводорода увеличиваются количество проникающего в сталь водорода и скорость общей коррозии при возрастании парциального давления углекислого газа увеличивается скорость общей коррозии стали (рис. 3). [c.11]

    Отмечалась также зависимость состава природных газов от характера заключаюш их его пород. Если учесть малую химическую активность низших углеводородов и их термодинамическую устойчивость, становится понятным встречаюш,иеся здесь затруднения в установлении каких-либо взаимоотношений. Зато в отношении активных компонентов, таких как углекислый газ и сероводород, можно было бы, казалось, наметить те или иные закономерности. К сожалению, четкую зависимость до сих пор установить не удалось, хотя в некоторых случаях отмечалось, что газ (нефть,) находящийся в контакте с сульфатами, например, с гипсом или сульфидами (пирит), содержит относительно больше сероводорода. Биологический фактор в подобных случаях имел, вероятно, немалое значение. Отмечалось также, что содержание азота выше в тех случаях, когда в газовом месторождении принимают участие известняки и гипсы. Химическая интерпретация в этом случае остается еще не разрешенным вопросом и самое явление едва ли носит достаточно общий характер, чтобы можно было оправдать самую постановку вопроса на основе имеющегося материала. [c.78]

    Таким образом, влияние биологического фактора на коррозионный процесс может проявляться как в виде непосредственного воздействия на металл продуктов, вырабатываемых микроорганизмами (сероводород), так и в виде образования на металле пленок, способствующих возникновению коррозионных элементов дифференциальной аэрации. [c.49]

    В результате двух последних факторов снижается коррозия отбензинивающей колонны и отпадает необходимость очистки газа от сероводорода и защелачивания бензина колонны К-1. [c.123]

    При осаждении сероводородом необходимо уделять внимание следующим двум факторам, которые существенно влияют на результаты  [c.94]

    Вторым фактором, который обусловливает иногда неполное осаждение сульфидов, является присутствие окислителей, чаще всего ионов трехвалентного железа, а также азотной кислоты. Азотную кислоту следует удалить выпаривание.м раствора с избытком серной кислоты такое удаление в особенности необходимо в тех случаях, когда осаждение сероводородом ведется в сильнокислых растворах. [c.94]

    Установление сорбционного ряда на окиси алюминия для хроматографии дало возможность разработать новый метод качественного анализа, основанный на разделении веществ с учетом их сорбируемости на сорбенте и тем самым исключить использование сероводорода для разделения неорганических ионов [53]. Метод широко используется для качественного определения и количественного разделения веществ. Сорбционные ряды, установленные различными авторами, приведены в табл. И, Относительная избирательная сорбируемость ионов на том или ином сорбенте зависит от ряда факторов приро- [c.175]

    Далее был проведен анализ факторов на р в присутствии или отсутствии сероводорода. Для этого матрица планирования била разделена на две части. [c.21]

    В процессе эксплуатации оборудование контактирует с разнообразными средами, обладающими коррозионно-агрессивными свойствами, однако в большинстве случаев инициатор коррозионных процессов — вода, и коррозия протекает по электрохимическому механизму. Агрессивность водной фазы зависит главным образом от ее химического состава и физического состояния. Основные факторы, определяющие физико-химическое состояние воды, - это состав и содержание растворенных солей, наличие кислорода и кислых газов (углекислого газа, сероводорода), их парциальное давление, температура, скорость движения и характер потока. [c.4]


    В настоящее время установлено, что при нагревании резиновых смесей происходят и другие реакции. При вулканизации имеет место взаимодействие ускорителя с каучуком, ускорителя с активатором и с сажей, противостарителя с каучуком и кислорода с каучуком, а также образование сероводорода и сернистого газа. Все это оказывает значительное влияние на изменение свойств каучука при вулканизации. Общая картина происходящих химических процессов усложняется структурированием и деструкцией каучука под влиянием различных факторов. Однако основное значение в процессе вулканизации имеет реакция присоединения серы к каучуку. Это подтверждается тем. [c.69]

    Сероводород может присутствовать в попутном газе, сопровождающем сернистые нефти, в растворенном состоянии в самих нефтях, в продуктах первичной перегонки нефти (газах, бензиновых дистиллятах и других светлых нефтепродуктах) или в продуктах вторичных термических процессов (термический и каталитический крекинг, каталитический риформинг, коксование остатков, гидроочистка, гидрокрекинг и др.). Наличие сероводорода в товарной нефти в значительной степени зависит от степени предварительной сепарации нефти, а также от метода эксплуатации месторождений. Поэтому в литературе можно встретить противоречивые данные па содержанию На8 для нефтей одних и тех же месторождений. Содержание сероводорода в нефтях представляет собой чрезвычайно важный показатель, так как оно определяет многие факторы, связанные [c.25]

    Влияние же температуры на коррозионную систему, в которой еще более низкое значение фактора сероводорода при том же уровне СО2, уже не снижает, а повышает скорость коррозии стали (кривая К). Такое влияние температуры можно объяснить в основном неоднозначным воздействием на скорость коррозии эффектов взаимодействий температуры и сероводорода (Х1Х2 при Ь = -0,057), а также температуры и углекислого газа (Х1Х3 при Ь = +0,038). [c.23]

    При повышении температуры сульфидные пленкт1 становятся более пористыми, и при некоторой температуре, соответствующей пли близкой к экстремальной, скорость коррозии определяется в основном скоростью реакции железа с сероводородом. Поскольку указанная реакция является экзогермпчной, а условия ее близки к равновесным, то дальнейшее повышение температуры согласно принципу Ле Шателье способствует ее протеканию в обратном направлении, т. е. снижает скорость коррозии. Чем больше концентрация сероводорода, тем более высокая температура требуется, чтобы контролирующим фактором стала химическая реакция. [c.146]

    Кажущаяся активность катализаторов гидрооблагораживання остатков, кроме отмеченньк выше факторов (температура, объемная скорость подачи сырья), зависит от парциального давления водорода и сероводорода в зоне реакции и от размера гранул катализатора. Для учета влияния каждого из указанных факторов в уравнения формальной кинетики включаются соответствующие эмпирические поправки. Например, предложена зависимость [38], учитывающая влияние парциального давления водорода, согласно которой скорость реакции удаления серы определяется по превращению трудноудаляемой серы  [c.76]

    Сульфидные катализаторы характеризуются рядом особенностей, определяющих возможность их использования для переработки нефтяного сырья 1) активное их состояние проявляется в среде сероводород-водород, которая образуется при гидрообессеривании серусодержащего углеводородного сырья 2) наибольшую активность они проявляют при относительно жестких условиях (повышение температуры), предпочтительных для гидрогенизационной переработки тяжелого дистиллятного и остаточного сырья 3) в результате малой теплоты адсорбции водорода его концентрация на поверхности сульфидных катализаторов сравнительно мало меняется с повьипением температуры и активность их за счет этого фактора практически не снижается 4) сульфидные катализаторы характеризует высокая стойкость к действию большинства каталитических ядов, способствующих отравлению других катализаторов. [c.96]

    Факторами, определяющими характеристики процесса (активность, селективность), для каждого выбранного катализатора являются условия его реализации (температура, объемная скорость и т.д.). Первым этапом исследований являлось проведение серии экспериментов по изучению влияния перечисленных факторов на поведение катализатора при повышенном содержании сероводорода в исходной газовой смеси. Объектами исследований были у - оксид алюминия (модельный катализатор) и нанесенный на у - оксид алюминия магнийхромоксидный катализатор, успешно зарекомендовавший себя в промышленных процессах окислительного катализа [69]. На рис.4.11 приведены результаты сравнительных исследований окисления сероводорода на алюмо-оксидном и магнийхромовом катализаторах. Видно, что катализатор на основе оксида алюминия не обеспечивает высоких показателей процесса окисления сероводорода выход серы (произведение суммарной конверсии и селективности) не превышает 60% во всем диапазоне исследуемых температур. [c.115]

    Кроме того, в кристаллах цеолитов высокое содержание воды, которая удаляется из кристаллов при нагревании их до 300 °С. В обезвоженном состоянии кристаллическая решетка цеолитов обладает высокой адсорбционной способностью по отношению к парам воды и газам. Сродство цеолитов к воде больше, чем к другим компонентам газа, так как решетка цеолита стремится восстановить максимальное содержание воды. Это объясняется сильной полярностью воды и щелочей в цеолито-вой решетке. Вследствие этого сильнее всего адсорбируются те компоненты газовой смеси, которые обладают наибольшим ди-польным моментом. Полярность при адсорбции является, таким образом, решающим фактором чем выше полярность компонентов газовой смеси, тем активнее он проникает в цеолито-вую решетку. Так, например, молекула воды по причине своей высокой полярности всегда вытесняет молекулы меркаптанов и сероводорода. То же самое можно сказать о диоксиде углерода и сероводороде сероводород способен вытеснять молекулы диоксида углерода вследствие более высокой полярности. Таким образом, в процессе адсорбции в адсорбере создается зона вода - меркаптаны - сероводород диоксид углерода, т.е. на цеолитах имеет место вытеснительная адсорбция. [c.65]

    Так как время является очень важным фактором в работе очистной установки, а определение коррозионности топлив способом медной пластинки длится от 20 мип, до 3 час., то естественно, что для контроля режима очистного отделения полезно иметь быстрый способ определения коррозионности. В качестве такого ускоренного способа рекомендуется пользоваться ртутной пробой. Ртуть является очень чувствительным реактивом на сероводород и элементарную серу и открывает такие количества этих соединений, которые не вызывают коррозионности но медной пл астинке. Как показали Ру и Эс-пейч [146], температура мало влияет на чувствительность этого испытания, поэтому его можно производить при любой температуре. [c.389]

    Коррозионная агрессивность среды определяется физико-химическими свойствами углеводородного и водного компонентов системы, их составом, количественным соотношением, наличием растворенных газов (сероводорода, углекислого газа, кислорода), в значительной степени зависит от условий разработки и эксплуатации нефтяных и газовых месторождений, типа скважины, способа добычи, температуры, давления, скорости движения среды и др. Совокупность всех факторов оказы вает различное влия1ние на интенсивность коррозии. При прочих равных условиях решающее. влияние на коррозионную агрессивность среды оказывает сероводород. Поэтому принято классифицировать нефтяные и газовые скважины на содержащие и не содержащие сероводород. [c.11]

    В статье приведены результаты исследования термодеструктивного разложения гудрона западносибирской нефти и дистиллятного крекинг-остатка мангышлакской нефти при давлениях до 5.0 Ша. Показан экстремальный характер изменения молекулярной массы и выхода скорости образования сероводорода от исследованных факторов процесса и зависимость последней от хруппового химического состава. Илл.З, библ.6, табл.1. [c.129]

    Факторы осернения нефти еще недостаточно исследованы. Известно, однако, что существуют регионы, богатые сероводородными водами, хотя нефти из этих регионов нельзя отнести к сернистым (западная часть УССР). А. А. Карцев считает, что первое звено в процессе осернения нефти состоит в восстановлении сульфатов, вероятно, микробиологическим путем. Второе звено — образование сероводорода из гидросульфидного иона [c.180]

    Оборудование предприятий нефтехимии и нефтепереработки рабо-тг1ет в условиях действия механических напряжений, высоких температур, природных и технологических коррозионно-активных сред, инициирующих возникновение и накопление повреждений, приводящих со временем к нарушению его работоспособности. Преобладающая часть парка оборудования нефтепереработки имеет поверхностный контакт с рабочей средой, эксплуатируется в очень жестких режимах -- в условиях действия высоких давлений и температур. Современные технологические процессы ориентированы на углубление переработки нефтяного сырья. Увеличение выхода светлых нефтепродуктов связано с повышением роли деструктивных процессов переработки нефти, что в свою очередь ведет к интенсификации технологических процессов и усложнению конструкции оборудования. В последние годы в переработку вовлекаются все большие объемы нефтей с повьппенным содержанием сероводорода, минеральных солей и газоконденсатов с высоким содержанием агрессивных компонентов. Это обстоятельство значительно усложняет условия эксплуатации оборудования, вызывая интенсивное развитие различных коррозиошак процессов. Коррозионная активность технологических сред является одним из основных факторов, снижающих надежность металлических конструкций и способствующих зарождению трещин [4]. Агрессивное воздействие рабочих сред обусловлено обводненностью нефти, наличием в ней кислых компонентов, сернистых и хлористых соединений, а так же применением в процессе подготовки и переработки коррозионно-активных реагентов. Как показали результаты диагностирования 59 резервуаров для хранения нефти и нефтепродуктов (годы постройки 1975 - 80, объем резервуаров 20 ООО м ), при суммарном содержании в нефти воды, хлора и серы более 3 % коррозионное растрескивание имело место во всех резервуарах, эксплуа-тировавпшхся более 15 лет [3]. Особую опасность представляет разрушение оборудования в условиях действия водородосодержащих и водородо-вьщеляющих сред. [c.7]

    Влияние указанных факторов будет меньше в молекуле аналога воды — сероводорода HgS. В этом соединении связь менее полярна, (см. график электроотрицательностей) и расстояние между атомами больше. Угол между связями в H2S составляет 92° в HgSe он равен 91 (см. стр. 1 14). [c.162]

    При изучении химических факторов коррозии бетона следует рассматривать как химический и минералогический составы бетона, его капиллярно-пористую структуру, так и состав агрессивной среды, в которой, как это следует из опыта работы бетонных сооружений, большую роль играют ионы Mg2+, Ыа+, А1 +, ЫН4+, Си +, Ре +, Н+, 0Н , 504 , НСОз" и хлорсодержащие анионы. Также опасны все виды кислых газов — углекислый, сернокислый, сероводород. Определенную роль играют и органические соединения. [c.368]

    Учитывая перечисленные факторы, Ре + и Mn + осаждают, сульфидами аммония или натрия, но не сероводородной водой, а — сероводородом в уксуснокислой среде, но не в соляыо-. кислой. [c.159]

    Образование водородной связи было обнаружено и вот уже более полувека интенсивно изучается по своим молекулярно-физическим проявлениям. Еще со школы мы знаем, что при обычной температуре НзТе — жидкость, НаЗе — легкокипящая жидкость, НгЗ — газ, а Н2О —снова жидкость, хотя по экстраполяции ей полагалось быть еще лучшим газом, чем сероводород. Такую же цепь примеров представляют собой галогеиоводороды. Однако эти примеры дают скорее эмоциональное, чем научное удовлетворение, так как в изменении температур плавления галогенидов одновалентных металлов или халькогенидов двухвалентных мы увидим точно такую же закономерность. Действительная причина заключается в том, что при переходе сверху вниз в периодической системе в группах галогенов и халькогенов монотонно уменьшается их электроотрицательность и поэтому будет уменьшаться полярность связей любого атома М (в том числе и водорода) с указанными элементами. Поскольку плавление или кипение вещества характеризует разрыв МбЖМОЛбКуЛЯрНЫХ СВЯ30Й, 1 ггл и i К1ТП будут как-то отражать прочность этих связей. А прочность межмолекуляр-но1 о взаимодействия будет определяться двумя факторами, которые действуют в прямо противоположных направлениях — сверху вниз будет уменьшаться, как только что было сказано, полярность атомов в молекулах и поэтому ослабевать ион-дипольная ассоциация, но одновременно вниз будет расти молекулярный вес, а следовательно, поляризуемость и ван-дер-ваальсовское, дисперсионное взаимодействие. Суперпозиция двух тенденций и приводит к тому, что внизу и вверху периодической системы химические соединения типа АВ и АВг будут иметь повышенные температуры плавления и кипения. Это обстоятельство и привело к необходимости изучения особенностей водородной связи методами структурного анализа — дифракционными (рентгене-, электроно- и [c.166]

    Водород в соединениях с неметаллами поляризован положительно. Поскольку он сам является неметаллом, эти соединения сравнительно малополярны. Даже соединения с галогенами, например НС1, представляют собой почти идеально ковалентную молекулу. Если допустить образование положительного иона водорода при взаимодействии с сильно электроотрицательными элементами (что маловероятно из-за большого потенциала ионизации), образующиеся соединения должны быть малополярными в результате исключительно высокого по [яризу-ющего действия Н. Таким образом, соединения водорода со степенью окисления +1 — малополярные ковалентные вещества. Они летучи по той простой причине, что между молекулами действуют слабые ван-дер-ваальсовы силы или водородная связь. Прочность межатомных связей и термическая устойчивость летучих гидридов зависят в первую очередь от ОЭО и размера атома второго элемента, с которым связан водород. Как видно из рис. 133, внутри группы прочность связей Н—Э уменьшается сверху вниз. В этом же направлении возрастает атомный размер второго элемента и уменьшается его ОЭО. Оба фактора действуют в направлении уменьшения прочности связи Н—Э. За небольшими исключениями внутри периода с ростом порядкового номера Э прочность связи Н—Э возрастает из-за увеличения ОЭО и уменьшения размера Э. Если же взять два элемента с одинаковой ОЭО, более тяжелый образует менее устойчивый летучий гидрид. Так, например, устойчивость метана выше, чем сероводорода, хотя углерод и сера характеризуются одинако- Рис. 133. Энергия связи в летучих водо-ВОЙ ОЭО. родных соединениях [c.297]

    Исследование характера влияния значимых факторов позволяет сделать вывод, что увеличение скорости движетая сточной воды, содержание сероводорода и ионов брома привод/1т к росту скорости коррозии стали, а увеличение степени минерализации приводит лишь к уменьшению растворимости агрессивных газов (СОг и НгЗ) и, следовательно, к уменьшению р.  [c.24]

    В отсутствие сероводорода картина нескэлько меняется. В этом случае на первый план по своей значимости выступают такие факторы, как присутствие нонов брома, йода, кефтя и степени минерализации. [c.24]

    В отличие от водных растворов сероводорода, в которых наводороживание растет с повьш1ением содержания сероводорода, в моноэтано-ламиновых растворах определяющий фактор-концентрация МЭА, а не сероводорода. При увеличении времени воздействия раствора с сероводородом и без него происходит уменьшение содержания водорода в стали [8] (табл. 5). [c.34]

    В книге приводятся основные положения оценки качества газа, транспортируемого по магистральным газопроводам и дана характеристика состава природных газов, поступаюпщх в газопроводы Средняя Азия — Центр, Бухара — Урал, Мессояха — Норильск, Вуктыл — Ухта — Торжок — Ленинград и др., приведены требования, предъявляемые к газу при его транспорте и потреблении, по содержанию влаги, точке росы по углеводородам, содержанию сероводорода, механическим примесям, кислорода, двуокиси углерода, азота, общей органической и меркаптановой серы. Приводится топливная характеристика природных газов месторождений Советского Союза (теплота сгорания и число Воббе). Отмечается значение числа Воббе как основного показателя качества газа, используемого в бытовых горелочных устройствах, определяющего режим горения, взаимозамещаемость поставляемого газа переменного состава для обеспечения наиболее полного сгорания с минимальным образованием продуктов сгорания, важного фактора, учитывающего взаимосвязь теплоты сгорания и плотности газа. Даются пределы возможных колебаний числа Воббе. Приводятся данные о числе Воббе для газов, транспортируемых по магистральным газопроводам. Приведены основные положения цри оценке состава природных газов по месторождениям и районам добычи, показатели качества газа, используемого различными потребителями (коммунально-бытовыми, промышленностью для энергетических и технологических целей и др.). [c.3]

    Во втором случае имеется возможность одновременного определения углерода. Содержание серы можно вычислить по площадям пиков сероводорода или двуокиси при использовании соответствующих калибровочных кривых или калибровочных факторов. При применении обоих методов необходимо, однако, выделение продуктов гидрирования или окисления при помощи охлаждаемых ловушек. Определение сероводорода производят на колонках с молекулярными ситами, причем получают результаты, хорошо совпадающие с результатами метода ASTM . Возникающие при гидрировании низшие углеводороды должны быть выделены при помощи включенной перед хроматографической колонкой охлаждаемой колонки с молекулярными сптами. При окислении, кроме двуокиси серы, возникают вода и двуокись углерода. Воду удаляют обработкой сульфатом кальция, а для разделения двуокиси углерода, кислорода и двуокиси серы хорошо подходит колонка, содержащая динонилфталат на хромосорбе. Метод окисления позволяет определять серу в сульфоксидах, сульфонах, сульфидах и дисульфидах но сульфаты не переводятся количественно в двуокись серы. Азот и галогены не оказывают в.лияния на результаты определения. Продолжительность анализа составляет только 20 мин. [c.253]

    По современным представлениям, диффузия водорода в решетке металла происходит посредством перемещения протона [44, 69]. Этот фильтрующийся ион водорода вызывает значительные искажения кристаллической решетки металла, а в ряде случаев (при повышенной температуре) является активным химическим элементом. Указанные факторы вызывают охрупчивание большинства конструкционных материалов, включая сталь. Водород, поступающий из внешней среды, адсорбируется в атомарном состоянии на наружной поверхности металла и проникает в кристаллическую решетку. В присутствии промоторов наводороживания, к которым относится, например, сероводород HaS, молизация водорода на поверхности затрудне- [c.40]


Смотреть страницы где упоминается термин Фактор сероводорода: [c.300]    [c.77]    [c.167]    [c.65]    [c.53]    [c.595]    [c.81]    [c.84]    [c.34]    [c.94]    [c.458]   
Справочник азотчика Том 1 (1967) -- [ c.217 ]

Справочник азотчика Т 1 (1967) -- [ c.217 ]




ПОИСК







© 2025 chem21.info Реклама на сайте