Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бимолекулярные реакции Реакции присоединения А В АВ

    В бимолекулярных реакциях присоединения атома водорода при образовании долгоживущего (по сравнению с временем сверхтонкой прецессии с) промежуточного комплекса й, = = k = k , где — константа скорости элементарного акта присоединения, измеряемая обычно экстраполяцией данных по кинетике тримолекулярных реакций к большим давлениям (для реакций с [c.305]


    Несравненно большее теоретическое и практическое значение имеют бимолекулярные реакции радикального присоединения, поэтому многие из них детально кинетически исследованы. [c.75]

    Бимолекулярные реакции присоединения [c.266]

    Возможно, одной из самых поразительных черт бимолекулярных реакций присоединения, приведенных в табл. XII.8, является крайне резкое изменение их стерических множителей, приблизительно от 0,5 для реакции рекомбинации радикалов СНз До 10 для димеризации циклонентадиенов и других реакций присоединения (типа Дильса — Альдера). Согласно простейшим теориям равновесия, мы должны были бы ожидать малые стерические множители для реакций больших молекул. Удивительным является то, что стерические множители для реакций N02, СНз, СаР/, и бутадиена (с цианогенными соединениями) должны быть действительно большими (больше 10 ). Эти большие величины должны быть отнесены за счет квантовых эффектов (т. е. они не могут быть объяснены на основе классических осцилляторов), которые способствуют аномальному увеличению энтропии активированного комплекса или комплекса переходного состояния. [c.267]

    Бимолекулярные реакции присоединения 269 [c.269]

    Аррениусовские факторы А для реакций продолжения цепи малы и такого порядка, которого следовало бы ожидать из теории активированного комплекса для бимолекулярной реакции между двумя большими молекулами (см. табл. XII.2), энергии активации реакции продолжения, значения Ер также невелики и того н е порядка, что и величины энергии активации подобных реакций присоединения радикалов но двойной связи в газовой фазе. Значения лежат в интервале, который следует ожидать для реакций, лимитированных диффузий (см. разд. XV.2), за исключением At для винилхлорида, которое, ио-видимому, ошибочно. Как указывалось раньше при обсуждении реакций лимитированных диффузий, следует ожидать, что энергии активации этих процессов будут порядка нескольких килокалорий, как это наблюдалось для энергий активации изменения вязкости или диффузии в таких системах и лежат в интервале полученных значений Е(. [c.520]

    Энергия активации для хлорирования метана, определенная экспериментально, составляет 31 600 кал [28] (вычисленная 28 500 кал), тогда как вычисленное значение для хлорирования этилена путем замещения составляет 45 ООО кал [34]. Обе реакции, по-видимому, протекают по одному механизму. Можно поэтому предсказать, что замещение водорода галоидом в метане, этане и других парафинах должно протекать быстрее, чем в этилене это действительно наблюдается. Энергия активации присоединения хлора к этилену была рассчитана Шерманом с сотрудниками она составляет 28 500 кал для цепной реакции и 25 200 кал для бимолекулярной реакции. Эти значения гораздо меньше той величины, которая найдена для заместительного хлорирования этилена экспериментально показано, что присоединение хлора к этилену протекает быстрее, чем замещение, по крайней мере, при низких температурах. [c.60]


    Были рассчитаны энергии активации и для реакций присоединения хлора к этилену при расчетах также предполагали два возможных механизма — радикальный или бимолекулярный. Их значения оказались близки (28,5 и 25,2 ккал/моль соответственно), однако меньше (при одинаковых условиях), чем для реакций замещения. Ингибирующее действие кислорода и в этом случае говорит в пользу радикального механизма. [c.265]

    Рост цепи — это результат последовательных реакций присоединения сомономеров к активному центру. Считают, что скорость вхождения мономерной единицы в растущую цепь зависит как от химической природы мономера, так и от активности центра роста. Хотя возможно рассмотрение скорости роста на нескольких центрах, отличающихся по активности, а также влияния асимметрии реагирующих мономеров [17], однако для упрощения допускается, что активность центра роста не меняется во времени и зависит лишь от последнего звена. Учитывая эти допущения, стадия роста цепи при двойной сополимеризации будет включать четыре реакции, а при тройной — девять [18, с. 11—63]. Для обрыва растущей цепи наибольшее значение имеет дезактивация активного центра во времени — старение. Ряд исследователей считают, что старение — это бимолекулярный процесс, протекающий по реакции второго порядка, другие относят е о к реакциям первого порядка [16, 19]. Это связано, по-видимому, с различием исследованных каталитических систем, когда кажущееся изменение порядка реакции объясняется наличием нескольких видов активных центров. [c.298]

    В газовой фазе могут быть осуществлены разнообразные атомно-молекулярные процессы в результате резонансного взаимодействия индивидуальных молекул с фотонами. Этот круг вопросов рассматривается в фото- и лазерохимии. Однако необходимо отметить ограниченность объема обрабатываемого вещества лазерным лучом. Под действием лазерных излучений могут протекать разнообразнейшие процессы от бимолекулярных реакций замещения и присоединения до диссоциации молекул на свободные радикалы или нейтральные фрагменты. [c.173]

    Скорость мономолекулярных реакций распада или изомеризации при давлениях, близких к атмосферному, в Ю" раз больше скорости бимолекулярных реакций замещения или присоединения при условии равенства энергий активации и температур 1212]. Этим можно объяснить возрастающее количество непредельных углеводородов в газах коксования (рис. 7) в первом этапе в отличие от второго и третьего и сравнительно незначительное количество продуктов глубокого уплотнения. Этим же объясняется и непрерывное уменьшение молекулярного веса всех компонентов остатка (масел, смол и асфальтенов). Количество [c.51]

    Для бимолекулярных реакций присоединения теория активированного комплекса с точностью, приблизительно равной одному порядку, дает значения стерических коэффициентов, приведенных в табл. 1.2. [c.32]

    При реакциях алкильного радикала с молекулой олефина энергия активации около 29 кДж/моль (7 ккал/моль) и соотношение скоростей распада радикала и реакций замещения и присоединения имеет порядок р (где р — давление, кгс/см ). При 700 К и 0,1 МПа (1 кгс/см ) распад быстрее бимолекулярных реакций примерно в 7 раз и при давлении порядка 1 МПа (10 кгс/см ) и выше бимолекулярные реакции идут с большей скоростью. При повышении же температуры до 1000 К распад ради- [c.47]

    Свойства карбоний-ионов. Свободные карбоний-ионы являются высокоактивными частицами, вступающими в реакции с очень большой скоростью. Для некоторых реакций, могущих протекать как по радикально-цепному, так и по карбоний-ионному механизму, активность карбоний-ионов может быть сравнена с активностью радикалов. Так, при полимеризации стирола по радикальному механизму при 20°С константа скорости продолжения цепи равна 35 л-моль- -с , энергия активации продолжения цепи 32,7 кДж/моль (7,8 ккал/моль). Полимеризация стирола на свободных катионах проходит с константой скорости продолжения цепи 35-10 л моль- с- при 15°С и энергией активации 8,4 кДж/моль (2 ккал/моль). Константа скорости присоединения карбоний-иона к молекуле стирола на пять порядков больше, чем для радикала. Карбоний-ионы, как и радикалы, подвергаются мономолекулярному распаду и бимолекулярным реакциям замещения и присоединения. Существенным отличием в химических свойствах карбоний-ионов от свойств радикалов является способность первых с большой скоростью изомеризоваться. Изомеризация карбоний-ионов может проходить в результате переноса как гидрид-иона, так и карбоний-ионов. [c.164]

    Основными реакциями карбкатионов, как и радикалов, являются мономолекулярный распад по р-правилу и бимолекулярные реакции замещения и присоединения. Существенное отличие карбкатионов от радикалов — их способность к изомеризации. [c.242]


    Предварительно рассмотрим приближенный метод расчета стерических факторов бимолекулярных радикальных реакций, разработанный автором в конце 40-х и начале 50-х годов [63, 213, 206, 248, 249], основанный на применении к расчету стерических факторов многочисленных реакций присоединения, замещения, рекомбинации и диспропорционирования простых алкильных и непредельных радикалов формул (114) и (120). [c.188]

    Для выяснения конкурентных отношений между этими реакциями недостаточно знания скоростей прямых реакций, необходимо также знать положение равновесия в этих реакциях. Располагая величинами констант равновесия реакций соединения радикалов с молекулами алкенов, реакций замещения радикалов с молекулами алканов и алкенов, а также реакций диссоциации молекул на радикалы (мономолекулярным или бимолекулярным путем), можно выяснить, являются ли равновесия при некоторых из этих реакций в условиях крекинга причиной замедления реакций распада алканов, описанного в предыдущей главе. Так, например, реакции присоединения атомов Н к молекулам пропилена или изобутилена могут вызывать торможение цепного распада вследствие меньшей активности вторичных пропильных и третичных изобутильных радикалов в том лишь случае, когда эти радикалы обладают устойчивостью в условиях крекинга алканов, т. е. при значительном размере обратимой реакции образования их. Точно так же и реакции замещения Н и СНз-радикалов с молекулами алкенов, несмотря на возникновение в результате этих реакций менее активных радикалов, не смогут явиться серьезной помехой для развития цепей крекинга, если равновесия в этих реакциях в условиях крекинга сильно смещены в сторону исходных продуктов. [c.246]

    Некоторые реакции альдегидов и кетонов с бисульфитами исследованы количественно. Вагнер [214] нашел, что формальдегид переходит в продукт присоединения по двум бимолекулярным реакциям  [c.142]

    Множитель / в простейшем случае, когда присоединение мономера к растущей цепи является бимолекулярной реакцией, представляет собой произведение константы скорости второго порядка на концентрацию мономера. Однако он может быть и более сложного вида, например, если рост цепи является каталитическим процессом. Для дальнейшего рассмотрения существенно только, чтобы он не зависел от и с,.. [c.369]

    Деление с точки зрения числа частиц, вступающих и образующихся в реакции а) мономолекулярные реакции (изомеризация, распад) б) бимолекулярные реакции типа 2— 1 (ассоциация, присоединение) 2—2 (замещение, диспропорционирование, отрыв) 2— больще 2 (бимолекулярный распад) в) тримолекулярные реакции (с уменьшением, сохранением или увеличением числа частиц). [c.10]

    Бимолекулярная реакция — простая реакция, в которой превращаются две частицы (молекулы, радикалы, ионы). Реакцию типа А + В -> С называют реакцией присоединения (ассоциации), если оба реагента или, по крайней мере, один из них — молекула, например  [c.15]

    Рассматривая бимолекулярные реакции с позиции числа частиц, образующихся в результате реакции, их делят на реакции присоединения и обменные. К реакциям присоединения типа А + В V относят реакции присоединения атомов, свободных радикалов и молекул по кратным связям, рекомбинации свободных радикалов, присоединения ионов к молекулам. Обменные реакции типа А + В V + 2 могут быть трехцентровыми — А + ВС АВ + С, в которых перестройка связей затрагивает три атома, и четырехцентровыми — АВ + СО  [c.98]

    К таким реакциям, изученным в газовой фазе, относят рекомбинацию свободных радикалов, присоединение атомов и радикалов к молекулам с кратными связями, димеризацию непредельных соединений. Эти реакции экзотермичны, и выделившаяся в реакции энергия остается в продукте реакции в виде колебательной энергии. Продукт реакции стабилизируется, если передает свою энергию при столкновении с другими молекулами. Так как частота столкновений увеличивается с ростом давления, то константа скорости бимолекулярной реакции присоединения также возрастает. Зависимость константы скорости реакции присоединения от давления описывается теорией мономолекулярных реакций (см. гл. X). Чем больше атомов в продукте реакции, тем ниже давление, при котором к и не зависит от давления. Стерический множитель реакций рекомбинации радикалов близок к 1 (0,5— [c.102]

    Если для приведенных реакций рекомбинации нет сомнений в том, что они тримолекулярные (т. е. образование продукта происходит в результате тройного столкновения), то вышеуказанные реакции присоединения, как будет показано ниже, могут быть объяснены и на основе бимолекулярных столкновений. В этом случае реакция описывается уравнением третьего порядка, но по существу не является тримолекулярной. [c.279]

    Известен ряд случаев, когда в бимолекулярных реакциях изменение теплоты сольватации с заменой растворителя похоже на измС нение суммы теплот сольватации исходных реагентов. Это наблюдается, например, в реакции гидролиза о-метилбензолсульфоната, протекающего по механизму 8 2 [21], и в реакции нуклеофильного присоединения метанола к фенилизоцианату [25]. [c.159]

    Бимолекулярные элементарные акты. В элементарном акте участвуют две молекулы. Здесь следует отметить две группы реакций реакции присоединения типа А 4- ААз, А + В-> АВ, например Н + ННа, СаН -Ь На- СаНв, и реакции замещения АВ -f ОЕ АО + ВЕ, например [c.557]

    Для многих радикальных бимолекулярных реакций энергия активации, как правило, невелика. Например, бимолекул рные реакции присоединения радикалов или атомов Н к молекулам олефинов имеют энергию активации, примерно равную 8,4 Ч- 16,8 кДж (см. 18) в реакциях рекомбинации и диспропорционирования радикалов это значение еще меньше (см. 6). Значение экспоненциального множителя в формуле (1.10) для таких реакций при высоких температурах близко к единице, поэтому в этих случаях особенно большое значение приобретают теоретические и экспериментальные методы определения Л-фактора. [c.26]

    В случае 2-замещенных бутадиенов, напротив, увеличение размеров заместителя ведет к необычному возрастанию реакционной способности [605]. При переходе от бутадиена к 2-неопентильному производному константа- скорости бимолекулярной реакции присоединения к малеиновому ангидриду (в бензоле, 25° С) возрастает примерно в 50 раз. В этих соединениях вандерваальсово сжатие группы Н у С(2) и водорода у С(3) способствует образованию требуемой для реакции цисоидной конформации в тем большей степени, чем больше пространственные размеры заместителя В. [c.562]

    Перейдем теперь к выяснению возможности предвычисления изменения скорости реакций в разбавленных растворах с увеличением давления на основе допущений, изложенных в начале настоящего раздела. Начнем с рассмотрения бимолекулярных реакций присоединения, характеризующихся большими отрицательными значениями величин Av. Изложенные в главе I представления о характере переходного состояния позволяют предположить, что мольный объем активированного комплекса в таких реакциях должен лишь немного превышать мольный объем продукта реакции. Действительно, чтобы прошла обратная реакция разложения продукта присоединения на исходные компоненты, необходимо лишь ослабление (растяжение) подлежащих разрыву связей (или одной связи), что может обусловить только незначительное увеличение мольного объема вещества в активированном состоянии. В таком случае оказалось бы возможным для приближенного вычисления скорости бимолекулярных реакций присоединения при повышенном давлении заменить Av в уравнении (П.8) на Av— разность мольных объемов продукта реакции и исходных веществ И-Уцсх-Следовательно, на основании данных об объемах продуктов реакции и исходных веществ можно было бы судить о величине изменения константы скорости реакции с давлением. Подобный расчет был проведен [59] для рассмотренной реакции присоединения пиридина к иодистому этилу в ацетоновом растворе данные об уменьшении объема при реакции (Дг ) приведены в работе Перрина [58]. Результаты расчета оказались неудовлетворительными. Рассчитанное из кинетических данных по формуле (II.8) значение Дг " при 30°и 1 атм (—20,0 см /моль) было в 2,7 раза меньше Av (—54,3 см /моль). Следовательно, подстановка в уравнение (П.8) значения Av, вместо Av+, приводила к ошибке в величине константы скорости при 3O00 атм почти в 30 раз. [c.123]

    Молозонид, образовавшийся в результате присоединения озона к С=С-связн полимера, быстро распадается с образованием двух фрагментов — карбонильного соединения и биполярного иона. Природа заместителя X при двойной связи оказывает влияние 1) на скорость нрисоединения озона к С=С-связи 2) на распад молозонида (изменяя отношение А з.2/ з.2), причем чем более электронодонорными свойствами обладает X, тем большая доля А образуется [29] 3) на скорость реакции В -(- Е, где это влияние имеет обратную тенденцию по сравнению с (2). Деструкция полимерной цепи происходит лишь в ходе реакции (3.7), когда биполярный ион изомеризуется в кислоту, стабилизируя концы цепи. Одновременно с деструкцией может протекать и бимолекулярная реакция сшивания цепей (3.6), которая в условиях опыта вследствие малых концентраций исходных и промежуточных продуктов суш,ественного значения не имела. Накапливаюш иеся в ходе опыта карбонильные и карбоксильные группы могут вступать в реакцию с биполярным ионом, уменьшая скорость деструкции с глубиной превращения (это заметно на рис. 8.12). [c.262]

    Основными реакциями карбкатионов, как и радикалов, являются мономолекулярный распад по р —правилу и бимолекулярные реакции замещения и присоединения. Существенное отличие карбкатионов от радикалов — способность первых к изомеризции, что объясняется значительным снижением свободной энергии при переходе от первичного к вторичному и третичному карбкатионам. [c.93]

    Вторичные бимолекулярные реакции углеводородов на поверхности цеолита с участием карбений ионов, образующихся п))еимущественно присоединением протона к олефину (иницииро — вс1ние цепи)  [c.118]

    Бимолекулярные реакции могут быть подразделены на две важнейшие категории — реакции присоединения и обмена схематически их можно представить следуюгцим образом. [c.239]

    Изучение бимолекулярных реакций присоединения представляет особый интерес, поскольку можно ожидать, что они при достаточно низких концентрациях реагентов дают ту же зависимость скорости реакции от суммарной концентрации, как и в случае мономолекулярных реакций. Действительно, простейшие из таких процессов, например рекомбинация атомов при нормальных концентрациях газа, никогда не подчиняются простому кинетическому закону второго порядка, а проявляют зависимость скорости реакции от концентрации. При этом, согласно эксперименту, кинетика реакции подчиняется закону третьего порядка. Рассматривая зависимость реакции мономолекулярного распада от давления (см. табл. XI.2), можно прийти к заключению, что область зависимости скорости реакции от суммарной концентрации сдвигается все более и более к низким концентрациям по мере того, как растет число атомов в молекуле продукта реакции. Это находится в качественном согласии с экспериментом. Реакция присоединения молекул бутадиена не дает никакого отклонения от закона второго порядка вплоть до давления 10 ммрт. ст. (при 200°С), тогда как скорость рекомбинации радикалов СНз уже дает отклонения в сторону закона третьего порядка при [c.266]

    В четвертой главе рассмотрена проблема стерических факторов обычных (молекулярных) и радикальных реакций как часть проблемы реакционной способности частиц. На основе метода переходного состояния получены формулы для вычисления стерических факторов мономолекулярных и бимолекулярных реакций и зависимости их от температуры. Разработан приближенный метод расчета стерических факторов реакций присоединения и замещения радикалов с непредельными и предельными углеводородами, а также реакций диспропорционированияи рекомбинации радикалов. Этот метод расчета стерических факторов радикальных реакций основан на квантово-механических соображениях и апрокси-мации сумм состояний радикалов при помощи сумм состояний молекул, близких по своему химическому строению к радикалам. Приближенный способ расчета применен к вычислению стерических факторов обратимых реакций присоединения радикалов —Н, СНз к непредельным углеводородам (этилен, пропилен, изобутилен, аллен, ацетилен и др.), обратимых реакций замещения этих радикалов с непредельными и предельными углеводородами (метан, этан, пропан, бута- [c.10]

    Как известно, реакционная способность многих радикалов при взаимодействии их с молекулами, а также между собой или со стенками очень велика, что находит свое выражение в малых величинах энергий активации соответствующих радикальных реакций (порядка нескольких ккал). Например, бимолекулярные реакции присоединения радикалов (атомов Н) к молекулам олефинов имеют энергии активации порядка 2 ккал1моль [62], в реакциях рекомбинации радикалов энергия активации очень мала, приближается к нулю (порядка 0,5 — 1 ккал моль, см. ниже). Величина экспоненты в формуле (100) для таких реакций при высоких температурах близка к единице, а сама константа мало изменяется с изменением температуры. [c.163]

    Бимолекулярные реакции присоединения и замещения радикалов являются реакциями развития, торможения и обрыва цепей Б процессах крекинга, полимеризации и во многих других сложных превращениях органических веществ. Особенно важны реакции присоединения простых радикалов (Н, СНз и др.) к непредельным молекулам (олефинам, диенам и другим классам соединений с кратной связью) и реакции замещения этих радикалов, протекающие с предельными п непредельными молекулами, которыми определяется судь ба цепей при крекинге и других процессах  [c.188]

    Кроме этого довода Саттерфилда, никаких других экспериментальных доказательств существования реакции 2 иона еще пе имеется. Следует, однако, отметить, что в противоположпость предположению о двух мономолекулярных путях распада перекисного радикала КОа, это предположение Саттерфилда о двух бимолекулярных реакциях алкильного радикала К с кислородом (реакции 1 и 2) люжет быть теоретически совмещено с найденным В. Я. Штерном (см.выше) различием в их нредэкспонепциальных факторах в 10 раз. Действительно, известно, что в случае радикальной реакции присоединения, какой является реакция 1, стерические факторы очень малы, порядка Ю " — 10 . Это объясняется отсутствием в подобном случае распада активированного комплекса и, следовательно, тем, что энтропия конечного состояния меньше энтропии исходных состояний. Что же касается реакции 2, то в отношении ее нет теоретических оснований для предположения о ненормально малом стерпческом факторе. В результате не исключено различие в предэкспоненциальных факторах реакций 1 и 2 в 10 раз. [c.342]

    В случае механизма 8ы2 аналогичная реакция является бимолекулярной. Сначала происходит присоединение лиганда к октаэдрическому комплексу. Условием для этого является наличие трех свободных орбиталей, знергия которых немного выше уровня остальных орбиталей. При этом возникает активированный комплекс с координационным числом 7 (пептагональная бипирамида). Реакция заканчивается отщеплением одного лиганда  [c.425]

    Большинство бимолекулярных реакций протекает с преодолением энергетического барьера, разделяющего исходные и конечные частицы. Однако некоторые реакции протекают практически без энергии активации к таковым относят, в частности, рекомбинацию свободных радикалов, реакции ионов с молекулами, си 1ьно экзотермические реакции присоединения и обмена. [c.98]


Смотреть страницы где упоминается термин Бимолекулярные реакции Реакции присоединения А В АВ: [c.337]    [c.242]    [c.70]    [c.47]    [c.404]    [c.157]    [c.404]   
Смотреть главы в:

Кинетика химических газовых реакций -> Бимолекулярные реакции Реакции присоединения А В АВ




ПОИСК





Смотрите так же термины и статьи:

Бимолекулярные реакции присоединения

Реакции бимолекулярные

Реакции присоединения



© 2024 chem21.info Реклама на сайте