Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Другие неметаллические ионы

    После фильтрации и длительного отстоя в растворе могут оказаться не только примеси ионов других металлов, но и коллоидные взвеси нейтральных частиц, различные анионы, с которыми в катодный осадок могут попасть сера, углерод, фосфор и другие неметаллические примеси. Нередко в электролит попадают и нежелательные поверхностно-активные вещества. Поэтому в ряде случаев в отделении подготовки электролита должна быть предусмотрена возможность очистки раствора и от этих примесей. [c.240]


    Перейдем теперь от рассмотрения простых ионов к химическим свойствам несколько более сложной группы ионов. Ионы этой группы состоят из двух или нескольких атомов, причем они содержат так называемый центральный атом, с которым связан один или несколько атомов кислорода. Место кислорода могут занимать другие неметаллические элементы, например сера или галогены, однако в данной главе будут представлены в основном анионы, содержащие кислород. Поэтому, несмотря на то что ко всей группе рассматриваемых здесь анионов следовало бы применять общее название многоатомных анионов, ради простоты будем называть их оксианионами. [c.356]

    Декатионированный Т. К сожалению, относительно употребления этого термина единого мнения пока не сложилось. Баррер называет декатионированием удаление алюминия из структуры цеолита, т. е. деалюминирование. Такое применение термина, конечно, вполне оправдано, так как удаление атома алюминия обязательно сопровождается удалением связанного с ним катиона. Рабо называет декатионированными те цеолиты, в которых был проведен обмен на аммоний и которые были затем подвергнуты термообработке. Другие авторы используют этот термин, чтобы показать, что число эквивалентов катионов металла меньше, чем число атомов алюминия. Такое употребление термина основано на том, что при химическом анализе цеолита неметаллические ионы и особенно ионы водорода Часто не определяют. [c.381]

    В качестве стандартного электрода, по отношению к которому устанавливается ряд напряжений, применяют водородный электрод в этом электроде газообразный водород под давлением 1 атм поступает к платиновому электроду в кислом растворе с активностью, равной единице по отношению к иону водорода (рис. 15.6). Подобные электроды можно изготовить и для других неметаллических элементов некоторые подобные элементы включены в табл. 15.1 наряду с другими окислительно-восстановительными парами. [c.466]

    Вследствие того что электронные структуры элементов VI группы приближаются к конфигурациям атомов соседних инертных газов, эти элементы проявляют ярко выраженные неметаллические свойства, за исключением полония и в какой-то мере теллура. Все их соединения по существу ковалентны, как и соединения других неметаллических элементов. Понятие состояния окисления имеет только формальное значение. Некоторые соединения, образованные этими элементами, можно рассматривать как стремление завершить электронную конфигурацию инертного газа, для чего им не хватает двух электронов. Так, они образуют халькогениды, 5е , Те ), хотя существование этих ионов, кроме сочетания с наиболее электроположительными элементами, маловероятно. Кроме того, эти элементы образуют соединения, в молекуле которых имеются две двухэлектронные связи, например (СНз)25, Н.28, ЗСЬ и т. д., ионные частицы с одной связью и одним отрицательным зарядом, например [c.375]


    Металлические и металлоподобные расплавы, в отличие от неметаллических ионных расплавов, взаимодействуют с металлами и другими материалами по химическому механизму. [c.27]

    Для галогенов (и других неметаллических элементов) характерна также склонность к присоединению дополнительных электронов с образованием отрицательно заряженных ионов  [c.73]

    В этом параграфе будут рассмотрены некоторые примеры применения реакций изотопного обмена для получения полезной информации о промежуточных соединениях, образующихся на окислах и других неметаллических катализаторах. На металлах роль промежуточных соединений играют адсорбированные радикалы. Едва ли можно предполагать, что в этом случае из насыщенных углеводородов образуются соединения, имеющие ионный характер. С другой стороны, известно, что ионные Или, по меньшей мере, частично поляризованные соединения играют важную роль как в реакциях обмена, так и в других каталитических реакциях углеводородов на ряде окислов. [c.15]

    Силы, удерживающие частицы жидкости или твердого тела друг около друга, имеют электрическую природу. Однако, в зависимости от того, что представляют собой частицы — являются ли они атомами металлического или неметаллического элемента, ионами или молекулами,—эти силы существенно различаются, [c.71]

    Атомы элементов третьей группы являются электронными аналогами, так как все они имеют одинаковое строение внешнего уровня s p (и одинаковое число электронов на нем). Металлические свойства у них выражены слабее, чем у элементов I и II главной подгрупп, а у бора, характеризующегося малым радиусом и наличием двух квантовых слоев, преобладают неметаллические свойства. За исключением неметалла бора, все они могут находиться в водных растворах в виде гидратированных положительно трехзарядных ионов. В этой подгруппе, как и в других, с увеличением порядкового номера металлические свойства сверху вниз усиливаются. Бор является кислотообразующим элементом оксиды и гидроксиды алюминия, галлия и индия обладают амфо-терными свойствами, а оксид таллия имеет основной характер. [c.78]

    С другой стороны, многие гидриды, оксиды, карбиды и т. п. обладают металлическими свойствами и относятся к металлидам . Следовательно, в этом случае неметаллический компонент не выступает в роли анионообразователя, и приведенная номенклатура становится условной. Фундаментальной характеристикой химического соединения, определяющей все его особенности — структуру, состав и свойства, является доминирующий тип химической связи. Только на этом основании можно осуществить систематику бинарных соединений. По этому признаку все бинарные соединения следует подразделить на 3 типа преимущественно ионные (солеобразные), ковалентные и металлоподобные. Следует также различать координационные ковалентные и молекулярные ковалентные соединения. А преимущественно ионные и металлические бинарные соединения могут быть только координационными в силу ненаправленного и ненасыщенного характера химических связей в них. [c.49]

    Среди проводников электрического тока различают проводники 1-го и 2-го рода по механизму прохождения тока. В проводниках 1-го рода (металлы, сплавы, некоторые интерметаллические соединения) прохождение тока обусловливается перемещением электронов и не связано с переносом частиц самого вещества. Хорошая электронная проводимость этих тел — следствие металлической связи в них (о металлической связи см. гл. IV и IX). Проводники 2-го рода — соли, некоторые оксиды и гидроксиды — неэлектропроводны в твердом состоянии, но проводят ток в расплавленном виде. Носителями зарядов в них являются ионы, которые в расплаве приобретают подвижность. Прохождение тока через расплавы таких веществ сопровождается их разложением (электролиз). Этот механизм проводимости характерен для соединений с ионной связью. Известны неметаллические вещества с электронной проводимостью, возбуждаемой нагреванием, освещением и другими энергетическими воздействиями. Это полупроводники. В подавляющем большинстве они состоят из атомов с ковалентной связью между ними. Вещества, не являющиеся проводниками ни в одном из агрегатных состояний, имеют молекулярное строение. Это преимущественно соединения неметаллических элементов друг с другом. Между атомами в них действуют ковалентные связи, а межмолекулярное взаимодействие обусловлено силами Ван-дер-Ваальса (см. 13). Среди прочих типов связей наиболее распространены водородная и донорно-акцепторная, которая может рассматриваться как разновидность ковалентной связи. [c.86]

    Чтобы избежать разряда ионов металла на катоде и прорастания электролита образующимися металлическими дендритами, можно использовать также растворимый (неметаллический) катод. Так, при исследовании бромидов катодом должен служить бромный электрод, хлоридов — хлорный, йодидов — йодный, окислов — кислородный и т. д. в этом случае носитель газового электрода (обычно из платины или другого благородного металла) делают пористым, чтобы обеспечить подачу необходимого количества растворяющегося газа к местам протекания электродной реакции. (При таких измерениях следует учесть, что твердые соли и окислы могут при высоких температурах растворять неметаллы, так же как и металлы, и приобретать в результате этого большую или меньшую электронную составляющую проводимости).  [c.98]


    У благородных газов атомные номера равны 2, 10, 18, 36, 54 и 86. Интервалы равны 2, 8, 8, 18, 18 и 32. За каждым благородным газом следует чрезвычайно химически активный металл, образующий ионы М +. Это щелочные металлы У, Ыа, К, Rb и Сз. Каждому благородному газу предшествует химически активный. ..щелочные металлы неметалл, образующий ионы V . Это галогены стоят друг под другом Р, С1, Вг, I и А1. За щелочными металлами (группа в 1 группе. . 1А, главная подгруппа) следует щелочноземельные металлы Ве, Мд, Са, 5г и Ва,. образующие группу ПА. Галогенам (группа УИБ) предшествуют О, 5, 5е и Те элементы с валентностью, равной 2, свойства которых меняются от неметаллических до металлических. В группы 1ИБ, 1УБ и УБ входят. ..в вертикальные элементы, менее похожие друг на друга. Все они группы входят элементы, проявляют типичную для своей группы валентность, [c.50]

    Другие одноатомные анионы неметаллов, такие, как или, не удается получить в водных растворах в достаточно высоких концентрациях, чтобы можно было измерить их потенциалы восстановления. Таким образом, обнаруживается, что некоторые одноатомные анионы легко получить непосредственно из неметаллических элементов их восстановлением в водных растворах, в то время как другие анионы настолько сильно взаимодействуют с водой, что при этом образуются многоатомные ионные и молекулярные частицы. Прежде чем познакомиться с методами получения тех или иных простых анионов, следует лучше выяснить свойства этих ионов и на этой основе понять, каким требованиям должны удовлетворять эффективные методы получения таких частиц. [c.324]

    Степень легкости, с которой молекула какой-либо протонной кислоты отдает свой протон, определяется двумя факторами. Одним из них является степень ионности связи Н — А, а другим—размер атома А, точнее, его ковалентный радиус. Размер атома А играет важную роль потому, что прочность связи Н — А возрастает по мере уменьшения ее длины, в результате чего затрудняется отрыв протона. Судить о длине, и следовательно прочности, связи Н — А следует по ковалентному, а не ионному радиусу атома А, так как молекула Н А является ковалентно связанной частицей (данные о ковалентных радиусах неметаллических элементов, образующих рассматриваемые анионы, приведены в табл. 18.3). Если бы на кислотность гидридов Н А неметаллических элементов влиял только ковалентный радиус этих элементов, наиболее слабой кислотой среди указанных соединений должен был оказаться НР. Однако, как было указано выше, на кислотность соединений этого типа влияет еще степень ионности связи Н — А, а следовательно, электроотрицательность элемента А и поскольку фтор является самым электроотрицательным из всех элементов, НР обладает наиболее ионным характером среди всех гидридов простых анионов. [c.329]

    В оксианионах элементов IV группы, как и следует ожидать, у центрального атома обнаруживаются четные степени окисления среди известных оксианионов наблюдаются состояния окисления II и IV. Изменение неметаллических свойств элементов IV группы на металлические при переходе от углерода к свинцу находит отражение в изменении устойчивости двух состояний окисления, наблюдаемых у оксианионов этих элементов. Углерод, кремний и германий дают оксианионы лишь со степенью окисления центрального атома +4] олово и свинец образуют оксианионы со степенью окисления как -1-2, так и -1-4. Карбонат-ион СО3 изоэлектронен с нитрат-ионом. Оксианионы других элементов этой группы принадлежат к тому же типу, что и орто- [c.360]

    Соприкосновение фаз неизбежно приводит к обмену между ними веществом и энергией с установлением фазового равновесия. В случае электрохимических процессов из фазы в фазу переходят не нейтральные молекулы, а электрически заряженные частицы, например, обмен катионами металла между электродом и раствором. При этом в поверхностных слоях каждой из фаз возникают электрические заряды, равные по величине, но противоположные по знаку. Образуется так называемый двойной электрический слой, разность потенциалов между обкладками которого вызывает скачок потенциала на границе между фазами. Скачок потенциала и двойной электрический слой могут возникнуть и на поверхности неметаллического твердого тела, даже на поверхности коллоидной частицы, например, за счет избирательной адсорбции из раствора ионов одного знака. В отличие от не имеющей толщины межфаз-ной границы, межфазная область в электрохимических системах имеет некоторую протяженность. Существуют две межфазные области - одна протянувшаяся от электрода в сторону электролита и отличающаяся от основной массы раствора, и другая, протянувшаяся от поверхности электрода внутрь него, отличающаяся от основной массы электрода. [c.103]

    При окислительно-восстановительных реакциях в системе возникают свободные радикалы, которые могут инициировать полимеризацию. Чаще всего в качестве окислительных агентов используют органические или неорганические перекисные соединения, а в качестве восстановительных агентов ионы металлов, находящихся в низшем валентном состоянии, либо неметаллические, легко окисляемые соединения (например, некоторые серосодержащие соединения). Можно использовать также системы из трех компонентов, а именно перекисного соединения, иона металла (например, Ре +) и другого восстановителя типа кислого сульфита. В последнем случае ионы трехвалентного железа, получаемые в результате окислительно-восстановительной реакции между Ре и перекисным соединением, вновь восстанавливаются кислым сульфитом до Ре2+, поэтому для реакции достаточно очень малого количества ионов Ре в системе. [c.133]

    Силы притяжения у ионных твердых веществ (например хлористого натрия) преимущественно кулоновского типа, т. е. сила притяжения изменяется обратно пропорционально квадрату расстояния между ионами разных знаков. Однако притяжение не является чисто кулоновским, в нем принимают участие также поляризационные силы и силы Ван-дер-Ваальса в некоторых случаях они проявляются в виде изменений решетки. Металлы характеризуются очень высокой проводимостью электричества и тепла и очень высоким коэфициентом отражения и поглощения света. Их можно рассматривать как решетку положительных ионов, заряд которых нейтрализован отрицательными электронами, равными по числу сумме зарядов этих ионов. Эти свободные электроны принадлежат всей решетке, а не какому-нибудь отдельному атому. По принципу Паули лишь два электрона (исключая спин) могут занимать один квантовый уровень и поэтому число уровней энергии огромно, так как оно равняется половине числа свободных или проводящих электронов. В неметаллических соединениях атомы связаны в молекулы ковалентными связями, образованными парами электронов. Этим типом связи соединены углерод, водород, азот и другие атомы в огромном числе органических молекул, он играет роль также в образовании многих Вернеровских координационных соединений, особенно металлов второй и третьей групп. Связь у электронной пары может быть слабой, как в Ja, поможет быть и более прочной, чем в—С —С—или—С — Н, или чем ионные [c.89]

    Было изучено также несколько других неметаллических ионов, помимо нитрата, и среди них родаиат-ион в расплаве K NS (Родес и Уббелоде [144]), нитрит-ион, растворенный в расплаве KNO3 (Смит и Бостон [102]), и растворы галогенов в расплавленных галогенидах щелочных металлов (Гринберг и Сандхейм [137]).  [c.391]

    Ван-дер-ваальсовы радиусы других неметаллических эле-иентов также примерно равны их ионным радиусам. Для серы, например, в слоистом кристалле молибденита эффективный ван-дер-ваальсов радиус между слоями равен 1,75А. [c.189]

    Необходимы, однако, дальнейшие исследования изотопного обмена в соединениях другого типа на окислах и других неметаллических катализаторах. Выявление закономерностей их действия может оказаться недостаточно полным при использовании модельных реакций обмена водорода с дейтерием, так как имеются некоторые указания на неэффективность в ней катализаторов, способствующих образованию промежуточных соединений ионного тина. В частности, было найдено, что некоторые цеолиты типа X, содержащие катионы различных металлов, более активны в реакции изотопного обмена пропилена с тяжелой водой, где принимается карбоний-ионный или аллильный механизм, чем в реакции обмена водорода с дейтерием [64]. Поэтому для исследования реакций, протекающих по ионному механизму, могут потребоваться более удачные модельные реакции, чем изотопный обмен водорода с дейтерием. Некоторую ценность может представлять изучение реакции изотопного обмена в л -ксилоле, которая позволяет выяснить, радикальные или ионные промежуточные соединения образуются на поверхности катализатора. Эта реакция исследовалась на ряде металлов [65, 66], на цеолите X с катионами никеля [67], на рутиле [60], на Y-AI2O3 и алюмосиликате [68]. На металлических катализаторах, способствующих образованию радикальных промежуточных соединений, обмениваются преимущественно атомы водорода в боковых группах, но если катализатор благоприятствует образованию промежуточных соединений ионного типа, то обмен в кольце происходит быстрее, чем в боковых группах, [c.16]

    Плодотворным методом изучения механизма каталитических реакций является исследование изотопного обмена атомов водорода в углеводородах на дейтерий, так как изотопное распределение продуктов, образующихся в начальных стадиях обмена, определяется природой промежуточных поверхностных соединений и их реакционной способностью. Правильный выбор систем для исследования изотопного обмена позволяет получить цепную информацию о глубоком механизме других родственных реакций каталитического превращения углеводородов, поскольку некоторые промежуточные соединения могут быть общими для этих процессов. Между поведением металлов в реакциях изотопного обмена и их каталитическим действием в других реакциях углеводородов при более высоких температурах может существовать определенная взаимосвязь. Подобная корреляция наблюдается, например, между активностью различных металлов в реакциях гидрогенолиза -бутана и множественного обмена метана. На металлах образуются преимущественно адсорбированные промежуточные соединения радикального характера, в том числе моноадсорбированные, а, а-,ос, Э и а, т-диадсорбированные соединения, соединения -комплексного типа и др. На окислах и других неметаллических катализаторах главную роль играют промежуточные соединения ионного характера. Настоящая работа служит примером поисков связи между характером реакций изотопного обмена, природой промежуточных соединений и закономерностями каталитического поведения твердых веществ. [c.470]

    Большинство молекул состоит из атомов неметаллических элементов. Эти атомы удерживаются вместе в результате притяжения ядра одного атома к электронам другого. Однако разница в силе притяжения электронов к атомам слишком мала для того, чтобы электроны полноспью переместились от одного атома к другому. В результате, как это часто случается при взаимодействии металлических и неметаллических элементов, ионы не образуются. [c.76]

    Нетрудно сообразить, что поскольку щелочноземельные металлы Ве, Mg, Са, 8г и Ва очень сходны по своим химическим свойствам, их следует расположить друг под другом, как это и сделано на рис. 7-3. Каждый период завершается элементами с неметаллическими свойствами, и О, 8, 8е и Те образуют семейство элементов с валентностью 2, у которых при переходе от О к Те постепенно нарастают металлические свойства О-типичный неметалл, а Те располагается в особой пограничной зоне таблицы между металлами и неметаллами, где находятся так называемые семиме-таллы ( полуметаллы ), или металлоиды. Элементы К, Р, Аз, 8Ь и В1 образуют семейство, отличительной особенностью элементов в котором является способность присоединять три электрона в некоторых соединениях, а также постепенный переход от неметаллических свойств у N и Р к семиметаллическим у Аз и металлическим у 8Ь и В1, Элементы С, 81, Се, 8п и РЬ также образуют семейство, характерным свойством элементов в котором является валентность 4. Для этих элементов пограничная линия между металлами и неметаллами располагается на один период выше С-типичный неметалл, 81 и Ое-семиметаллы, а 8п и РЬ металлы. Наконец, семейство элементов В, А1, Са, 1п и Т1 образует ионы с зарядами + 3  [c.314]

    Факторы, влияющие на точечную коррозию. Природа металла. Отдельные металлы и сплавы в разной степени проявляют склонность к точечной коррозии. Более других подвержены точечной коррозии пассивные металлы и сплавы. В растворах хлоридов наибольшую стойкость обнаруживают тантал, титан, хром, цирконий и их сплавы весьма склонны к питтингообра--зованпю в этой среде высоколегированные хромистые и хромоникелевые сплавы. Склонность к точечной коррозии ие всегда одинакова, она зависит от химического состава стали. Чем выше в стали содержание хрома, никеля и молибдена и чем меньше углерода, тем больше ее сопротивляемость точечной коррозии. Коррозионностойкие стали тем меньше подвержены пит-тингу, чем однороднее их структура, в которой должны отсутствовать включения карбидов и других вторичных фаз, а также неметаллические фракции, в частности окислы и сульфиды, уменьшающие стабильность пассивного состояния и облегчающие разрушение пассивирующей пленки ионами хлора. Некоторые виды термообработки, приводящие к улучшению однородности стали, благоприятно сказываются на ее сопротивляемости точечной коррозии. [c.443]

    Электрохимическую коррозию вызывают главным образом примеси других металлов и неметаллических веществ или неоднородность поверхности. Согласно теоргт электрохимической коррозии в этих случаях при соприкосновении металла с электролитом (электролитом может быть влага, адсорбируемая из воздуха) на его поверхности возникают гальванические микроэлементы. При этом металл с более отрицательным потенциалом ра.зрушается — ионы его переходят в раствор, а электроны переходят к менее активному металлу, на котором пронсходит восстановление нонов водорода (водородная деполяризация) или восстановление растворенного в воде кислорода (кислородная деполяризация). [c.162]

    Из неметаллических комплексных катнонов наиболее часто встречаются ион аммонкя NHj и ион гидроксония Н3О+. В металлических комплексных катионах в центре комплекса располагается атом или ион металла, а вокруг него координируются анионные и нейтральные лиганды. В качест1 е комплексообразователей чаще всего выступают металлы В-групп и металлы IIIA, IVA и VA групп периодической системы. В качестве лигандов анионного типа могут выступать галид (F-, С1-, Вг- I-)-, оксид (0 )-, гидроксид (ОН-)-, сульфид (S -)-, цианид ( N-) , роданид ( SN-)-, сульфат (50 -)-, нитрат (N0,)-, нитрит (NO2 )-, карбонат (С05 )-ионы и хр. В качестве нейтральных лигандов наиболее часто встречаются полярные молекулы воды, аммиака, окиси углерода (аква-, аммино-, карбонильные группы) и другие нейтральные, но полярные (или легко поляризующиеся) молекулы. [c.12]

    Описательная химия элементов охватывает изучение их поведения в атомарном, ионном и молекулярном состояниях при различных температурах и давлениях, а также в различном окружении. Данный раздел химии может излагаться и изучаться различными способами. В этой главе и в нескольких последующих мы сконцентрируем внимание на периодических закономерностях для сходных типов частиц, и особенно на их химических свойствах. В качестве таких однотипных частиц в первую очередь рассматриваются простые (одноатомные) анионы неметаллических элементов. Установлено, что все эти сферические отрицательно заряженные частицы имеют много общих химических и физических свойств. Все одноатомные анионы обладают симметричным строением электронных оболочек, которое подобно строению атомов благородных газов, и это свойство в решающей степени обусловливает общность их химического поведения. Впрочем, поскольку анибны различных элементов отличаются друг от друга по таким важным параметрам, как ионный радиус и ионный заряд, у них обнаруживаются и некоторые химические различия. Всестороннее обсуждение этих ионов мы начнем с их общих свойств, после чего перейдем к различиям между ними и постараемся показать, как все это связано со сходством и различиями в строении самих частиц. [c.323]

    Простейшие оксианионы описываются общей формулой ХОт , где центральный атом X представляет собой металлический или неметаллический элемент. Атомы кислорода связаны с центральным атомом, а весь анион в целом несет суммарный заряд п —, причем величина п зависит от степени окисления центрального атома и числа атомов кислорода, присоединенных к нему. Существуют и более сложные оксианионы, которые содержат два или несколько атомов X и могут быть представлены общими формулами Х О", или (ХО , ) . Атомы X в этих оксианионах связаны друг с другом через кислородные мостики, образуя структуры X - О - X. В качестве примера приведем уже известный нам из гл. 19 бихромат-ион СГ2О7 . Однако для простоты мы ограничимся здесь обсуждением главным образом простейших, мономерных оксианионов, включая в рассмотрение полимерные оксианионы только для сравнения при необходимости составить более широкое представление о химии многоатомных анионов. [c.356]

    Структуры простых веществ неметаллических элементов и их соединений обычно являются гетеродесмическими. Характеризовать межатомные расстояния в таких структурах приходится по крайней мере двумя величинами — ковалентными и Ван-дер-Ваальсовыми радиусами . Термин радиус в геометрическом смысле не может быть оправдан для ковалентной связи и употребляется лишь по аналогиж с металлическими или ионными радиусами. Под этим термином подразумевается та доля в межатомном расстоянии, которая приходится на тот или иной элемент, атомы которого связаны ковалентными связями с другими атомами. Сам Же атом в этом случае теряет форму шара. [c.354]


Смотреть страницы где упоминается термин Другие неметаллические ионы: [c.391]    [c.437]    [c.356]    [c.255]    [c.350]    [c.59]    [c.50]    [c.281]    [c.322]    [c.36]   
Смотреть главы в:

Строение расплавленных солей -> Другие неметаллические ионы




ПОИСК







© 2024 chem21.info Реклама на сайте