Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Конформации полимерной цепи. Гибкость цепи

    Гибкость макромолекул - способность полимерных цепей изменять свою конформацию (см.) в результате теплового движения звеньев, а также под влиянием внешних энергетических полей (см. Скелетная, Равновесная, Термодинамическая, Кинетическая гибкость). [c.398]

    Различают термодинамическую гибкость - способность полимерных цепей изменять конформации в результате теплового движения звеньев (естественные измемения конформаций) и кинетическую гибкость - способность цепей изменять конформацию под влиянием внешних сил (вг.тужденные конформационные превращения). Первая определяется числом возможных конформаций, вторая - скоростью превращения одной кон<1)ормации в другую. Способы оценки гибкости зависят от ее вида. [c.123]


    Полимерные цепи состоят из звеньев, которые благодаря наличию между ними простых углерод-углеродных или других химических связей способны к внутримолекулярному вращению, что приводит к набору различных конформаций. Важнейшим физическим свойством длинных цепных макромолекул является их гибкость, благодаря которой проявляется высокая эластичность полимеров. [c.34]

    Очевидно, что потенциальная энергия 7(ф) полимерной цеин (ф — угол поворота) будет изменяться при повороте отдельных элементов цепи относительно друг друга. Зависимость и (ф) в этом случае может представлять собой кривую с несколькими минимумами потенциальной энергии. Пусть положение повторяющегося звена молекулы в какой-либо момент времени определяется потенциальной энергией 11], а положение, которое займет это звено в результате теплового движения через некоторый промежуток времени, характеризуется потенциальной энергией 2 (рис. 5). Величина Аи=и2—ии равная разности энергий этих двух положений, является мерой термодинамической гибкости цепи, определяющей способность цепи к изменению конформации. Чем меньше тем больше вероятность конформационных превращений полимерной цепи. Вследствие теплового движения достаточно длинная макромолекула, обладающая высо- [c.21]

    Эффективность акриловых реагентов связана с особенностями их состава и строения. В отличие от реагентов на основе полисахаридов с их нестойкими эфирными и гликозидными связями у акриловых полимеров цепи скрепляются прочными связями углерод — углерод. Это придает им большую энзиматическую, гидролитическую и термоокислительную устойчивость. Существенно и расположение функциональных групп непосредственно у главной цепи, а не в связи с циклическими группировками, как у крахмала или КМЦ. Малые размеры заместителей (группы N, СНз, СООН) и высокая их полярность обеспечивают гибкость полимерных цепей и их развернутые конформации, наиболее выгодные с точки зрения химической обработки и легко регулируемые изменениями pH. Содержание большого числа активных групп, различных по своей природе, и атомов водорода с повышенной способностью к образованию водородных связей обусловливают своеобразие коллоидно-химических свойств реагента и его многофункциональность. С этим связана и склонность полиакрилатов к взаимодействию с щелочноземельными и другими металлами. Большое значение имеет структура макромолекул — распределение в них отдельных звеньев. Для промышленного продукта характерно неупорядоченное строение и размещение функциональных групп. [c.192]


    С увеличением размеров боковых заместителей затрудняется вращение отдельных атомных фупп вокруг валентных связей, т.е. повыщается Ц , что обусловливает уменьщение числа возможных конформаций макромолекулы, т.е. обедняется конфор-мационный набор или повыщается жесткость макромолекул. Так, гибкость полимерных цепей уменьшается в следующем ряду  [c.82]

    Конформации полимерной цепи. Гибкость цепи 83 [c.83]

    КОНФОРМАЦИИ ПОЛИМЕРНОЙ ЦЕПИ. ГИБКОСТЬ ЦЕПИ [c.83]

    Величина молекулярного веса полимера данного гомологического ряда не оказывает влияния на гибкость полимерных цепей, так как в полимерных цепях разного молекулярного веса величина сегмента одинакова, а различны только количества сегментов. Наличие межмолекулярных химических связей обычно затрудняет конформационные превращения и уменьшает гибкость цепи. Однако, если эти связи располагаются довольно редко, на расстояниях, существенно превышающих величину сегмента, гибкость цепи такого полимера практически совпадает с гибкостью макромолекул линейного полимера такой же химической структуры. По мере увеличения плотности поперечных связей длина отрезков полимерной цепи между соседними точками сшивания уменьшается и гибкость макромолекул понижается. Вследствие взаимодействия между макромолекулами переход из одной конформации в другую осуществляется не мгновенно, а с какой-то конечной скоростью. Иногда проявление гибкости цепей оказывается практически невозможным вследствие исключительно низкой скорости поворотов. В этом случае, хотя число возможных конформаций велико, практически гибкость макромолекул не проявляется. [c.45]

    В большинстве полимерных резистов используются аморфные полимеры, физико-химические свойства которых определяются конформацией полимерной цепи или ее сегментов. Молекулярное движение полимерной цепи или ее сегментов зависит от температуры. При повышенных температурах возрастает число степеней свободы цепей, что может вызвать течение, и полимер ведет себя как вязкая жидкость. При понижении температуры движение сегментов полимерной цепи уменьшается, а при температуре стеклования Тс полностью прекращается. Ниже Гс полимерный материал приобретает характеристики стекла. Подобное явление наблюдается и у неорганических полимеров, например у силикатного стекла. Тс определяется подвижностью и гибкостью полимерной цепи и до некоторого предельного значения ММ полимера является характеристикой материала. Так как подвижность сегментов полимерной цепи связана со сменой конформации и зависит от времени, то конформация полимерной цепи никогда не является равновесной для достижения равновесия необходимо бесконечно большое время. [c.21]

    Как и Гпл величина Tg определяется гибкостью (кинетической) полимерной цени и силами межмолекулярного взаимодействия. В настоящее время в отдельных случаях удается найти корреляцию между локальной структурой макромолекулы на уровне триад и значениями Tg, однако следует иметь при этом в виду, что Tg также зависит, строго говоря, и от временных эффектов, от условий и методики эксперимента, от молекулярной массы полимера, содержания разветвлений в цепи или густоты пространственной сетки, наконец, от степени вытяжки и т. п. Словом, значения Tg зависят от характера молекулярной агрегации полимера в блоке. Иначе говоря, как и в случае прочих физических свойств полимеров, при обсуждении значений Тg необходимо учитывать не только локальную конформацию участков макромолекулы (сегментов), но и конформацию полимерной цепи в целом. [c.166]

    Несмотря на то влияние, которое изменение природы растворителя может оказать на характеристическую гибкость цепи, увеличение размеров полимерного клубка с повышением растворяющей силы среды может быть объяснено дальнодействующим взаимодействием сегментов цепи . Если эффективный исключенный объем этих сегментов цени положителен, то цепь будет стремиться вытянуться таким образом, чтобы уменьшить свободную энергию смешения цепи Gm с молекулами растворителя. С другой стороны, число конформаций, согласующихся с данным расстоянием между концами цепи, уменьшается по мере увеличения h выше h, и поэтому цепь оказывает сопротивление такому растяжению. Аналогичная энтропийная упругая сила сжатия наблюдается и для каучуковой сетки и обычно выражается в виде упругой свободной энергии Gel- В таком случае равновесное набухание цепи со взаимодействующими сегментами соответствует такой величине h, при которой сила осмотического набухания целиком уравновешивается силой сокращения упругой цепи. Используя в качестве характеристического параметра фактор ag = h /h, при помощи которого наиболее вероятное расстояние между концами цепи возрастает до значения, превышающего величину этого параметра для невозмущенной свободносочлененной цепи, равновесное растяжение можно выразить как [c.115]


    В 0-условиях изменение конформации макромолекул определяется только скелетной гибкостью полимерных цепей. [c.108]

    Конформация макромолекул - форма полимерной цепи, обусловленная возможностью вращения звеньев вокруг валентных связей в результате теплового движения, не сопровождающегося разрушением химических связей между атомами и атомными группами. Вид поворотных изомеров, ротамеров (см. Гибкость макромолекул). [c.400]

    Подвижность макромолекул (кинетическая гибкость) - способность полимерных цепей изменять свою конформацию под влиянием внещних энергетических полей. Размер сегмента (см.) макромолекулы зависит от скорости приложения внешних воздействий (гидродинамических, механических, электромагнитных). [c.402]

    Упорядоченность во взаимном расположении полимерных молекул и высокая степень регулярности построения цепи приводят к ухудшению приспосабливаемости макромолекул к поверхности и взаимодействия с нею. В работе [563] была рассмотрена роль гибкости молекулярных цепей каучука в усилении сажей на основе представлений об изменении конформации цепей при смачивании полимером твердой поверхности. При этом было найдено, что усиление тем более заметно, чем. выше гибкость цепи и чем больше, следовательно, ее контактов с поверхностью может быть реализовано. Проведенные термомеханические исследования свойств наполненных аморфных и кристаллических образцов полистирола также показали, что при введении наполнителя изменения свойств кристаллического полимера менее заметны, чем аморфного того же химического строения. Таким образом, взаимодействие с поверхностью и адгезия зависят не только от химической природы полимера и наполнителя, но и от степени регулярности цепи и молекулярной упорядоченности полимера в надмолекулярных образованиях. Взаимодействие этих образований с поверхностью и их взаимное расположение — весьма важные факторы, определяющие физико-химические и физико-механические свойства наполненного полимера. [c.284]

    Размеры макромолекул полимерных соединений настолько превышают размеры молекул низкомолекулярных веществ, что форма макромолекулы, как и химическая структура ее элементарных звеньев, оказывают решающее влияние на физические и механические характеристики материалов. Макромолекулам линейной формы свойственна высокая гибкость, приводящая к непрерывным конформационным изменениям. Чем длиннее цепи линейного полимера и больше полярность структуры его звеньев, тем выше силы их взаимного сцепления. Внешне это проявляется в большей прочности и твердости полимера, в повышении температуры размягчения и снижении текучести при повышенной температуре. Чем меньше силы межмолекулярного сцепления, тем богаче набор различных конформаций, которые может иметь макромолекула в результате тепловых колебательных движений. Большую гибкость полимерной цепи придает связь углерод — углерод. Звенья кислорода или серы, вкрапленные в углеродные цепи в ви e простых эфирных связей, способствуют усилению колебательного движения, повышая эластичность полимера, снижая температуру стеклования и размягчения. [c.763]

    Поведение полимера — каучука — в блоке объясняется свойствами макромолекулярных цепей, из которых он построен. Независимые движения элементов полимерной цепи определяются ее конформационной лабильностью. Иными словами, полимерная цепь обладает гибкостью. Гибкость полимерной цепи — ее важнейшее свойство в аспекте рассматриваемых здесь вопросов. При этом необходимо различать термодинамическую гибкость и кинетическую гибкость. Первая ответственна за равновесные свойства полимера, в частности за высокоэластичность каучука она определяется числом конформаций цепи, обладающих одинаковыми или близкими энергиями. Кинетическая гибкость характеризует скорость конформационной перестройки цепи. Она определяется высотами энергетических барьеров, которые при этом необходимо преодолеть. [c.121]

    Макромолекулы не только имеют большие размеры, но, и это очень важно, обладают гибкостью полимерных цепей, которая обеспечивает способность принимать большое число конформаций от абсолютно растянутого состояния до тугого клубка. Естественно, число связей, которые образует данная макромолекула с другими, зависит от формы молекулы чем более она распрямлена, тем легче доступ к тем ее частям, которые могут вступать во взаимодействие. [c.189]

    При переходе к полимерному состоянию количественное изменение - резкое возрастание в молекуле числа простых связей, вокруг которых возможно внутреннее вращение, - приводит к качественному скачку появлению нового свойства - гибкости цепей. Рассматривая внутреннее вращение у полимеров, можно отметить как сходство, так и отличие их от низкомолекулярных соединений. Как и у последних, у полимеров в результате только внутреннего вращения невозможно изменить конфигурацию макромолекулы, в том числе и стереохимическую. При изменении конформации исходная конфигурация сохраняется (например, цис-и /и/га /с-конфигурации, изотактическая и синдиотактическая конфигурации, конфигурации таких изомерных полисахаридов, как целлюлоза и амилоза крахмала, различающихся только конфигурацией гликозидной связи). [c.120]

    Любая мгновенная конформация макромолекулы полностью описывается значениями длин химических связей между атомами, валентных углов между химическими связями, примыкающими к общему атому, и углов внутреннего вращения между химическими связями, разделенными одной связью. Длины связей фиксированы с точностью до малых высокочастотных колебаний, валентные углы — с точностью до колебаний этих углов, уже не таких малых и происходящих с несколько меньшей частотой, а углы внутреннего вращения вокруг одиночной химической связи могут принимать значения в более или менее широком интервале или в нескольких интервалах значений углов. Поэтому, чем большее число связей разделяют 2 звена макромолекулы, тем в больших пределах может меняться расстояние между ними и их взаимная ориентация. Отсюда с необходимостью следует, что полимерная цепь обладает гибкостью. Заметим, что гибкость является общим свойством линейных систем — ив очень высоких металлических сооружениях, и даже в небоскребах верхняя часть колеблется с отклонением на заметный угол (подробней см. в [10]). [c.18]

    Гибкость полимерной цепи приводит к тому, что, если достаточно длинная макромолекула предоставлена сама себе , т. е. нет сил, заставляющих ее предпочесть какую-то особую конформацию, то подавляющее большинство принимаемых макромолекулой мгновенных конформаций, окажутся свернутыми, и их совокупность составит конформацию статистического клубка, или просто клубка. В гл. I мы подробно рассмотрим структуру статистического клубка, а в гл. VI дадим количественное описание его свойств с помощью методов статистической физики. Пока же отметим одну его существенную особенность — плотность клубка убывает с ростом длины полимерной цепи и для макромолекул с большой степенью полимеризации становится очень малой. Сам же клубок представляет собой сильно. флуктуирующую и очень неоднородную систему. [c.18]

    Однако, анализ причин, ответственных за гибкость полимерных цепей, еще не дает ответа на вопрос о характере молекулярного движения в полимерах, поскольку механизм перехода цепей из одной конформации в другую при этом не рассматривается. Это не имеет существенного значения при изучении равновесных свойств полимеров, так как последние [c.11]

    В полимерной цепи, состоящей из одинарных С—С-свя-зей, внутреннее вращение возможно в каждом звене. При этом цепь мол<ег принимать различные конформации. Внутреннее вран ение и определяет гибкость полимерной цени, которая в свою очередь ответственна за высокие обратимые деформации, являющиеся отличительной чертой полимеров. [c.21]

    Одной из первых физических моделей, предложенных для описания ряда физических свойств макромолекул, в том числе и для объяснения гибкости полимерной цепи, является модель свободно-сочлененной цепи. В такой цепи нет жестко зафиксированных валентных углов и возможно свободное вращение звеньев. Свободно-сочленен-ная цепь может иметь непрерывный набор конформаций вследствие свободного вращения звеньев. Полимерную цепь можно охарактеризовать не только ее длиной, но и расстоянием между ее концами (рис. 6). Расстояние [c.22]

    Ио полимерные цепи могут в результате теплового движения их звеньев принимать разнообразные конформации из которых крайними являются линейная жесткая палочка и предельно гибкая цепь, стремящаяся свернуться в клубок. Цень сворачивается в клубок, так как это отвечает уменьшению поверхности и, следовательно, свободной энергии. Ограниченная гибкость реальной цеппой макромолекулы мешает ей npHHiiMaTb всегда сферическую форму" Однако в ряде случаев можно наблюдать возникновение сферических форм, или глобул, образованию которых способствуют гибкость цепи и ус.аовця, обеспечивающие превышение Энергии Внутримолекулярного взаимодействия ьад межмолекулярным. Поэтому, в зависимости от условий, жесткие молекулы полимера вследствие сильного внутримолекулярного взаимодействия могут сворачиваться а глобулы (поливинилхлорид, феноло-формальдегидные смолы), Гибкие, но слабо взаимодействующие неполярные макромолекулы обычна находятся не в глобулярном, а с развернутом состоянии. [c.93]

    Вследствие гибкости макромолекулы принимают в процессе теплового двилсения различные пространственные формы, называемые конформациями. Чем большую эффективную гибкость имеет полимерная цепь, тем легче она свертывается в так называемый статистический клубок. В связи с этим в физике полимеров вводят понятие о сегменте полимерной цепи как мере ее гибкости или жесткости. Под сегментом понимается наименьший отрезок цепи, который проявляет гибкость. Следовательно, макромолекула состоит из большего или меньшего числа сегментов, ведущих себя как самостоятельные кинетические единицы. [c.16]

    Гибкость полимерных молекул, являющаяся причиной высокоэластических свойств, обусловлена тем, что в цепях главных валентностей имеются простые связи, способные поворачиваться или вращаться относительно друг друга. Число возможных конформаций полимерных цепей, возникающих при вращении связей, ограничено взаимодействием между атомами водорода или боковыми группами. Тепловое движение вызывает превращения одних конформаций в другие, причем частота этих превращений зависит от величины потенциальных барьеров вращения и интенсивности теплового движения. Чем выше напряжение, тем легче совершается перемещение сегментов в направлени) силы и труднее—в противоположном. [c.73]

    Как указывалось, в жесткоцеппых полимерах мы встречаемся с новым деформационным механизмом гибкости цепных молекул, проявление которого никогда ие учитывалось в теориях конформаций полимерных цепей. Поэтому исследования жесткоценных полимеров стимулируют дальнейшее развитие теории молекулярных конформаций и, в первую очередь,— теорий гибкости цепных молекул, связанной не только с вращением вокруг валентных связей, но и с деформацией этих связей и валентных углов. [c.155]

    При этом основное влияние поверхности страивается на уменьшении молекулярной подвижности полимерных цепей на границе раздела [8—10]. Это уменьшение подвижности меняет быть вызвано двумя причинами. Первая причина — образование физических связей (адсорбционных) с поверхностью, эквивалентное возрастанию числа узлов в физической сетке полимера. В результате этого происходит явление, аналогичное сшиванию и приводящее к уменьшению подвижности сегментов цепей в граничном слое. Вторая причина носит чисто энтропийный характер и связана с ограничением числа возможных конформаций, которые макромолекула может принять па границе раздела с твердым телом вследствие геометрических ограничений. Уменьшепие числа конформаций эквивалентно повышению жесткости полимерных цепей и такн е ведет к уменьшению молекулярной подвижности. Последний фактор наиболее существен для систем, в которых отсутствуют сильные специфические взаимодействия. Общая оценка вклада обоих факторов в изменение молекулярной подвижности, проведенная в ряде наших работ, позволила прийти к выводу, что в отсутствие специфических взаимодействий наибольший вклад вносит уменьшение числа конформаций цепей в граничном слое. Это позволяет, в частности, удовлетворительно объяснить наблюдаемую в некоторых случаях независимость эффекта уменьшения молекулярной подвижности от природы поверхности, расиространение изменения подвижности на слои, не контактирующие неносредственно с поверхностью, зависимость эффектов изменения молекулярной подвижности от гибкости полимерной цепи и многие другие [10]. [c.178]

    Теперь рассмотрим, каков механизм нарушения одномерного порядка в макромолекулах или, другими словами, каков механизм гибкости полимерных цепей. Гибкость полимерной цепи в основном определяется поворотной изомерией, т. е. перескоками между различными поворотными изомерами, хотя поворотно-изомерная модель не отрицает наличия крутильных колебаний в каждой потенциальной яме. Количественно гибкость макромолекул определяется разностями энергий между различными конформациями, а также амплитудами крутильных колебаний, причем в гибкости цепей изотактического ПС основную роль играет поворотная изомерия, а в изотактических макромолекулах ПВЦГ, кристаллизующихся [c.118]

    В те же годы Штаудингером было доказано, что макромолекулы являются продуктами полимеризации и поликонденсацни мономеров с образованием ковалентных связей. Он ввел понятия степенн полнмеризации и статистической молекулярной массы. Одновременно разными исследователями было установлено, что сольватация макромолекул почти не отличается от сольватации мономеров. Оказалось, что особенности в поведении полимеров связаны не только с большим размером молекул, но и с гибкостью полимерных цепей, нследствне чего макромолекулы способны принимать большое число конформаций. Учет этих конформаций лежит в основе созданной Марком и Куном (1928) кинетической теории изолированной макромолекулы и разработанной Хаггинсом и Флори статистической термодинамики растворов полимеров. В результате этих исследований было доказано, что лиофильность молекулярных коллоидов (растворов полимеров) объясняется не столько взаимодействием с растворителем, сколько энтроиинной составляющей, обусловленной многочисленными конформациями макромолекулы, свернутой в клубок. [c.310]

    Сущность этого понятия заключается в следующем. Вращение отдельных групп и звеньев в полимерной цепи не свободно, а заторможенно. Можно представить себе такую модель полимерной цепи, в которой ее отдельные участки, состоящие из нескольких звеньев, могли бы свободно вращаться. Очевидно, что величина такого участка будет больше, чем размер реального звена. Однако в обоих случаях число возможных конформаций макромолекул будет одинаковым. Иными словами, для удобства математического описания гибкости макромолекулы реальная полимерная цепь с заторможенным вращением звеньев заменяется гипотетической моделью, способной принимать такое же количество конформаций, что и реальная цепь, но построенной из свободносочлененных жестких участков - сегментов. [c.85]

    Специфическими молекулярными характеристиками полимеров являются молекулярная масса, определяющая размеры цепочек и гибкость макромолекулы, зависящая от ее строения и природы мел молекулярпоп и внутримолекулярной связи. Гибкость макромолекул — это способность полимерных цепей изменять свою конформацию в результате внутримолекулярного (мнкро-броунова) теплового дви кепия звеньев равновесная, или термодинамическая гибкость) илп же под влиянием внешних механических сил (кинетическая, или механическая гибкость). Конформация — это пространствеппое распределение атомов и атомных групп в макромолекуле, определяемое длиной соответствующих связей II значениями валентных углов такое распределение, которое может меняться без химических реакций. [c.48]

    Способность полиионов к изменению конформаций определяется причинами двоякого рода гибкостью полимерной цепи, обусловлеп-ной свободой вращения атомных групп или отдельных участков цепи вокруг одинарных связей, и наличием ионизированных групп, расположенных вдоль цепи главных валентностей. Отсюда степень набухания отдельного полииона, находящегося в растворе в виде клубка, зависит не только от обычного осмотического проникновения растворителя внутрь этого клубка, но и от взаимного отталки вания или притяжения фиксированных зарядов, образующихся вследствие диссоциации большого числа ионогенных групп. [c.144]

    Третьей конформацией, которую может принять макромолекула, является максимально вытянутая конформация, отвечающая минимуму потенциальной конформационной энергии. В зависимости от конкретного химического строения полимера эта конформация может представлять собой плоский трансзигзаг (у карбоцепных полимеров с простыми С—С-связями и без массивных боковых групп), спираль (у макромолекул с массивными боковыми группами) и некоторые другие. Для реализации такой конформации необходимо наличие силы, непозволяющей макромолекуле проявить свою гибкость и свернуться в клубок. (Это может быть внешнее или внутреннее растягивающее напряжение, поток с продольным градиентом скорости или межмолекулярное взаимодействие полимерных цепей в кристалле или жидком кристалле). [c.20]

    Следовательно, равновесная гибкость связана со способностью полимерных цепей принимать различные конформации. Переходы между конформациями осуществляются в результате внутреннего вращения (микроброунова движения). Поскольку макромолекула хоть и малая система, но все же подчиняется принципам статистической термодинамики, она чаще принимает энергетически наиболее выгодные конформации. [c.43]

    Расчет гибкости конкретных полимерных цепей должен основываться на их химическом строении. Так, конформации мономерных звеньев в полимерах типа (—СН2—СНН—) (например, полистирол, см. рис. 3.1) и (—СН2—СНг—) определяются преимущественно взаимодействиями массивных боковых привесков Н. Сведения об этих конформациях удается получить путем исследования кристаллических полимеров методом рентгеноструктурного анализа. Вследствие конфигурационной гетерогенности и дисперсии длин цепей обычные полимеры не кристаллизуются или кристаллизуются лищь частично. Однако стереоре-гулярные полимеры кристаллизуются хорощо, их можно получить даже в виде монокристаллов. Но в блоке и стереорегулярные полимеры кристаллизуются не полностью. Наряду с гетерогенностью, кристаллизации препятствуют кинетические факторы. Для того чтобы образовать кристалл, макромолекулы должны переориентироваться. Стастические флуктуирующие клубки закристаллизоваться не могут — цепи должны вытянуться. Даже если термодинамические условия благоприятствуют развертыванию клубков и ориентации цепей, эти процессы могут потребовать слищком длительного времени по сравнению с временем опыта. Необходимо преодолеть барьеры внутреннего вращения. Равновесные термодинамические свойства поворотно-изомерной макромолекулы определяются разностями энергий поворотных изомеров напротив, кинетические свойства определяются высотами энергетических барьеров. Для кристаллизации существенна не только термодинамическая, но и кинетическая гибкость цепей. Прогрев полимера или его набухание в низкомолекулярном растворителе облегчают кристаллизацию. [c.132]


Смотреть страницы где упоминается термин Конформации полимерной цепи. Гибкость цепи: [c.84]    [c.462]    [c.247]    [c.370]    [c.565]    [c.20]   
Смотреть главы в:

Физико-химия полимеров 1963 -> Конформации полимерной цепи. Гибкость цепи




ПОИСК





Смотрите так же термины и статьи:

Конформация полимерных цепей

Строение полимерных цепей ф Конформации и конфигурации ф Термодинамическая и кинетическая гибкости цепей Структура некристаллических и кристаллических полимеров



© 2025 chem21.info Реклама на сайте