Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Катализ молекулярный комплекс

    Горизонты энзимологии. В литературе появляются работы, в которых делаются попытки прогнозирования дальнейшего развития энзимологии на ближайшее десятилетие. Перечислим основные направления исследований энзимологии будущего. Во-первых, это исследования более тонких деталей молекулярного механизма и принципов действия ферментов в соответствии с законами югассической органической химии и квантовой механики, а также разработка на этой основе теории ферментативного катализа. Во-вторых, это изучение ферментов на более высоких уровнях (надмолекулярном и клеточном) структурной организации живых систем, причем не столько отдельных ферментов, сколько ферментных комплексов в сложных системах. В-третьих, исследование механизмов регуляции активности и синтеза ферментов и вклада химической модификации в действие ферментов. В-четвертых, будут развиваться исследования в области создания искусственных низкомолекулярных ферментов —синзимов (синтетические аналоги ферментов), наделенных аналогично нативным ферментам высокой специфичностью действия и каталитической активностью, но лишенных побочных антигенных свойств. В-пятых, исследования в области инженерной энзимологии (белковая инженерия), создание гибридных катализаторов, сочетающих свойства ферментов, антител и рецепторов, а также создание биотехнологических реакторов с участием индивидуальных ферментов или полиферментных комплексов, обеспечивающих получение и производство наиболее ценных материалов и средств для народного хозяйства и медицины. Наконец, исследования в области медицинской энзимологии, основной целью которых является выяснение молекулярных основ наследственных и соматических болезней человека, в основе развития которых лежат дефекты синтеза ферментов или нарушения регуляции активности ферментов. [c.117]


    Возникший в органической химии с конца 70-х годов катализ с применением солей — галогенидов алюминия, хлористого цинка, ртутных солей и т. п.— нашел впервые объяснения также в теории промежуточных соединений. При этом промежуточные соединения в реакциях, осуществляемых посредством солей, были в некоторых случаях выделены в кристаллическом виде. И хотя все эти соединения представляли собою молекулярные комплексы переменного состава, т. е. являлись не обычными определенными соединениями — дальтонидами, все-таки это не помешало исследователям ввести также и новый вид катализа в стехиометрическое русло. [c.74]

    Одна из молекул реагента оказывается таким образом как бы катализатором реакции (ор. Кекуле действие масс и катализ отличаются друг от друга только тем, что при действии масс каталитически действует молекула одного рода с распадающейся, а при катализе они принадлежат разным веществам [77, стр. 17]). Отсюда становится возможным переход к молекулярным комплексам, образование которых связано с пренебрежимо малой энергией активации [90]. [c.322]

    Мы знаем, что катализ имеет место в системах, где органические молекулы дают комплексы самой различной сложности. Но мы пока до конца не поняли природы одного из простейших молекулярных комплексов — водородной связи. [c.6]

    Изменение относительных концентраций таких форм в гетерогенном катализе определяется различиями АР , ..., АР — свободных энергий образования хемосорбированных соединений, а в гомогенном катализе — соответствуюш ими различиями у молекулярных комплексов присоединения и замещения. [c.36]

    Константы реакций, характеризующие процесс окисления циклогексена молекулярным кислородом при катализе различными комплексами металлов [c.55]

    В соответствии с современными тенденциями в пособии рассмотрены вопросы, связанные с методом молекулярных орбиталей, элементы статистической термодинамики, методы расчета химических равновесий, различные аспекты теории активного комплекса отражены достижения в области металлокомплексного, кислотно-основного и других видов катализа показано влияние структуры органических веществ и посторонних добавок на реакции в растворах отражены современные представления электрохимической кинетики. [c.3]

    Хотя еще в начале 1930-х годов теоретически было обосновано, что начальный процесс при катализе состоит в деформации структуры молекулы посредством ассоциации с катализатором, происходящей... путем образования молекулярного комплекса [455, стр. 42], а затем получены косвенные экспериментальные доказательства в пользу этого положения (Ю. Ньюленд — ртутный катализ , А. Л. Клебанский с сотрудниками — димеризация ацетилена), только в 1940—1950-е годы благодаря широкому применению кинетического метода удалось отчетливо доказать существование и определить состав комплексов типа катализатор — ал-кин . [c.96]


    В гетерогенном катализе промежуточными веществами служат поверхностные соединения с катализатором, возникающие и превращающиеся в ходе реакции. В гомогенных реакциях роль таких веществ могут играть образующиеся свободные радикалы, атомы, ионы, другие возбужденные частицы и различные молекулярные комплексы. [c.116]

    С поверхностью вольфрама, увеличивая определенные грани, которые, соприкасаясь с другими гранями, образуют гребни. В местах встречи трех граней могут образоваться острые выступы или вершины . Этим обусловлены большие увеличения и разрешения для молекул, адсорбированных на гребнях или вершинах. Согласно другому предположению, вследствие нагревания установки на вольфрамовом острие в небольшом количестве конденсируются пары углеводородов. В результате небольшое число углеродных атомов может адсорбироваться совместно с кислородом в первых двух слоях. Эти углеродные атомы действуют в качестве центров, на которых более прочно удерживаются молекулярные комплексы третьего слоя. Известно, что углерод прочно адсорбируется на вольфраме и потому можно ожидать образования молекулярных комплексов между адсорбированным углеродом и адсорбированным кислородом. Возможно, что это одна из причин большого разнообразия форм пятен, показанных на рис. 23. Если данное предположение подтвердится дальнейшими опытами, то это лишний раз будет свидетельствовать об универсальности электронного микропроектора как прибора, позволяющего изучать адсорбцию, катализ и расположение атомов в адсорбированных молекулах .  [c.214]

    Второе направление квантовохимического прогнозирования катализаторов связано с построением квантовохимических моделей поверхностей твердых тел, структуры хемосорбированных комплексов субстрат — катализатор или непосредственным изучением акта реакции на различных контактах. Молекулярные модели нашли широкое применение для решения различных задач теории твердого тела, в том числе связанных с адсорбцией и гетерогенным катализом. Их достоинствами являются относительная простота, наглядность, возможность точного учета геометрии решетки и химической природы атомов, а недостатками — трудности адекватного учета непрерывного спектра зонных состояний твердых тел. [c.61]

    Недавние исследования динамики молекулы лизоцима с помощью кристаллографических методов показали [55, 56], что атомные смещения в белке наиболее выражены в области активного центра фермента. Хотя эти исследования иока носят лишь постановочный характер, не исключено, что в будущем применение рентгеноструктурного анализа именно для изучения динамических свойств молекул белка (определение средних амплитуд смещения каждого атома от его усреднеппой позиции в кристалле), помимо зарекомендовавших себя исследований статических свойств белковых молекул в кристалле (оиределение усредненных координат всех атомов в молекуле на основе соответствующего распределения электронных плотностей), может дать важную и принципиально новую информацию о структуре ферментов н механизмах их действия. Далее, обещающими являются новые возможности прямого рентгеиоструктурного анализа промежуточных состояний в ферментативном катализе путем охлаждения кристаллов фер-мент-субстратного комплекса в подходящих водноорганических растворителях и определепия структуры образующихся молекулярных комплексов непосредственно в ходе реакции [57, 58]. Этот [c.158]

    Образование комплексов с субстратом является ключевой стадией многих каталитических процессов. Наиболее типично в катализе образование следующих типов металлорганических комплексов алкильные сг-комплексы, карбеновые, п-комплексы субстратов с насыщенной связью (олефиновые, ацетиленовые и аллильные, комплексы с оксидами углерода), гидразиновые, комплексы с молекулярными кислородом и азотом. [c.536]

    В отсутствие брома катализ солями металлов, например ацетатом кобальта, сводится к образованию комплексов кислоты с ионом металла и пероксирадикалом и последующему разложению комплекса на молекулярные продукты и радикалы [66]  [c.30]

    Что касается молекулярного катализа, преобладающего в слабо диссоциирующих растворителях, то в этом случае активирование галоидопроизводного осуществляется недиссоциированной молекулой каталитического комплекса [c.433]

    Используемая для краун-эфиров сокращенная номенклатура довольно проста первое число означает общее число атомов в кольце, а второе — общее число гетероатомов. Легко усмотреть аналогию между такими комплексами, имеющими полость для связывания лиганда Ь, и активным центром фермента, специфически узнающим свой субстрат. Размер макроцикла может меняться и тем самым обеспечивать связывание лигандов разных размеров. Циклические полиэфиры типа краун сравнительно легко можно получить и подвергнуть разнообразным структурным модификациям. Эту область химии Крам предложил назвать химией до-норно-акцепторного комплексообразования [134—136]. Напомним также о гипотезе замка и ключа , предложенной Фишером в 1894 г. для описания структурного соответствия между ферментом и его субстратом в ферментсубстратном комплексе. Помимо ферментативного катализа и ингибирования комплексообразование играет первостепенную роль в таких биологических процессах, как репликация, хранение и передача генетической информации, иммунный ответ и транспорт ионов. В настоящее время накоплено уже достаточно сведений о структуре таких комплексов, чтобы подтолкнуть химиков-органиков к созданию высокоструктурированных молекулярных комплексов и к изучению специфического химизма процессов комплексообразования. [c.266]


    Образование В.с. и молекулярных комплексов в значит, степени определяет сольватацию ионов и электрич. проводимость рьров, поляризацию сегнетоэлектриков обеспечивает механизм молекулярного распознавания при самосборке биол. структур, напр, синтез РНК с использованием в кач-ве матрицы ДНК при трансляции, структурное соответствие молекул нуклеиновых к-т или их участков (см. Комплементарность). Роль В с. существенна во мн. процессах хим. технологии, в частности при адсорбции, экстракции, кислотно-основном катализе [c.404]

    Гомогенные реакции в твердых веществах редко встречаются, химические изменения, в которых участвуют твердые вещества, происходят обычно на их поверхности, а также у центра зарождения новой фазы, где комбинируются химическое превращение и рост кристалла [247]. Единственная, еще нерассмотренная разновидность гомогенных систем в катализе, —это системы, компоненты которых находятся в жидком состоянии или в растворе (табл. 58 — 64). Предложено [421] классифицировать гомогенный катализ на непосредственный или химический и косвенный или катализ с участием среды. Участие катализатора в процессе не отображается стехиометрическим уравнением, и его влияние зависит от образования промежзт очных молекулярных комплексов, между тем как каталитически действующая среда влияет на скорость реакции, нарушая условия, от которых зависит данная реакция, такие, например, как образование комплексов или их диссоциация. Характер среды или растворителя, — это фактор, влияющий на условия каталитической реакции. Предполагают, что действие прямого катализатора подчиняется закону химического действия масс, так как он реагирует химически, влияние среды — непрямых катализаторов, которые практически могут принимать участие всей массой, интерпретируется иначе. По предположению Розанова, относительное изменение константы скорости реакции пропорционально изменению концентрации каталитически действующей среды. Розанов, обобгцая понятие влияния растворителя, выразил его математически уравнением  [c.194]

    Важное достижение в изучение комплексообразующих свойств макроциклических полиэфиров принадлежит Краму [175], который сформулировал концепцию химии гостя-хозяина , согласно которой молекула-хозяин образует комплекс преимущественно с веществами, гостями, путем распознавания в них определенного расположения центров связывания и стерических особенностей, комплементарных структуре молекулы-хозяина. Мотивом такого направления исследований послужило желание получить непептидные органические соединения, имитирующие поведение ферментов, особенно первую стадию ферментативного катализа, которая включает образование высокоселективного молекулярного комплекса, содержащего предпочтительную ориентацию реакционноспособных групп. Хотя ионы металлов можно расматривать как гостей , этот термин обычно используется для органических производных, обладающих более сложными стерическими требованиями и проявляющих обычно большее разнообразие возможностей связывания по сравнению с простыми ионами. [c.420]

    Отличительной чертой нон-молекулярного механизма с промежуточным комплексообразованием является двухэлектронный перенос в смешанно-лигандном комплексе с образованием продуктов двухэлёктроннбго окисления (восстановления) реагентов. Этот механизм, по-видимому, реализуется при окислении производных пирокатехина пероксидом водорода в присутствии Со и N 11. Активным центром катализа является комплекс, в котором атом металла одновременно координирует субстрат и частицу Н2О2. Такой же механизм вероятен в реакциях окисления о-аминофенола, пирогаллола, пирокатехина пероксокомплексами Та" , [c.42]

    Предположение о резонансно стабилизированном циклическом переходном состоянии при прототроппом сдвиге в аллилоксиалканах находит дальнейшее подтверждение в том, что катализ mpem-бутилатом калия значительно усиливается в присутствии диметилсульфоксида (в 10 раз ), причем снова образуется цис-изомер (99%). Диметилсульфоксид действует как поглотитель катионов, эффективно активируя алкоголят-анион за счет удаления окружающих ионов калия. Добавка спирта снижает скорость, частично вследствие сольватации аниона и частично путем осаждения алкоголята в виде молекулярного комплекса со спиртом. Эти эффекты наводят на мысль о тройном переходном состоянии по типу, указанному формулой 27 [137]  [c.231]

    В реакциях замещения аренового водорода на галогены активность галогенов уменьшается в ряду С12> Вга Гг- В качестве электрофильных галогенирующих агентов в реакции используются молекулярные галогены или комплексы галогенов с разнообразными кислотами Льюиса (РеС1з, РеВгз, А1С1з, А1Вгз, галогениды Оа, 8Ь, 8п, Т1 и др.). Очень часто применяют растворы С12 или Вг2 в уксусной кислоте. Галогенирование аренов молекулярными галогенами в отсутствие кислот Льюиса или Бренстеда, поляризующих связь галоген—галоген, эффективно лишь для алкилбензолов, содержащих не менее трех алкильных хрупп, фенолов, простых эфиров одно- и многоатомных фенолов и ароматических аминов. В других случаях необходим катализ кислотами Льюиса или Бренстеда. [c.464]

    В настоящее время теория гомогенного, гетерогенного и ферментативного катализа включает сосуществование стадийных и одностадийных механизмов. При одностадийном катализе не исключается возможность протекания процесса через несколько стадий (физической или химической адсорбции peal ентов на катализаторе, образования различных молекулярных комплексов и т.п.). На приведенной выше схеме изображена наиболее медленная стадия, определяющая скорость всего процесса. [c.11]

    Исследоваиия каталитической гидрогенизации в гомогенных жидких растворах приобрели в настоящее время важное значение, так как получаемые результаты освещают с новой стороны механизм каталитической активации молекулярного водорода. Другими словами, подобные гомогенные катализаторы представляют интерес пе только потому, что они позволяют открыть или осуществить на практике новые или трудно выполнимые реакции, но также благодаря тем возможностям, которые представ-лянэтся этими системами для выяснения химизма катализа. Как было отмечено выше, поч1и все катализаторы гидрирования являются твердыми телами. Однако природа этих твердых те т очень мало известна и еще в меньшей стенени известны их поверхностные свойства. В противоположность этому природа молекулярных частиц, находящихся в растворе, сравнительно хо-poHJo установлена. Поэтому весьма вероятно, что со временем удастся найти связь между особенностями каталитического гидрирования н гомогенных системах и известными химическими свойствами участвующих в них молекул, ионов или комплексов. [c.177]

    При гомогенном гидрировании активация молекулярного водорода и реакция происходят в растворе субстрата и катализатора -соединения переходного металла. Важнейший из таких катализаторов - хлоротрис(трифенилфосфин)родий КЬС1(РРЬз)з (катализатор Уилкинсона). Комплексы переходных металлов, по-видимому, повторяют каталитические свойства этих металлов, но действуют в гомогенной системе, что значительно облегчает исследование механизма катализа. [c.17]

    Молекулярный механизм действия металлов в энзиматическом катализе, или роль металлов в активировании ферментами. В ряде случаев ионы металлов (Со , Mg , Zn , Fe ) выполняют функции простетических групп ферментов, или служат акцепторами и донаторами электронов, или выступают в качестве электрофилов либо нуклеофилов, сохраняя реактивные группы в необходимой ориентации. В других случаях они способствуют присоединению субстрата к активному центру и образованию фермент-субстратного комплекса. Например, ионы Mg через отрицательно заряженную фосфатную группу обеспечивают присоединение монофосфатных эфиров органических веществ к активному центру фосфатаз, катализирующих гидролиз этих соединений. Иногда металл соединяется с субстратом, образуя истинный субстрат, на который действует фермент. В частности, ионы Mg активируют креатинфосфокиназу благодаря образованию истинного субстрата—магниевой соли АТФ. Наконец, имеются экспериментальные доказательства прямого участия металлов (например, ионов Са  [c.146]

    Огромные успехи исследований механизмов кодирования наследственной информации и биосинтеза белка, ферментативного катализа и регулирования активности ферментов, действия антибиотиков и гормонов, всей той области изучения живого, которую принято называть молекулярной биологией, приучили всех к мысли о том, что в структурах молекул жизни положение буквально каждого атома строго обусловлено и подчинено выполнению предназначенных для этих молекул биологических функций. Именно в атом смысле принято обычно говорить о специфичности биополимеров, прочно ассоциировавшейся в сознании исследователей с однозначным соответствием между структурой и выполняемой функцией. При таком комплексе стр>т<турного детерминизма трудно было освоиться с представлением о специфичности полисахаридов, для многих из которых характерна статистичность структур, микрогетерогенность и, нередко, хаотичность распределения различных моносахаридных остатков по цепи. И, тем не менее, накапливающийся материал по сложному и высоко специализированному функционированию углевод ных полимеров в живых системах убеждает в том, что и в этой области возможен и необходим перевод функций- нальных свойств биополимеров на язык молекулярных структур, т. е. применим основной принцип молекулярной) [c.162]

    Сульфгидрильным группам миозина принадлежит важная роль в ферментативном катализе, а также в образовании актомиозинового комплекса. По данным аминокислотного анализа, в миозине содержится 15—17 моль SH-rpynn на каждые 200 000 г белка (молекулярную массу миозина в настоящее время считают равной 500 000 Да). В препаратах миозина методами титрования обычно определяется 10— [c.159]

    Более тонкую настройку дает структурное соответствие заместителей. На это указывает гетерогенный катализ оптически деятельных веществ. Комплекс дублетной индексной группы по своей симметрии оптически неактивен, между тем оптически неактивный катализатор, отложенный на оптически активном носителе, например металл на кварце, избирательно ускоряет реакцию одного оптического антипода, находящегося в смеси с другим антиподом (гл. 6). Отсюда можно сделать вывод, что асимметрическое воздействие катализатора или фермента сосредоточено не в реагирующей группе-индексе, а во внеиндексных заместителях при Их наложении на носитель рядом с активным центром вследствие молекулярной адсорбции или образования Н-связей. [c.86]

    Синтез высокомолекулярных полимеров и их исследование представляют собой второе крупное направленне в полимерной химии эпоксидов, развивающееся параллельно с олигомерным. Высокомолекулярные полиэпоксиды непосредственно проявляют тот собственно полимерный комплекс свойств, который может быть реализован олигомерным путем, и имеют самостоятельные области применения. Высокомолекулярные полиэпоксиды известны с середины. 50-х годов, когда успехи в координационном катализе позволили осуществить полимеризацию окпси этилена и окисп пропилена в длинноцепные полимеры (молекулярные массы 10 и более), тогда как предпринятые ранее такие попытки не дали результата. В дальнейшем эти полимеры были детально исследованы как типичные представители класса простых полиэфиров, а изучение процессов их образования позволило значительно расширить возможности полимерной химии и привело к синтезу новых полимеров, таких, как поли-2,3-эпоксибутан и ряд других. Практическое применение полимеров рассматриваемого типа непрерывно расширяется. [c.254]

    Особую роль хелатные комплексы имеют в ферментативном катализе, где металлхелатные соединения нередко сами являются активными катализаторами, образуя молекулярные соединения с субстратом. [c.174]

    Значительно меньше известно о реакциях в других растворителях [2, 3], однако они весьма важны в препаративной химии, и в настоящее время проводится большая работа по выяснению их механизмов. Некоторые растворители, например спирты, напоминают воду тем, что они ведут себя как кислоты или основания, но имеют более низкие диэлектрические постоянные, которые могут осложнять кинетику реакций, способствуя образованию ассоциативных комплексов. Другие растворители, например углеводороды, неспособны присоединять или терять протон в этих апротонных растворителях существует меньшее число молекулярных и ионных форм, действующих как катализаторы, но это преимущество обычно утрачивается в результате осложнений, обусловленных их низкими диэлектрическими постоянными. Интересной группой, относящейся к этим реакциям, являются реакции алкилирования, изомеризации и родственные реакции, осуществляемые с катализа- [c.45]

    Следует отметить, что молекулярный катализ протекает медленнее ионнаго в основном за счет знач,ительного уменьшения констант равновесия при образовании реакционных комплексов. [c.434]

    Как можно предположить, это, по-видимому, связано с сильной адсорбцией олефинов на платине и с более слабой адсорбцией их на палладии. На основании этого следует провести параллель между больщой вероятностью десорбции олефина и его, следовательно, сравнительно слабой адсорбцией на рутении, осмии и родии, с одной стороны, и неустойчивостью этиленовых комплексов этих металлов — с другой. Рассуждая аналогичным образом, можно прийти к выводу, что комплексы иридия с олефинами должны быть устойчивы, подобно комплексам платины. К сожалению, в данном случае уже нельзя провести сравнение между этими металлами. Такая зависимость наводит на мысль, что природа связи при адсорбции олефина и в комплексах металла солефином— одна и та же, т. е. это я-связь. Согласно имеющимся данным, металлы, образующие комплексы с этиленом, будут также давать комплексы с другими олефинами, и наоборот в катализе, как показано в настоящем параграфе это соответствует тому, что степень изомеризации и обмена в олефине всегда является характеристикой данного металла и практически не зависит от молекулярного веса олефина. [c.459]

    Описание химической связи в металлах, ионных и молекулярных кристаллах, комплексных соединениях в настоящее время основывается все еще на различающихся между собою модельных представлениях. Мы вправе ожидать, что различные типы химической связи, существующие в твердых телах, могут проявляться и в явлениях гетерогенного катализа. Это положение находит свое отражение в существующих теориях катализа. В мультиплетной теории [1] на первое место выдвигается представление о валентно-химической связи, в то время как в электронной теории катализа на полупроводниках [2]— адсорбционно-химическая связь, в образовании которой играют роль электроны проводимости и электронные дырки. Эти представления о природе химической связи, обусловливающей образование переходных активированных комплексов на поверхности катализатора, не являются, конечно, единственными, или даже г,11авными характеристиками соответствующих теорий. Так, в мультиплетной теории, несомненно, важнейшей стороной является стереохимия катализа — пространственные соотношения и принцип структурного соответствия между расположением атомов в реагирующих молекулах и симметрией атомов на поверхности катализатора. [c.86]


Смотреть страницы где упоминается термин Катализ молекулярный комплекс: [c.116]    [c.231]    [c.297]    [c.159]    [c.170]    [c.366]    [c.170]    [c.130]    [c.496]    [c.73]    [c.154]   
Биоорганическая химия ферментативного катализа (1987) -- [ c.316 ]




ПОИСК





Смотрите так же термины и статьи:

Комплексы молекулярные



© 2025 chem21.info Реклама на сайте