Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ароматические смолы, образование

    При окислении остатков ильской нефти показано, что с увеличением глубины окисления увеличивается содержание смолисто-асфальтеновых веществ и уменьшается содержание масел. Источником образования смолисто-асфальтеновых веществ являются ароматические углеводороды [116]. Изучены [117] изменения группового химического состава, происходящие при окислении гудрона из смеси поволжских нефтей. Авторы представляют механизм окисления известной схемой перехода легкие ароматические —> средние ароматические —>- тяжелые ароматические — -смолы— -асфальтены. Парафино-нафтеновая группа углеводородов при окислении почти не затрагивается, а наибольшая скорость окисления наблюдается для тяжелых ароматических углеводородов. [c.84]


    Поливинилацетали имеют ограниченную совместимость с дру- гими смолами небольшие количества их можно добавлять к спирторастворимым резольным смолам для улучшения эластичности и адгезии покрытий без заметного снижения их химической стойкости. Небольшие количества фенольных, мочевино- или меламино-формальдегидных смол можно добавлять к поливинилацеталям для сшивания цепей макромолекул и перевода в процессе горячей сушки линейной структуры полимера в сетчатую. Полагают, что в этом случае происходит взаимодействие гидроксильных групп поливинилацеталя и метилольных групп смолы. Образование структуры пространственного строения повышает прочностные свойства покрытий, их водостойкость, а также стойкость к ароматическим углеводородам. [c.238]

    Отверждение ненасыщенных полиэфирных смол (образование трехмерных структур, сшивка) происходит в результате реакции сополимеризации двойных связей полиэфира и стирола. Отверждение происходит без выделения побочных продуктов при комнатной или невысокой температуре, при сополимеризации используют добавки инициаторов и ускорителей. В качестве инициаторов применяют органические перекиси (перекись бензола, лаурила и др.) и гидроперекись изопропилбензола, а в качестве ускорителей — третичные ароматические амины (диметиланилин), меркаптаны, нафтенат кобальта и др. [c.273]

    В виде свободного углерода выделяется меньше 1% углерода, содержащегося в исходном газе. Уменьшение содержания углерода в газе до половины его исходного количества в течение 272 часов указывает на образование относительно большого количества смолы и ароматических углеводородов. Образование водорода, не сопровождаемое выделением углерода, говорит против уравнения Люиса. В виду стабильности метана при этой температуре водород должен образоваться из ацетилена, если справедливо уравнение Люиса, но в таком случае он должен сопровождаться выделением углерода. [c.48]

    По-видимому, ацетилен, как это неоднократно высказывалось рядом авторов, играет в механизме образования сажи существенную роль. Однако это не позволяет утверждать, что зародыши сажевых частиц образуются именно из ацетилена. Не исключена возможность, что образование зародышей идет и из ароматических смол, которые в большом количестве образуются в нижних частях факела [1]. [c.72]

    Ароматические углеводороды окисляются несколько труднее, чем нафтены, но стойкость их против окисления падает по мере усложнения молекул, в частности с увеличением числа колец. При этом в случае наличия у ароматических колец коротких боковых цепей (или коротких цепей, связывающих между собой ароматические радикалы) окисление сопровождается образованием высокомолекулярных продуктов— смол, асфальтенов и карбенов, часто выпадающих в осадок. Если даже у ароматических колец имеются длинные алкильные цепи, то в результате окисления образуется меньше полимеров, но больше органических кислот и подобных продуктов, не выпадающих в осадок. [c.142]


    В результате изучения условий образования перекисных соединений, винилацетиленовых соединений и их смесей, образующихся в процессе полимеризации ацетилена, был подобран ряд эффективных ингибиторов (полифенолы, ароматические амины и др.), которые необходимо вводить на всех стадиях процесса [4, 5]. Разработаны также методы разложения перекисей, постепенно накапливающихся в смолах на поверхности реакторов и других аппаратов. [c.711]

    В случае использования нефтей с высоким содержанием смолисто-асфальтеновых веществ и ароматических углеводородов технология должна предусматривать процесс окисления, способствующий образованию дополнительных количеств асфальтенов за счет перехода части ароматических соединений в смолы и смол в асфальтены. Если исходная нефть характеризуется не только высоким содержанием общего количества асфальтенов и смол, но и достаточно высоким отношением асфальтены смолы, то для получения дорожных битумов рекомендуется вакуум, ная перегонка. [c.99]

    Газовые бензины, а также конденсаты газоконденсатных месторождений также могут быть использованы в качестве сырья для производства непредельных углеводородов. С целью подавления вторичных реакций, приводящих к образованию смол и кокса, пиролиз газовых бензинов необходимо вести в присутствии больших количеств водяного пара. Наряду с этиленом в этом случае целесообразно использовать и другие продукты реакции, как то бутадиен и ароматические углеводороды. [c.41]

    Были составлены три смеси, первые две состояли из 70% нафтеновых углеводородов и 30% ароматических, различающихся по числу колец в молекуле, третья смесь содержала кроме углеводородов еще и смолы (рис. 8). На основании вычисленных значений коэффициента разделения установлено, что по мере роста цикличности молекул компонентов, добавляемых к нафтеновым углеводородам, избирательность растворения повышается. Данные экстракции масляной фракции 400—500°С фенолом и фурфуролом (табл. 1) показывают, что фенол эффективнее извлекает смолы. Растворение смол в полярных растворителях определяется ориентационным взаимодействием и способностью к образованию водородных связен с молекулами растворителя. При растворении в [c.59]

    Это можно, по-видимому, объяснить повышенным содержанием смол, полициклических ароматических углеводородов и малоактивных сернистых соединений во вторичных дистиллят ах, оказывающих антикоррозионное действие в присутствии воды по двум механизмам. В области малых концентраций - путем предотвращения окисления углеводородной части дистиллятов при сравнительно высоком содержании - вследствие образования на поверхности металла защитной пленки. [c.97]

    При коксовании в тех же условиях этого высокополимерного углеводорода, содержащего ароматические группы, было получено 16,2% кокса истинной плотностью 2,10 г см . По текстуре, механическим и электрическим свойствам полученный кокс был практически одинаковым с коксом из смол пиролиза. В дистилляте коксования не было обнаружено твердых парафинов. Коксование полистирольной смолы проходило по сложному механизму параллельно-последовательных реакций с образованием продукта глубокого уплотнения — кокса. [c.47]

    Интересны и результаты оценки термоокислительной стабильности топлива, полученного гидрокрекингом. Уменьшение содержания осадка и фактических смол после окисления топлива, очевидно, связано и с меньшим содержанием ароматических углеводородов. К значительному улучшению термоокислительной стабильности приводит снижение температуры конца кипения дизельного топлива, так как в этом случае снижается содержание серы, ароматических углеводородов, смолистых и азотистых соединений. С уменьшением склонности топлива к осадкообразованию сокращается образование отложений на иглах форсунок, в отверстиях распылителей и на других деталях, что ведет к снижению дымности отработавших газов. [c.55]

    Реакции альдегидов и кетонов с ароматическими соединениями имею г много сходства с процессами алкилирования и тоже принадлежа к реакциям электрофильного замещения. Обычными катализаторами являются протонные кислоты (серная, сульфокислоты, хлористый водород, катионообменные смолы), которые переводят карбонильные соединения в положительно заряженный ион, атакующий далее ароматическое ядро через промежуточное образование л- и а-комплексов  [c.549]

    Работами [21, 22] показано, что ароматические углеводороды способны образовььвать ассоциаты друг с другом и с сероорганическими соединеииями, углеводородный радикал которых представлен ароматическим циклом. Образование таких ассоциатов также может препятствовать разделению ароматических углеводородов и сероорганических соединений. Разделить эти компоненты можно, окисляя последние по Гинсбергу. Образовавшиеся кислородсодержащие соединения (сульфоны, сульфоксиды) извлекаются с силикагеля после удаления обессеренных таким образом ароматических углеводородов вместе со смолами. Они обладают намного большей диэлектрической постоянной, чем соответствующие им по строению серосодержащие соединения (например, для амил-меркаптана е=4,7, для амилового спирта е=15,8). Поэтому при х,роматографии на силикагеле они адсорбируются в.месте со смолами и ароматические фракции десорбируются без сернистых компонентов. По данным [23], их удаление мало сказывается на физико-химических показателях ароматических фракций. [c.18]


    Качественный состав первичных смол существенно не различается, но количественное соотношение отдельных компонентов оказывается различным в смолах торфа, бурых и каменных углей. Так, содержание фенолов в первичных смолах, образованных из торфа и бурых углей, всегда меньше (9,7—16,0%), чем в смолах слабометаморфизованных (длиннопла.менных и газовых) каменных углей (18,7—35,2%). С увеличением степени метаморфизма каменных углей содержание фенолов в смоле уменьшается, а ароматических углеводородов возрастает. [c.246]

    Вследствие этих процессов коксовые газы резко отличаются по своему составу, а смола высокотемпературного разложения отличается от смолы низкотемпературного разложеиия высоким содержанием ароматических ооединений, образование которых обусловливается не только природой сьпрья, о и реакциями дегидрирования. [c.273]

    Доля летучих продуктов уплотнения, как углеобразующего материала в случае этана, может быть приблизительно оценена в 50% при 910° С, в 16% при 950 и 0% при 975° С. При высокотемпературном образовании продуктов уплотнения из этилена и ацетилена метан, очевидно, наряду с ароматическими смолами также является углеобразующпм материалом. Сравнение скоростей углеобразования из этих углеводородов и метана в области проявления высокотемпе- [c.180]

    В проведенных под давлением водяных паров опытах с высшими фенолами, выделенными из первичных смол, наблюдалось, кроме образования низших фенолов и ароматических углеводородов, образование также продуктов конденсации. Уменьшение образования продуктов конденсации было достигнуто введением наряду с водяными парами водорода и применением катализатора РегОз -Ь M0S3. [c.46]

    Вследствие этих процессов коксовые газы резко отличаются по своему составу, а смола высокотемпературного разложения тмш отличается от смолы низкотемпе- гете атуца, °С ратурного разлон<ения высоким содержанием ароматических соединений, образование которык обусловливается не только природой сырья, но и реакциями дегидрирования. Таким образом, температура разложения является важнейшим фактором для направления процесса разложения твердого топлива. [c.212]

    Вследствие этих процессов коксовые газы резко отличают-я по своему составу, а смола высокотемпературного разложе- ия отличается от смолы низкотемпературного разложения ысоким содержанием ароматических соединений, образование оторых обусловливается пе только природой сырья, но и ре-кциями дегидрирования. [c.277]

    Наименьшее количество осадков образуется при окислении алкано-циклано-вых углеводородов. Даже при окислении в течениебч при температуре 150° С не образуется заметного количества осадков и только длительное (более 6 ч) окисление приводит к образованию осад-(ков. Ароматические углеводороды при окислении образуют значительное количество нерастворимых осадков и смол. Причем их количество возрастает с увеличением количества колец в молекуле ароматических углеводородов. Влияние углеводородного состава можно иллюстрировать данными табл. 29. [c.111]

    Термолиз нефтяного сырья в жидкой фазе протекает через последовательные или параллельно — последовательные стадии образования и расходования промежуточных продуктов уплотнения по схеме легкие масла —полициклические ароматические углеводороды —>- смолы —> асфальтены —> карбены —> карбоиды —> кокс. При этом на каждой стадии образуются газы и менее низкомолекулярные жидкие продукты по сравнению с образовав — шимися промежуточными продукта ми уплотнения. Так, при термо — лизе смол образуются, кроме асфальтенов, масла и газы. Это обстоятельство позволяет процесс термолиза рассматривать как обратимый процесс, хотя вторичные продукты уплотнения по мо — лекулярной структуре не вполне идентичны исходным нативным компонентам сырья. [c.39]

    В присутствии ароматических сульфидов образуется больше растворимых смол, чем в присутствии алифатических сульфидов (рис. 24). На рис. 25 приведены данные, характеризующие влияния температуры и концентрации сульфидов на образование нерастворимых в топливах осадков. Как видно из представленных данных (рис. 25), в присутствии диизовторично-гептилсульфида (рис. 25а) при 100° С наблюдается лишь незначительное увеличение осадкообразования. Заметное увеличение осадкообразования [c.95]

    Нами был исследован и. с. у. различных компонентов нефти парафино-нафтеновой и нафтено-ароматической фракции, смол и асфальтенов. Было отмечено, что и. с. у. смол всегда тяжелее и. с. у. парафино-нафтеновой фракции, но по отношению к ароматической фракции смолы могут иметь как идентичный, так и более легкий или более тяжелый и. с. у. Нами был сделан вывод, что идентичный и. с. у. аренов и смолистых компонентов свидетельствует об их вторичном происхождении, связанном с окислительными процессами в нефти. Разный и. с. у. имеют смолы первичного происхождения. Смолы с легким и. с. у. могли иметь свои первичные источники образования, возможно, типа лигнина. Смолы с тяжелым и. с. у. представляют собой, по-видимому, остаточную часть сложной гибридной структуры, в результате деградации которой происходило образование нафтеновых циклов и ароматических колец. Внедрение кислорода в эту сложную структуру могло, по мнению А.Ф. Добрян-ского, происходить на ранней стадии нефтегазообразования, когда система не была еще полностью изолирована от влияния кислорода. [c.32]

    Каким образом происходит дальнейшая полимеризация, за пределами этой стадии образования полициклических ароматических соединений, пока неясно. Дальнейшее отщепление водорода в процессе конденсации ведет к образованию нефтяного кокса или тяжелых смол последние обычно находят в отложениях в печи крекинга. При этом, по-видпмому, происходит как полимеризация, так и диспропорционирование. Нанример, ненасыщенные замещенные ароматические соединения, такие как инден, быстро полимеризуются, а продукты полимеризации в свою очередь могут расщепляться в результате диспронорционирования  [c.302]

    Дальнейшее направление крекинга состоит, по-видпмому, в том, что сложные молекулы еще более усложняются до тех пор, пока реакция не заканчивается образованием смол и кокса, в то время как из нпзкомолекулярных обломков образуются простейшие ароматические и парафиновые или олефиновые углеводороды, которые находят в крекинг-продуктах. Что же касается кокса как конечного продукта разложения ароматики, то следует иметь в виду, что он ни в коей мере не является чистым углеродом обычно он содержит большое колпчество (50—80%) углерода, растворенного в сероуглероде [65]. [c.303]

    При неизменио11 степени превращения более высокое давление способствует повышению выхода смол. Из этилена и пропилена прп атмосферном давлении и 600° С получают сильно ароматизированные жидкости и богатые водородом газы. С повьп ением давления выход ароматики и водорода снижается в результате образования полимеров и, возможно, гидрокрекинга продуктов получают самые различные продукты ири нескольких десятках атмосфер давления (и топ же температуре) жидкость полностью свободна от ароматических углеводородов. Неизбежным следствием понижения содержания олефппов п ароматики при увеличенном давлении является снижение октанового числа. [c.314]

    В рамках коллоидной теории А. С. Колбановская и В. В. Михайлов выделяют разные структуры битумов [10]. Структура первого типа представляет собой коагуляционную сетку-каркас из. асфальтенов, находящихся в слабо структурированной смолами дисперсионной среде, которая состоит из смеси парафино-нафте-иовых и ароматических углеводородов. Такая структура образуется при содержании асфальтенов выше 25%, смол менее 24% и масел (углеводородов) более 50%. При этом доля асфальтенов в смолисто-асфальтеновых веществах превышает 0,5 а отношение асфальтенов к сумме углеводородов и смол более 0,35. Наличие в битуме твердых парафинов может привести к образованию дополнительной кристаллизационной сетки, чта должно сказаться на свойствах битума. [c.15]

    В отличие от термического и каталитического крекинга при гидрокрекинге, осуществляемом при высоких давлениях, образуются только продукты распада, а реакции уплотнения подавляются воздействием водорода. Насыщаются водородом и содержащиеся в сырье коксообразующие компоненты асфальтены, смолы, полициклические ароматические углеводороды. При глубоком превращении сырья протекают реакции расщепления, изомеризации, алкилирования и др. Образующиеся при распаде парафинов олефины изомеризуются с последующим насыщением водородом до изопарафинов. Преимущественное образование легких изопарафинов благоприятно влияет на состав головных фракций бензинов гидрокре-кинга  [c.62]

    В присутствии межфазных катализаторов ускоряется также образование бисульфитных производных ароматических альдегидов [1729]. Более необычным является опубликованный недавно трехфазный метод, который осуществляется в условиях кислотного катализа на полистиролсульфокислотной смоле растворенные в бензоле ароматические кетоны конденсируются с формальдегидом (водным), давая 4-арил-1,3-диоксаны с почти количественным выходом [1652]. При комнатной температуре и перемешивании в течение 30 мин был осуществлен синтез гли-цидных нитрилов О с выходом 55—80% из ароматических или алифатических альдегидов и кетонов и хлорацетонитрила в стандартной системе концентрированный раствор гидроксида натрия/катализатор [448, 1492, 1759]. При этом несимметрична [c.233]

    Уд. вес является верным признаком ароматизации, потому что вое ароматические углеводороды удельно тяже,п ее нефтяных, кипящих ири той же температуре. Кроме бензола и его ближайших соседей по ряду на уд. вес смолы влияют также и такие углеводороды, как нафталин и антрацен. До некоторого предела присутствие их является хорошим признаком, ибо последние образуются на счет первых. Но отсюда не следует, что смола тем лучше (т. е. богач ароматическими углеводородами), чем больше ее уд. вео. Та называемая пережженная смола из генераторов, напр., может содержать много нафталина и т. п. и мало бензола и толуола. Тут есть сложная зависимость, которая проясняется несколько рабо-тами последних пятнадцати лет. Скорость образования бензола при 700° вьппе, чем скорость образования иа него нафталина, но при некоторой более высокой температуре эти скорости равны, т. е. сколько образуется бензола, столько же и превращается в нафталин и др. высшие углеводороды. При еще более высоких температурах скорос-ть синтеза иолициклических углеводородов превосходит таковую одноядерных, и тогда первые ароматические углеводороды выжигаются в индивиды тяжелой смолы и пека. [c.398]

    Распад на элементы — не единственная реакция пиролиза метана. Сокращением длительности нагревания и регулированием скорости oxJ[aждeния продуктов реакции из метана можно получить также газообразные и жидкие углеводороды. При 850— 1200 С, пропуская метан с большой скоростью через нагретые фарфоровые и кварцевые трубки, получают конденсат, содеря<а-щий непредельные углеводороды, бензол, толуол, нафталин и тяжелую смолу, содержащую высшие ароматические углеводороды. В газообразных продуктах обнаруживают этилен, ацетилен и бутадиен. Некоторые катализаторы (SiOj, W, Mo, Sn) ускоряют эпу реакцию, другие (железо, графит) — замедляют. Максимальный выход олефинов наблюдается при температурах до 1000 °С, ароматических углеводородов — при 1000—1200 С, а ацетилена — при 1500 С. Образование всех этих продуктов объясняют возникновением нри высоких температурах кратковременно су1цествующих свободных радикалов, например метиленового радикала Hg  [c.411]

    При высаживании асфальтенов из раствора наблюдается увлечение вместе с ними некоторого количества углеводородов и смол, растворимых в данном растворителе при температуре высаживания, причем часть из них захватывается механически, а часть удерживается внутри агрегированных мицелл вследствие частичной сорбции вместе со смолами. Дрисутствие углеводородов в мицеллярной оболочке можно объяснить дисперсионными силами, возникающими между молекулами смол и углеводородо-в. На поверхности мелкодисперсных твердых частиц асфальтенов смолы сорбируются таким образом, что полярная часть их молекул обращена в сторону ядра коллоидной мицеллы, а неполярная — в сторону дисперсионной среды. В то же время вследствие упорядоченности неполярных частей молекул смол и влияния дисперсионных сил между ними встраиваются молекулы углеводородов. Так как в остатках нефтей содержится больше смол, чем необходимо для пептизации асфальтенов, вероятно образование поли-молекулярных мицеллярных оболочек, в результате чего углеводороды прочно удерживаются между чередующимися молекулярными слоями полярных соединений (смол). Извлечь эти углеводороды можно, полностью разрушая молекулярные оболочки коллоидных мицелл растворением смол многократной коагуляцией или отмывкой. Выше КТРг вследствие ограниченной растворяющей способности пропана по отношению к смолам происходит их выделение из раствора. Выделяющиеся смолы растворяют полициклические ароматические углеводороды и, таким образом, относительно раствора углеводородов выполняют роль селективного растворителя, несмешивающегося с пропаном. [c.67]

    Кристаллизация твердых углеводородов при депарафинизации зависит от глубины очистки рафинатов, которая характеризуется степенью извлечения смол и полициклических ароматических углеводородов. Смолы остаточного происхождения в большей степени влияют на кристаллообразование твердых углеводородов, чем дистиллятные, содержащиеся в той же концентрации, причем не наблюдается отличия в воздействии аналогичных по происхождению гр)рп смол, содержащихся в рафинатах из серщ1стых и мало-сернисхых нефтей. Смолы при малой концентрации в растворе тормозят, образование зародышей кристаллов, твердых углеводородов и практически не влияют на рост уже образовавшихся кристаллов правильной орторомбической структуры. В. результате из-за снижения чиела зародышей кристаллов в конейрм итоге получаются более крупные кристаллы, чем в отсутствие емол. [c.138]

    Тяжелая часть нефти представляет собой сложную смесь неидентифицированных углеводородов и гетеросоединений самого разнообразного строения. Для решения практических задач определяют содержание отдельных классов или групп веществ асфальтенов, силикагелевых смол и масел. Среди последних различают соединения парафиновой, нафтеновой и ароматической основы. Кислород воздуха, взаимодействующий с нефтяным сырьем, расходуется в различных реакциях окисления. Часть кислорода образует воду и диоксид углерода, другая — химически связывается компонентами сырья. С повышением температуры окисления увеличивается доля кислорода, расходуемого на образование воды. В целом процесс окисления характеризуется переходом масел в смолы и смол в асфальтены. В масляной части наибольшая скорость окисления наблюдается у тяжелых ароматических углеводородов, в то время как парафино-нафтеновая группа углеводородов почти не затрагивается. [c.287]

    В случае использования нефтей с высоким содержанием смо листо-йсфальтеновых веществ и ароматических углеводородов технология должна включать процесс окисления, приводящий к образованию дополнительных количеств асфальтенов за счет расходования части ароматических соединений и смол. При высокой доле асфальтенов в составе смолисто-асфальтеновых веществ для получения дорожных битумов можно рекомендовать и вакуумную перегонку. [c.288]


Смотреть страницы где упоминается термин Ароматические смолы, образование: [c.89]    [c.309]    [c.106]    [c.85]    [c.67]    [c.527]    [c.54]    [c.317]    [c.371]    [c.20]    [c.114]    [c.58]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Ароматические смолы, образование при пиролизе триметилэтилена

Возможные направления образования конденсированных ароматических углеводородов, содержащихся в высокотемпературной смоле



© 2025 chem21.info Реклама на сайте