Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спирты, образование при гидролизе сер производство

    Пропилен, содержащийся в этилене, идущем на сернокислотную гидратацию, является весьма нежелательной примесью так как при действии серной кислоты происходит образование изопро-пилсульфата в результате гидролиза последнего получается изопропиловый спирт. Отделение изопропилового спирта от этилового спирта из-за близости их температур кипения (темп. кип. этилового спирта 78,3°, а темп. кип. изопропилового спирта В2,3°) в обычной аппаратуре практически невозможно. Поэтому ири производстве синтетического этилового спирта тщательно очи- [c.80]


    Наряду с обычными поверхностноактивными веществами много других растворимых веществ способны образовывать более или менее устойчивые пены, причем независимо от химического состава пенообразователей механизм их действия во всех случаях одинаков. Это относится как к слабоустойчивой пене низших алифатических кислот и спиртов, образованной поверхностными слоями газообразного типа 147], так й к пене белков и продуктов их гидролиза, для которой характерны высокая вязкость и денатурация поверхностных слоев пенообразователя 148]. Высокая пенообразующая способность белков часто используется, например, для образования пены в огнетушителях она имеет также большое значение при производстве и применении белковых веществ. Молоко, как было установлено, образует пены двух видов—стабилизированных либо белком, либо комплексом фосфолипид-белок [49]. [c.335]

    Амины получаются также аминолизом алкилхлоридов. При взаимодействии алкилхлоридов с сульфатами образуются водорастворимые сульфонаты. На основе алкилхлорида получают соединения Гриньяра, из которых при взаимодействии с оксидом углерода (IV) образуются карбоновые кислоты. При взаимодействии с безводным карбонатом натрия алкилхлориды превращаются в сложные эфиры, с сульфгидратами щелочей—в тиоспирты. В реакции Фриделя— Крафтса алкилхлориды взаимодействуют с аренами. Они дехлорируются с образованием алкенов. Алкилхлориды используют для введения в молекулы высокомолекулярных алкильных групп при производстве инсектицидов и ядохимикатов, для повышения растворимости полученных соединений в смеси углеводородов (нефтепродуктов), а также во многих других производствах. Термическим хлорированием технического пентана получают амилхлориды, которые гидролизуют затем щелочью в амиловые спирты, используемые непосредственно или в виде их амилацетатов в качестве растворителей и важного вспомогательного материала в лакокрасочной промышленности [18]. [c.325]

    Образованию диалкилсульфатов благоприятствуют повышение давления и концентрации кислоты, а также увеличение отношения олефина к кислоте. Из диалкилсульфатов промышленным продуктом является только диэтилсульфат, потребляемый в небольших количествах, а остальные диалкилсульфаты не находят технического применения. В производстве спиртов из олефинов образование диалкилсульфатов нежелательно, потому что они гидролизуются с гораздо большим трудом, чем алкилсерные кислоты, а также реагируют со спиртами, превращаясь в простые эфиры по реакции [c.141]


    П. применяют для производства пластмасс, лаков, красок, клеев и др. П. устойчив на свету, набухает в воде, гидролизуется растворами кислот и щелочей с образованием поливинилового спирта. [c.196]

    Пектиновые вещества распределены неравномерно. Наибольшее их количество содержится в кожуре —около 4% к массе, в мякоти 0,6%, здесь они входят в состав межклеточных пластинок, соединяющих между собой клетки клубня. При хранении картофеля под влиянием пектолитических ферментов пектиновые вещества частично растворяются, что приводит к размягчению клубней. В процессе разваривания в производстве они гидролизуются и являются источником образования метилового спирта. [c.14]

    Производство спирта может быть основано не только на использовании пищевых субстратов и отходов пищевых производств, но и на техническом сырье, способном подвергаться гидролизу, в том числе неферментативному, с образованием сахаров (например, на древесных опилках). [c.302]

    Гидролиз сложных эфиров. Гидролиз сложных эфиров приводит к образованию спиртов и карбоновых кислот. Этот процесс часто называют омылением . Происхождение термина омыление связано с методом производства мыла из жиров. [c.249]

    Аллиловый спирт (жидкость т. кип. 96,2°С) применяют для производства аллиловых эфиров фталевой, фосфорной и других кислот (эти эфиры являются мономерами) он служит промежуточным веществом в одном из способов синтеза глицерина. Кроме щелочного гидролиза аллилхлорида можно получать аллиловый спирт гидролизом водой в присутствии катализатора (хлорид одновалентной меди в солянокислой среде). Метод пригоден только для реакционно-способных хлоридов аллиль-ного типа, когда для замещения достаточно активирования молекулы за счет образования комплекса с СигСЬ  [c.170]

    В основе ряда технологических процессов производства синтетического каучука и синтетического спирта лежат реакции дегидратации с образованием воды. Примерами такого рода процессов являются получение дивинила из ацетилена через ацетальдегид, алдоль и бутиленгликоль нитрила акриловой кислоты дегидратацией этиленциангидрина изопрена из изобутилена и формальдегида силиконовых каучуков на основе гидролиза и последующей поликонденсации хлорсиланов и др. [c.26]

    Технологическая схема. На рис. 64 изображена технологическая схема производства изопропилового спирта сернокислотной гидратацией пропилена, пригодная также для получения этилового спирта. Серную кислоту требуемой концентрации подают на верхнюю тарелку абсорбера 1, в нижнюю часть которого направляют олефин, предварительно сжатый до заданного давления. В абсорбере, работа которого была описана раньше, происходит образование алкилсульфатов и их частичный гидролиз при режимных показателях, указанных в табл. 7 (стр. 269). Часть жидкости со средних тарелок колонны насосом 2 передают на верхнюю тарелку. Газ, выходящий из абсорбера I, содержит брызги кислоты, пары спирта и эфира. Поэтому его после снижения давления в дроссельном вентиле 3 промывают в скруббере 4 водой, которая используется затем на стадии гидролиза, [c.271]

    Этой реакции благоприятствует повышение давления, концентрации кислоты, а также увеличение отношения алкена к кислоте. При производстве спиртов из алкенов образование диалкилсульфатов нежелательно диалкилсульфаты гидролизуются с гораздо большим трудом, чем алкилсерные кислоты, и реагируют со спиртами, превращаясь в простые эфиры. [c.118]

    При производстве спиртов из олефинов образование диалкилсульфатов нежелательно диалкилсульфаты гидролизуются с гораздо большим трудом, чем алкилсерные кислоты, и реагируют со спиртами, превращаясь в простые эфиры по реакции [c.127]

    Это твердые вещества, нерастворимые в воде, не обладающие ни вкусом ни запахом. Смесь этих кислот вместе с жидкой непредельной олеиновой кислотой получается при гидролизе (омылении) жиров, представляющих собой смеси сложных эфиров, образованных спиртом глицерином и высшими жирными кислотами. Путем отжимания под прессом можно отделить жидкую олеиновую кислоту и получить смесь твердых пальмитиновой и стеариновой кислот. Эта смесь носит название стеарина и применяется для производства свечей и для других технических целей. Пальмитиновая кислота входит также (в виде сложного эфира) в состав спермацет a и пчелиного воска. [c.180]

    Фурфурол является неизбежным побочным продуктом при гексозном гидролизе древесины, имеющем место на гидролизных заводах, производящих этиловый спирт. Поскольку гидролиз древесины в этом случае также требует использования разбавленной минеральной кислоты и нагревания под давлением, создаются все необходимые условия для образования фурфурола из содержащихся в гидролизате пентоз. При охлаждении гидро-лизата фурфурол в главной своей массе увлекается отходящими парами и конденсируется в решоферах значительная часть фурфурола остается в охлажденном гидролизате. Таким образом удается уловить фурфурол в количестве, составляющем 1—1,5% к весу исходной древесины. Принимая во внимание масштабы переработки древесины этим способом, даже при несовершенстве методов выделения фурфурола из гидролизата, производство спирта из древесины мон-сно считать таким источником промышленного фурфурола, которым отнюдь не приходится пренебрегать. [c.41]


    Иониты используют не только для хроматографического разделения смесей органических веществ, но они находят широкое применение и для процессов деионизации как в лабораторном, так и в промышленном масштабе. Смешанные иониты (например, амберлит МВ) удаляют из растворов одновременно катионы и анионы. Деионизирующая батарея, состоящая из таких ионитов, может быть использована для получения дистиллированной воды, которая по чистоте обычно превосходит воду, полученную перегонкой. В промышленности деионизацию применяют не только для смягчения воды, но и в других технологических операциях, например для обессоливания мелассы в сахарном производстве и т. д. Деионизацию можно использовать также и для концентрирования редких металлов из очень разбавленных растворов. Используя соответствующий ионит, можно улавливать ионы селективно. Способность ионитов задерживать молекулы определенной величины, обусловленную различной степенью сшивания, используют для отделения ионизированных молекул на основе их молекулярных весов. Наконец, в виде высокомолекулярных кислот или оснований иониты могут найти применение в качестве катализаторов, например при этерификации, дегидрировании спиртов, образовании ацеталей, гидролизе и алкоголизе. [c.549]

    Алкилполигликозиды (АПГ), разработанные фирмой Staley Со, дочерним предприятием Яеи е/, получают ацетилированием кукурузного сиропа глюкозы [76-78]. Изначально процесс состоял из кислотно-катализируемой реакции глюкозы с бутанолом с первичным образованием бутилацеталя, который обеспечивает совместимость и смешиваемость жирных спиртов, выделенных из пальмового, кокосового и пальмоядрового масел. В дальнейшем бутильные производные подвергаются трансацетилирова-пию с нужным жирным спиртом, в ходе которого наиболее низкокипящий бутанол последовательно удаляется из реакционной смеси. В результате этого метода получается более сложная смесь продуктов, чем в случае прямой реакции с жирными спиртами, используемой в производстве. Промышленный продукт — это смесь, в которой представлены полисахаридные звенья от 1 до 3, что говорит о конденсации глюкозы в ходе процесса (уравн. 1.26). Продукты растворяются в воде и предлагаются в виде 50%-ного раствора. В промышленности они используются в композициях в качестве синергетических соПАВ с анионными ПАВ для очищения кожи амфотерными — для шампуней и гелей для душа а также с сульфированными метиловыми эфирами для приготовления жидких моющих средств. Они не проявляют точки помутнения и не загустевают под действием электролитов. Они разлагаются при нагревании, и поскольку являются ацеталями — гидролизуются при pH ниже 3. Их ГЛБ лежит в диапазоне от И до 15, поверхностное натяжение составляет примерно 30 мН/м, а натяжение на границе раздела фаз с углеводородами — порядка 1 мН/м. [c.38]

    Для предотвращения гидролиза сульфатирование ведут при возможно низкой температуре. В качестве побочных протекают реакции дегидратации спиртов, образования простых эфиров, окисления спиртов до альдегидов и далее до кислот, образования диалкилсульфатов, сульфонов и др. Для подавления реакции образования диалкилсульфатов процесс необходимо проводить при большом избытке серной кислоты и малом времени контакта. Интенсивное перемешивание способствует подавлению реакций расщепления и осмоления. На глубину суль-фатирования оказывают влияние концентрация и количество серной кислоты, температура и продолжительность процесса. В качестве сульфатирующего агента в производстве первичных [c.329]

    В следовых количествах этилкарбамат присутствует во многих продуктах брожения и напитках. Поскольку он считается канцерогеном [3], его содержание в пищевых продуктах регламентируется. В производстве шотландского виски образование этилкарбамата происходит в основном в результате модификации веществ-предшественни-ков (прекурсоров) этилкарбамата, присутствующих в ячменном солоде [18]. Цианогенный гликозид (эпигетеродендрин, ЭПГ) [25] образуется в ростках прорастающего ячменя и не разрушается при сушке и затирании. В ходе брожения он гидролизуется (3-глюкозидазой дрожжей до изобутеральдегидцианогидрида (ИБАЦ), нестабильного при температурах выше 50 °С, и в процессе дистилляции он распадается с образованием цианистого водорода. В присутствии кислорода и меди цианистый водород вступает в реакцию с этиловым спиртом, и образуется этилкарбамат [ 18]. [c.35]

    Образование моноэтилсульфата из этилена и гидролиз последнего в этиловый спирт описаны Фарадеем в 1827 г., но первое успешное промышленное применение эта реакция получила лишь столетием позже, когда производство этилена и его выделение фракционной перегонкой стали достаточно совершенными. В 1897 г. пытались получить этиловый эфир из этилена нефтяного газа, полученного при помощи крекинга, с применением сорной кислоты в Ричмонде (штат Вцргиния) и в Бруклине (штат Нью-Йорк) [19]. [c.353]

    При нагревании в присутствии воды, спирта, аминон, органических кислот и некоторых других соединений К. полимеризуется с образованием полиамидной смолы, из которой получают волокно капрон. Водные растворы кислот и щелочей вызывают гидролиз К. до -ами-нокапроновой кислоты. К. является продуктом многотонажного производства. [c.119]

    На свойства полиметилсилоксанов большое влияние оказывают также условия реакции и тип применяемого растворителя. Так, при гидролизе метилтрихлорсилана (основного сырья в производстве полиметилсилоксанов) ледяной водой или водяным паром в присутствии неполярных растворителей образуется неплавкое и нерастворимое аморфное вещество. Если же гидролиз метилтрихлорсилана ведут, приливая его к эмульсии воды и бутилового спирта постепенно (чтобы избежать образования геля), при интенсивном перемешивании и пониженной температуре ( 0 °С), образуется растворимое в органических растворителях вязкое вещество, которое при непродолжительном нагревании до 150 °С теряет плавкость и растворимость. Такое различие в свойствах продуктов, образующихся в результате почти одинаковых химических процессов, можно объяснить тем, что при введении метилтрихлорсилана в водно-спиртовую эмульсию в системе СНз81С1з + Н2О С4Н9ОН одновременно протекают три конкурирующие реакции  [c.209]

    Непременным условием научно-технического прогресса является комплексное использование сырьевых ресурсрв. Одной из важных народнохозяйственных проблем является утилизация хлористого водорода - побочного продукта многих производств. При получении хлор- и фторсодержащих растворителей и мономеров, фреонов, пестицидов, при хлорировании парафиновых и ароматических углеводородов, первичных и вторичных спиртов, кетонов и кислот более половины используемого хлора расходуется на образование хлористого водорода. Значительное его количество образуется также при гидролизе неорганических хлоридов, например, при переработке хлорида магния в оксид, в производстве аэросила из тетрахлорида кремния и т. п. В то же время большие количества хлора используются для производства синтетического хлористого водорода, технической и реактивной соляной кислоты. Поэтому рациональное получение и последующая переработка побочно образующегося хлористого водорода имеет не только экономическое значение, но позволяет также предотвратить загрязнение окружающей среды. [c.4]

    Основные научные работы посвящены вопросам древесиноведения, химической модификации древесины. Впервые доказал (1925) возможность путем химического воздействия стимулировать образование и выделение живицы при подсочке хвойных деревьев. Под его руководством разработан способ изготовления химически пластифицированной древесины, найдены новые средства консервации древесины, создан метод гидролиза древесины с целью получения сахара, фурфурола, этилового спирта. Разработал и внедрил методы производства противотуберкулезного препарата ПАСК ( -амино- [c.217]

    Возможность гидратации этилена с помощью концентрированной серной кислоты в две стадии — образование этил- или диэтилсульфатов и их гидролиз с образованием этилового спирта и выделением разбавленной серной кислоты была установлена учеными еще в начале прошлото века. А. М. Бутлеров предсказывал большое будущее синтетическому этиловому спирту. Начиная с 30-х годов, параллельно с развитием промышленного производства синтетического этилового спирта сернокислотной гидратацией этилена, проводились интенсивные исследования для разработки способа прямой гидратации этилена в спирт в одну стадию. Необходимость в развитии этого направления была вызвана тем, что производство этилового спирта сернокислотной гидратацией связано с большим расходом серной кислоты, сильной коррозией аппаратуры, плохими санитарными условиями труда и т. д. [c.101]

    Глицерин в большом количестве получается как побочный продукт в производстве мыла. Однако во время первой мировой войны этого количества не хватало, так как глицерин нужен был для производства нитроглицерина, и дополнительное количество глицерина производили брожением. В 1938 г. фирма Shell hemi al начала производство синтетического глицерина из нефтяного сырья. При высокотемпературном хлорировании пропилена происходит замещение водорода на хлор в активированной метильной группе и образуется аллилхло-рид, который гидролизуется в аллиловый спирт. К аллиловому спирту присоединяют хлорноватистую кислоту и циклизацией под влиянием оснований получают глицидол (2,3-эпоксипропанол-1) последний гидролизуется с образованием глицерина  [c.333]

    В промышленности простейшие спирты получают гидратацией алкенов. Алкен и водяной пар пропускают над подходящим катализатором, таким, как фосфорная кислота, абсорбированная на инертном материале. Этанол и алкогольные апитки производят ферментацией сахара, полученного из фруктов или зерна. Например, при производстве пива в воду добавляют частично проросший ячмень (солод), и фермент диастаза гидролизует крахмал до дисахарида мальтозы. Затем добавляют дрожжи, и мальтоза гидролизуется до глюкозы (разд. 11.4). Глюкоза превращается в пировиноградную кислоту (гл. 15), которая декар-боксилируется и далее восстанавливается с образованием этанола. [c.142]

    Производство перегнанного спирта моложе, чем неперегнанных спиртных налитков, но и его корни теряются в веках. Для получения напитка, содержащего 40% (по объему) спирта, нужна перегонка. Ее и сегодня осуществляют в перегонных аппаратах, представляющих собой модификации устройства, предложенного в 1830 г. Коффи и носящего его имя. Различия в сортах спиртовых продуктов зависят в основном от природы сырья, а также от того, подвергался ли конечный продукт выдержке. В спирто БОМ Производстве используются пригодные для этой цели штаммы Sa haromy es. Крупные спиртовые заводы всегда ведут свою собственную культуру дрожжей в специальных средах. Выбор штамма дрожжей при производстве спирта определяется их продуктивностью в особых условиях бродящего сусла. Брожение должно идти активно с образованием спирта в количестве, близком к теоретическому пределу. Хотя в качестве сырья можно использовать разнообразные продукты, некоторые сорта спирта обычно производят из вполне определенных его типов. Так, к нъяк, получаемый при перегонке вина, делают из винограда, а шотландский виски — из ячменного солода. Другие напитки — американский виски, джин и водку, которые обычно делают из зерна (например, кукурузы), можно производить и на основе другого подходящего сырья. Ром обычно получают из мелассы сахарного тростника или свеклы. Когда сырьем служит зерно (например, пшеницы или кукурузы), до сбраживания необходимо гидролизовать крахмал до сахаров. Так, виски — это продукт перегонки пива без хмеля. Первые стадии процесса производства виски такие же, что и при приготовлении сусла в пивоварении. Однако если применяют кукурузу или другие зерновые, то до приготовления сусла непосредственно в бродильных чанах проводят обработку крахмала в зерне ферментами солода. [c.112]

    К. — циклический амид е-аминокапроновой к-ты и может быть получен при нагревании последней выше темп-ры плавления (210—220°). Водные растворы к-т и щелочей вызывают обратный процесс — гидролиз К. до е-аминокапроновой к-ты. При нагревании (250— 260°) в присутствии небольших количеств воды, спирта, аминов, органич. к-т и нек-рых др. соединений К. полимеризуется с образованием полиамидной смолы, из к-рой получают волокно капрон . К. является продуктом многотоннажиого производства. Промышленные способы получения К. основаны на использовании в качестве исходного сырья гл. обр. бензола. Все эти способы включают стадию получения полупродукта — циклогексаноноксима, к-рый превращают в К. обработкой серной к-той или олеумом (перегруппировка Бекмаиа). В наиболее распространенном [c.207]

    Для осахаривания крахмалистого сырья в спиртовом производстве применяются два вида аспергиллов Asp. niger и Asp. oryzae. Работами ЦНИИСПа установлено, что они образуют резко отличные одна от другой амилолитические системы ферментов, которые, однако, обеспечивают одинаковые выходы спирта. Сравнивая амилолитические ферменты, образуемые плесневыми грибами, с солодовой системой амилаз, необходимо отметить одну характерную особенность плесневых грибов — образование ими декстриназы и мальтазы — активных ферментов, дополняющих действие амилазы. Декстриназа гидролизует до сбраживаемых сахаров конечные декстрины, остающиеся после воздействия на крахмал а- и р-амилаз солода. Мальтаза гидролизует дисахарид мальтозу на две молекулы глюкозы, но имеются указания на то, что она может гидролизовать и более сложные углеводы — декстрины и даже крахмал. Поэтому для полной характеристики способности тех или иных микроорганизмов, тканей или органов растений и животных к гидролизу крахмала в ЦНИИСПе принято определять не только амилолитическую п осахаривающую способность, применяя в качестве субстрата крахмал, но и способность к гидролизу конечных декстринов и мальтозы. [c.140]

    Метилметакрилат обладает выраженным наркотическим и общетоксическим действием, поражает печень. В организме подвергается ферментативному гидролизу с образованием метилового спирта [10, с. 43]. Жидкий метилметакрилат и его пары оказывают раздражающее действие на кожу и слизистые оболочки верхних дыхательных путей и глаз. Пары метилметакрилата выделяются в воздух рабочих помещений при обработке изделий из полиметилметакрилата, а также при изготовлении изделий из пресс-порошка марки Л-1 у рабочих этого производства обнаружены воспалительные заболевания верхних дыхательных путей и глаз, снижение, артериального давления. ПДК паров метилметакрилата в воздухе рабочей зоны — 10 мг/м [13, доп. 3], населенных мест —0,1 мг/м [13, с. 54] допустимое количество мономера, которое может мигрировать из полимерного матеотала в модельные среды, 0,25 мг/л [1, с. 146]. [c.521]

    Технология производства синтетического каучука неизбежно связана с образованием определенного количества химически загрязненных сточных вод. Они образуются при технологических процессах, в основе которых лежат реакции дегидратации с образованием воды. К таким процессам на заводах синтетического каучука относятся получение одного из основных мономеров — дивинила — из этилового спирта и из ацетилена получение нитрила акриловой кислоты дегидратацией этиленциангидрина получение изопрена из изсбутилена и формальдегида получение силиконовых каучуков на основе гидролиза и последующей поликонденсации хлорсиланов получение метилвиниллгиридйна и т. д. Химически загрязненные сточные воды образуются также потому, что многие продукты, участвующие в синтезе каучуков, вводятся в производственные процессы при наличии в них определенного количества воды этиловый спирт, поступающий в процесс получения дивинила, содержит 18% воды при синтезе изопрена при.меняется формалин, представляющий собой 40%-ный водный раствор формальдегида при получении дивинила из ацетальдегида последний поступает на переработку в виде 18%-ного водного раствора и т. д. [c.12]

    Метилсиликат кипит при 122°, а этилсиликат — при 156°. Оии являются бесцветными жидкостями с приятным запахом. В присутствии воды они медленно гидролизуются с образованием спирта и кремневой кислоты, которая дегидратируется, превращаясь в SiOj. На этом свойстве основано применение этилсиликата в производстве устойчивых замазок, литейных сердцевин, а также для защиты штукатурки слоем кремнезема. [c.488]

    При производстве ванилина по другому методу в качестве исходного сырья используют древесные лигнины. Ванилин получают гидролизом лигнинов - отходов производства целлюлозы, гидролизного спирта и дрожжей из древесины. Лигнины находятся в растениях в связанном с целлюлозой, гемицеллюлозой и пентозанами виде. Они являются полимерами, содержащими тризамещённые бензольные ядра, часть которых при гидролитической деполимеризации превращается в олигомеры и димеры гваяцильного типа (например, 28,29), которые затем расщепляются с образованием ванилина. [c.185]


Смотреть страницы где упоминается термин Спирты, образование при гидролизе сер производство: [c.153]    [c.10]    [c.574]    [c.326]    [c.383]    [c.85]    [c.295]    [c.26]    [c.138]    [c.325]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.420 ]




ПОИСК





Смотрите так же термины и статьи:

Спирты гидролиз

Спирты образование



© 2025 chem21.info Реклама на сайте