Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Этилен серной кислотой

    За исключением этилена, реакция SO3, или дымящей серной кислоты, с олефинами идет весьма энергично с образованием продуктов окисления олефинов и SO2. С этиленом дымящая серная кислота дает ангидрид этионовой кислоты это является основной причиной того, что дымящая кислота или кислота, концентрация которой выше 98%, ие может применяться для конверсии этилена в этиловый спирт. Аигидрид этионовой кислоты можно легко получить пропусканием этилена в охлажденный раствор SO3 в жидкой двуокиси серы [3, 8]  [c.350]


    Характерная черта современной химической промышленности — многосвязность ее элементов(подотраслей) со сравнительно небольшим числом отдельных видов сырья, например, с нефтью, природным газом, каменной солью и т. д. н полупродуктами, например, с аммиаком, этиленом, серной кислотой и другими, а также с энергоносителями. При этом химическая промышленность является не только крупным потребителем энергии различных видов (электрической, тепловой), но и крупным производителем различных видов энергии, т. е. ХТС — своеобразный энерготехнологический комплекс (рис. 1.2). [c.8]

    В 1873 г. знаменитый русский химик Александр Михайлович Бутлеров, поглощая этилен серной кислотой, а затем действуя на образовавшийся полупродукт водой, впервые получил из этилена синтетический (изготовленный искусственным путем) этиловый спирт. [c.93]

    Т. е. ОНИ действуют как катализаторы. При действии на этилен серной кислоты образуется, однако, вполне определенный промежуточный продукт—этилсерная (серновинная) кислота. [c.44]

    Присоединение элементов воды к этиленовым углеводородам происходит в присутствии таких веществ, как серная кислота, хлористый цинк и др. Эти вещества, ускоряя во много раз реакцию гидратации, в конце процесса остаются в неизменном виде, т. е. они действуют как катализаторы. При действии на этилен серной кислоты образуется, однако, вполне определенный промежуточный продукт — эти л серн а я (серновинная) кислота. [c.64]

    В 1795 г. путем отщепления воды от этанола с помощью концентрированной серной кислоты был получен этилен [1], ставший первым соединением ряда олефинов. Благодаря способности образовывать с хлором жидкий продукт, он получил название масло голландских химиков [2], от которого впоследствии было образовано наименование всего ряда простых ненасыщенных алифатических углеводородов. [c.7]

    Пропилен, который является более реакционноснособным, чем этилен, п не так легко полимеризуется, как олефины с ббльшим числом углеродных атомов, более пригоден для каталитической гидратации. При 200— 210° скорость гидратации его в изопропиловый спирт достаточно высока, чтобы достигнуть около 90 % равновесия в течение часа при применении 7,7—12,1 %-ной фосфорной кислоты и давления до 503 ат. При 165° равновесие было достигнуто за время около 20 час. При давлении 184 ат и температуре 200—210° в присутствии 2,2%-пой серной кислоты были получены такие же результаты гидратации, как и с 12,1 %-ной фосфорной кислотой [33]. В одном из патентов описано применение фосфорной кислоты [c.355]


    Изопропиловый спирт. Одним из первых спиртов, полученных синтетически в иромышленном масштабе, является изопропиловый спирт (из пропилена). Серная кислота поглощает пропилен более активно, чем этилен, но следует принять меры по снижению выхода полимеров. Эту побочную реакцию можно замедлить поддержанием относительно низкой температуры реакционной смеси и работой с кислотой 85%-нон концентрации при давлении 21—28 атм. Практикуется также добавление к реакционной смеси нейтрального масла. Кроме того, полимеризацию можно замедлить, работая при высоком парциальном давлении пропилена, что благоприятствует образованию нейтрального эфира. [c.578]

    В промышленности осуществляют барботирование при —30 °С смеси этилена и НС1 (в избытке около 0,1 моль) через суспензию хлористого алюминия (0,5%) в хлористом этиле. Этилен предварительно сушат охлаждением до —30 °С, а НС1, — пропуская через концентрированную серную кислоту. Реакция протекает с очень большой скоростью образующийся хлористый этил непрерывно выводится из реактора. После осаждения увлеченного хлористого алюминия продукт промывают водой и щелочами и перегоняют под давлением. [c.279]

    В промышленности алкилирование бензола пропиленом в жидкой фазе обычно осуществляется в присутствии серной кислоты [24— 30]. Ниже описан процесс работы на установке фирмы Petroleum Ind. Maats happij. Используется пропилен, не содержащий этилен, что необходимо во избежание образования этилсерной кислоты. Бензол же с содержанием незначительного количества тиофена Еполтге пригоден. [c.264]

    Такие установки описаны. Например, фирма Джайро синтезирует этиловый спирт из этилена газов парофазного крекинга в присутствии У5 %-ной серной кислоты. Поело гидролиза и отгонки спирта отработанная кислота становится 80 %-ной. Ее концентрацию доводят до 95 % и с юва пускают в производство (потери кислоты достигают 15%). Во Франции и США превращают этилен коксового газа в этиловый спирт, употребляя 98 %-ную серную кислоту [36]. [c.21]

    Мы провели несколько экспериментов (табл. 2) в совершенно одинаковых условиях, которые позволили сделать уже отмеченный в литературе вывод, что в качестве катализаторов реакции между этиленом и серной кислотой целесообразно применять серебро, железо, ванадий и медь, а в промышленных масштабах — только железо и медь. Оба металла по каталитическому действию значительно уступают серебру, но экономически они намного выгоднее. Однако использование их не может решить проблемы, следовательно,, нужно стремиться к отысканию новых возможностей. Одной из них является повышение давления. [c.22]

    Серная кислота. Этилен не полимеризуется в присутствии серной кислоты, потому что образуются устойчивые этилгидросульфат и этил-сульфат. Однако этилен полимеризовался ири обработке его 2 %-ным раствором сульфата ртути и 5 %-ным раствором сульфата меди в 95 %-ной серной кислоте [11]. В присутствии этих солей ссрнан кислота поглощала этилена в 100 раз больше, чем в их отсутствии. При стоянии в течение некоторого времени раствор расслаивался на два слоя верхний — углеводородный и нижний — пастообразный. Если небольшое количество пасты сразу же смейать с чистой серной кислотой, то смесь приобретает максимальную способность к поглощению этилена. Эта активность катализатора постепенно уменьшалась и совершенно терялась через 24 часа. Углеводородный слой состоял из смеси предельных углеводородов, включая парафины и циклопарафины. Непредельные соединения, напоминающие углеводороды с открытой цепью и циклические терпены, также были выделены при разбавлении водой сернокислотного слоя [3]. [c.190]

    Метод синтеза этилового спирта, предложенный в 1932 г. В. Ф. Герром с сотрудниками, заключается в следующем. Пирогенный газ пропускают через активированный уголь с целью поглощения последним гомологов этилена очищенный газ содержит водород, метан, этан и этилен (до 22 % по объему). В таком составе газ (так называемая этиленовая фракция) при нормальном давлении и температуре около 100 °С поступает в железные скрубберы с насадкой из мелких кусков кварца, орошаемых — навстречу газовому потоку — концентрированной серной кислотой (плотность при 15 °С — 1,84) В указанных условиях максимальные выходы этилового спирта колебались по лабораторным данным в пределах 7—8 % на газ (30% потенциала этилена в газе) при расходе кислоты в 14—16 кг/кг абсолютного спирта, по данным работы полузаводской спиртовой установки — не выше 6,5 % на газ нри расходе кислоты до 18 кг/кг абсолютного спирта. [c.26]

    Пытаясь рационализировать процесс синтеза этилового алкоголя, применяя те же кислотные скрубберы, мы изучали условия протекания реакции между этиленом и серной кислотой, не прерывая процесс и основываясь на принципе работы батареи реакционных аппаратов [41. Ока алось, что, используя любые варианты работы скрубберов, но не изменяя их конструкции, нельзя достигнуть одновременного снижения расхода серной кислоты и увеличения коэффициента использования этилена в газе (табл. 1). Из данных табл. 1 видно, что с понижением расхода кислоты на единицу спирта выход последнего падает. Эта закономерность подтверждает абсолютную неприменимость скрубберов в качестве реакционных аппаратов в технологическом процессе синтеза. [c.26]


    Сильные кислоты обычно являются эффективными катализаторами при низких температурах. Так, 2-метилбутен-1 быстро изомеризуется 70%-ной серной кислотой при 15,5° в, 2-метилбутен-2 [31], а изопронил-этилен также легко изомеризуется в триметилэтилен, который затем быстро полимеризуется. Концентрированная хлористоводородная кпслота при 150° превращает 2.3-диметилбутен-1 на 75% в производное бутена-2 тетраметилэтилен [16] [c.105]

    Катализаторы. Как уже упоминалось выше, кислотные катализаторы можно подразделить на два класса соли галоидоводородных кислот тина Фриделя —Крафтса и кислоты, способные к переносу протона. Из последнего класса для промышленных процессов алкилирования предложены два катализатора — серная кислота и фтористый водород как наиболее подходящие, так как они являются жидкостями и обращение с ними проще. Однако алкилирование этиленом в их присутствии проходит нелегко, вероятно, вследствие устойчивости образующихся нри этом сложных этиловых эфиров. Этилирование изобутана проходит с исключительно высоким выходом в присутствии хлористого алюминия и некоторых других катализаторов типа катализаторов Фриделя—Крафтса. Разработан промышленный процесс производства 2,3-ди1 етплбутана по [c.309]

    Тот факт, что меркаптаны легко реагируют с олефинами, иногда нри комнатной температуре, в растворе ледяной уксусной кислоты в присутствии следов серной кислоты, или при нагревании до 100—200°, был отмечен впервые еще в 1905 г. [32]. Реакция сероводорода с олефинами в присутствии фуллеровой земли в качестве катализатора впервые была показана в 1930 г. [30] на примере олефинов из крекинг-бензина. С тех нор появилось большое число патентов, описывающих образование меркаптанов в результате присоединения сероводорода к олефинам при особых условиях. Пропилен дает хорошие выходы пропилмеркантарха нри 200° в присутствии НИКОЛЯ на кизельгуре или активированного угля, пропитанного фосфорной кислотой аналогичным образом этилен дает хорошие выходы этилмеркаптана при 250° [12]. При значительно более высоких температурах (650—725°) получившиеся сначала меркаптаны разлагаются с образованием тиофена и других продуктов [25]. Бутадиен и сероводород иад окисью алюминия при 600° дают от 56 до 63% тиофена [17]. [c.344]

    Этилен реагирует с концентрированной серной кислотой при обычных температурах очень медленно, но при 80—85° реакция сильно ускоряется, особенно с кислотой, содержлщэй98 Уа Н ЗО . Реакция идет почти количественно с образованием моно- и диэтилсульфатов [41]. Скорость поглощения этилена увеличивается при давлениях 17,6—35,2 кг/см [9, 13а, 49], это указывает на то, что кислота реагирует главным образом с растворенным этиленом, а пе на поверхности за счет контакта кислоты с газом. В более ранней работе было показано, что при постоянном давлении (низком) скорость абсорбции меняется незначительно, если применяется перемешивание или встряхивание кислоты [15]. При средних давлениях с использованием 98 /д-ной кислоты увеличивается образование диэтил-сульфата. Если применяется 98 /о-ная кислота при 80—85°, пропилен должен быть удален полностью, так как он при этих условиях быстро обугливается. [c.353]

    Сендерс и Додж [46] рассмотрели термодинамические данные по гидратации этилена и пришли к следующему заключению Ясно, что в настоящее время (1934 г.) невозможно получить константу равновесия, отклоняющуюся от теоретической менее чем в сто раз . Они изучали гидратацию этилена в паровой фазе при 360—380° и давлениях от 35 до 135 ат над окисью алюминия и окисью вольфрама в качестве катализаторов. На основании своих результатов и результатов других исследователей они пришли к выводу, что еще не найден активный катализатор для реакции гидратации. Выдано большое количество патентов по гидратации этилена в присутствии кислых солей и фосфорной кислоты на носителях [39] в паровой фазе при высоких температурах и давлениях. Один из таких процессов, в котором в качестве катализатора используется фосфорная кислота, применяется в промышленности. Этилен может реагировать с разбавленной 10 %-ной серной кислотой при температурах 240—260° и давлениях около 141 кг/см , при этих условиях образуется равновесная смесь этилена, этанола и этилового эфира. Спирт или эфир мон<ет быть возвращен в процесс для получения другого продукта, но технические трудности процесса помешали его промышленному использованию [29]. [c.355]

    Реакция с этиленом при 60—70° идет медленно и не доходит до конца давая в основном диацетат 1,3-пропандиола. При 130—140° и под давлением 50 ат в смеси уксусной и серной кислот этилен дает диацетат 1,3-пропандиола и триацетат СНд = С(СН20Н)з [31]. При реакции с пропиленом третьим продуктом было так называемое тетрагидропирановое производное, [c.383]

    Легкость, с которо 1 олофины принимают участие в этом ряде реакций, меняется в следующем порядке этилен < пропилен < изобутилен. Например, чтобы превратить эти олефины в соответствующие сложные эфиры серной кислоты, требуется концентрация серной кислоты 67% для изобутилена, 80% для пропилена и 98% для этилена. Аналогично для алкилирования бензола этими олефинами требуется кислота возрастающей концентрации в следующем порядке изобутилен < пропилен < этилеп [170]. Например, этилен требует серной кислоты столь высокой концентрации, что применение ее для этилирования становится уже невыгодным. [c.436]

    Как известно, в промышленных установках только реакция алкилирования изобутана этиленом (термическое алкилирование) с целью получения неогексапа осуществляется при температурах около 500° С под давлением до 300 ат. Алкилирование изобутана пропиленом и изобутеном ведется при температуре, близкой к комнатной, под небольшим давлением в жидкой фазе, в присутствии серной кислоты в качестве катализатора. [c.328]

    При помощи нагрева и давления этилен можно превращать в полимерные жидкости. Под давлением 70—135 атм и при температурах между 325 и 385° С получены жидкие продукты, в которых около 50% кипит ниже 200°С [354, 355]. Конечные продукты содержат заметное количество нафтеновых углеводородов. Термическая полимеризация ускоряется следами кислорода [356 и видоизменяется меркаптанами [357]. При помощи концентрированной серной кислоты этилен не нолимеризуется вместо этого образуются устойчивые сложные эфиры. С 90%-ной фосфорной кислотой сложные эфиры образуются ниже 250° С, но свыше температуры 250—350° С и под давлением 53—70 кГ сл1 образуются полимеры, кипящие в пределах бензин — осветительный керосин. Это полимеры комбинированного типа, содержащие олефины, парафины, нафтены и ароматику с изобутеном в отходящем газе [358, 322]. При помощи чистого хлористого алюминия этилен не иолимеризуется даже под давлением, но если катализатор активирован влагой или хлористым водородом, то в зависимости от времени, количества катализатора и т. д., получаются жидкие продукты, находящиеся в пределах от бензина до масляных фракций [360]. Они онять-таки являются полимерами комбинированного тина. Бензиновая фракция, выкипающая до-200° С, является большей частью предельной и имеет октановое число около 77 это наводит на мысль о присутствии разветвленных структур. Высококипящие порции дистиллята содержат [c.109]

    При помощи реакций катализированного алкилирования этилен дает изопарафипы более медленно, чем высшие олефины, однако он реагирует в существенных размерах, если в качестве катализаторов применяются трифтористый бор или хлористый алюминий [538—540]. Пропилен вступает в реакцию алкилирования даже в присутствии серной кислоты, если ее концентрацию поднять примерно до 100%. Олефины выше бутенов достаточно активны, но не всегда удовлетворяют в отношении конечных [c.127]

    Этиловый спирт. Этилен легко поглощается 98—100%-ной серной кислотой при температуре 75—80° С. Более высокие температуры вызывают нежелательные окислительно-восстановительные реакции, а высокая концентрация кислоты вызывает потерю этилена, связанную с превращением его в этионовую кислоту и карбил-сульфат [239, 240]. Образование полимеров в данном случае значения не имеет. Образуются как моно-, так и диэтил сульфаты после разбавления водой и нагревания происходит энергичный гидролиз. Вторичная реакция между нейтральным эфиром и спиртом ведет к образованию этилового эфира [c.577]

    Ароматические углеводороды легче алкилируются олефинами, чем изопарафины. Наиболее благоприятными термодинамическими условиями термической реакции между бензолом и этиленом являются атмосферное давление и температуры до 540° [566], в то время как для изопарафинов — около 300° С. Признаки термического алкилирования бензола с этаном, пропаном и бутанами, проходящего, вероятно, по механизму свободных радикалов, получены при 475—550° С иод давлением 323 — 337 кПсм , наряду с другими продуктами (бифенилом, флуоре-пом, антраценом, дифенилбензолом и т. п.) образуются толуол, этилбензол, Сз и С4-алкилбензолы и ксилолы [567]. Алкилирование бензола проходит полностью в присутствии кислотного катализатора. Кремний-алюминиевые комплексы применяются под давлением нри 240—260° С для алкилирования бензола с этиленом и при 190—240° С с пропиленом в результате реакций образуются этил-и изопронилбензолы [568]. С крепкими кислотами реакция проходит еще легче. Цимол получают алкилированием бензола с пропиленом над катализатором (фосфорная кислота на кизельгуре) [569, 570] или серной кислотой [571, 572]. Фтористоводородная кислота также является эффективным катализатором [573, 574] может применяться и алкан-серная кислота [575], хотя и с металлическим натрием [576] в качестве промотора. [c.133]

    Некоторые наиболее важные процессы алкилирования ароматики практикуются в промышленности реакция бензола с этиленом с образованием этилбензола, который затем дегидрируется в стирол алкилирование моноядерной ароматики с пропиленом, что дает соответствующие изопропил-производные, которые в свою очередь превращаются в фенол, крезол и т. д. через промежуточные гидроперекиси (т. е. фенол и ацетон от гидроперекиси цимола) алкилирование бензола и нафталина с алкил-хлоридами с длинными цепочками для производства соответствующей алкилароматики, которая сульфируется в ядре серной кислотой (натриевой солью) для применения в очистке и, наконец, алкилирование фенолов с олефинами или алкильными галогенидами с целью получения алкилированных фенолов, использующихся как присадки (или как промежуточные продукты в производстве присадок) к топливам и маслам. Первый и третий процессы проходят в присутствии хлористого алюминия, который наряду с другими галогенидами металлов является наиболее важным [c.133]

    Агентом алкилирования обычно является олефин [579], хотя могут применяться и циклопропан [580—582], алкилгалогениды [573, 583, 555], алифатические спирты [585—589] и эфиры, простые [590] и сложные [591, 592]. Алкилированне с изобутиленом осуществляется при помощи примерно 80—85%-ной серной кислоты, а с пропиленом — около 94—96%-пой кислоты, но при алкилировании с этиленом требуется кислота 98—100%-ной крепости. В последнем случае, однако, имеет место сульфирование. [c.134]

    Вторичные олефины требуют более крепкой кислоты пропилен реагирует с серной кислотой крепостью 60—70% при повышенных температуре и давлении. Образованию средних (нейтральных) эфиров за счет моноэфиров благоприятствует повышенная концентрация кислоты. При производстве спиртов сернокислотным методом пропилен и н-бутилены поглощают 85—90%-ной серной кислотой, а вторичные амилены — 80—85%-ной кислотой в этих условиях не происходит интенсивной полимеризации. Этилен взаимодействует с серной кислотой крепостью 94—98% по литературным данным, полимерообразоваппе при этом пе происходит. [c.225]

    Этпленхлоргидрин получается прибавлением хлорноватистой кислоты к этилену. В качестве побочных продуктов при этом получаются дихлорэтан и дихлорэтиловый эфир. Последний, используемый в качестве растворителя для селективной очистки масел, можно производить в больших количествах, обрабатывая этилен-хлоргидрин серной кислотой. [c.580]

    В 1914—1918 гг. в Англии этилен выделяли серной кислотой из газов коксования, содержащих его около 2/о. В 1938—1944 гг. в Германии его выделяли из газов дегидрирования этана, применяя а.ммиачные растворы азотнокислой закисной меди и моноэтаноламина. [c.67]

    Серная кислота. Этот вопрос более полно будет рассмотрен в главе об очистке. Приведем здесь только общие замечания. Серная кислота с этиленовыми углеводородами дает реакции трех родов 1) Образование серных эфиров. Такая реакция вызывается некоторыми катализаторами, например солями серебра и ртути, окисью ванадия и т. д. эти серные эфиры при гидролизе дают спирты. Этилен дает этиловый спирт. С высшими углеводородами можно получить при действии HaSOi также вторичные и третичные спирты. 2) Концентрированная серная кислота вызывает реакции полимеризации этиленовых углеводородов, причем склонность к полимеризации возрастает вместе с молекулярным весом. 3) Наконец при употреблении во время очистки нeпpeдed ьныx фракций нефти весьма крепкой серно й кислоты происходит выделение SOj, что указывает на окисление нефти и восстановление серной кислоты. [c.31]

    Ведутся исследования, имеющие целью увеличить скорость абсорбции этилена серной кислотой на холоду. Для этой цели предлагаются р а 3 н о о б р а 3 н ы е к а т а л и 3 а т о р ы. Сначала были испытаны ОКИСИ ванадия, вольфрама и молибдена, а также сульфат урана, но если этилен и адсорбируется быстрее в их присутствии, то не пояуч ается большого выхода соответственного сульфата. [c.415]

    Проблема получения спиртов из олефинов через алкилсерпые кислоты так же сложна, как и проблема непосредственной гидратации олефинов, особенно с технической стороны. Первая попытка организовать производство этилового спирта из этилена коксового газа сделана еще в 1862 г. на основе работ Вертело [36 . ГГроцесс получения этилового спирта из этилена через этилсерную кислоту состоит из двух основных реакций между этиленом и серной кислотой меисду э тилсерной кислотой и водой. Каждая из них имеет свои сло кности, которые отражаются на экономике процесса в целом. [c.21]

    Еще Вертело пытался ускорить реакцию между этиленом и серной кислотой, применяя в качестве катализаторов соли ртути. Фритцше [38] считал, что этилсерная кислота сама по себе достаточно акти1 ный катализатор. Это было подтверждено в работе [39]. В дальнейшем были изучены многие катализаторы [40, 41], причем наиболее эффективными оказались соли серебра, железа, меди и окислов ванадия. Действие солей в болынинстве случаев не зависит от аниона, но поскольку мы имеем дело с серной кислотой, рекомендуе -ся употреблять сульфаты (несколько отличаются друг от друга по действию соли одно- и двухвалентной меди). Иногда специфичность действия приписывается аммиачным солям [42] и циановым комплексам металлов [43], но, по нашему мнению, главная роль во всяком молекулярном комплексе принадлежит металлу (например, железу в соли Мора и ферроциановых соединениях). Различие может заключаться лишь в неодинаковом физическом состоянии катализатора в серной кислоте и в последующем изменении состояния с превращением части молекул серной кислоты в молекулы этилсерной кислоты или с введением влаги в серную кислоту. Сравнение действия различных катализаторов может привести к одним и тем же выводам кривые относительной интенсивности действия в ряду каталитических добавок приблизительно одного порядка. Абсолютные значения каталитического действия здесь не важны, поскольку они зависят от условий эксперимента. [c.22]

    Нами проведены специальные исследования с целью отыскания путей интенсификации контакта между этиленом и НдЗО . Н( рвый из проверенных методов [10] основан иа следующих соображениях. ]1оскольку реакция изучается при нормальном давлении, т. е. имеется в наличии газовая фаза (в связи с неизменностью физического состояния этилена), идеальными представляются условия, при которых удалось бы превратить серную кислоту в парообразное состояние и в таком виде интенсивно смешивать ее с этиленом. В данном случае мы достигли бы гомогенности среды. [c.28]

    Однако на первый взгляд эта идея практически неосуществима. В самом деле, Н2304 при обычных условиях кинит с разложением при 335, а этилсер-пая кислота разлагается (вне условий катализа) при 160—170 °С [11]. Следовательно, при атмосферном давлении реакция между этиленом и серной кислотой в паровой фазе невозможна. Для понижения температуры кипения,, а следовательно, и температуры паров Н28 04 можно было бы использовать вакуум но даже в вакууме вряд ли удалось бы найти условия существования моноэтилового эфира серной кислоты, так как в результате применения железа в качестве материала для реакционной аппаратуры можно ожидать понижения температуры разложения этилсерной кислоты, как и в присутствии Си, Ag, N1, когда распад этилсерной кислоты начинается уже при 100 °С. [c.28]

    Из данных табл. 2 и 3 видно, что реакцию между этиленом и Н28 04 необходимо вести при температурах не выше 75—100 °С и то лишь при условии незначительной растворимости материала аппаратурм в серной кислоте. [c.28]

    Детальный анализ работы в новых условиях показал, что незначительное увеличение скорости реакции обусловливается недостаточной сте1[енью перемешивания, быстрой конденсацией кислотной пыли на стенках реакционной камеры (в результате кругового завихрения этилен-кислотной смеси тялгелые капли серной кислоты под влиянием центробежной силы вылетали из смеси к стенкам цилиндра и на них осаждались) и неудачными соотношениями объема и линейных размеров аппарата. Для сохраиения одинаковой интенсивности распределения кислотной пыли и ее смеси с газом на всем про- [c.30]

    Удалось добиться малых расходов кислоты в реакции между этиленом и серной кислотой в л ределах 2,2—2,5 кг Н2304 на 1 кг абсолютного спирта [c.35]

    Все детали установки, в которых проходят фракциопировка газа и реакция между этиленом и серной кислотой, сделаны из железа. Детали, связанные с процессом гидролиза, выполнены из меди. [c.36]

    К вопросу о получении спирта пя этилена нефтяных газов О методике ведения реакции между этиленом и серной кислотой / М. А. Далнн, В. С. Гутыря // Азерб. нефт. хоз-во.— № 2.— С. 90—93. [c.364]


Смотреть страницы где упоминается термин Этилен серной кислотой: [c.46]    [c.200]    [c.312]    [c.23]    [c.28]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.362 , c.370 , c.375 ]

Сульфирование органических соединений (1969) -- [ c.296 , c.297 , c.299 ]




ПОИСК





Смотрите так же термины и статьи:

Этилен кислоты



© 2024 chem21.info Реклама на сайте