Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

фиг гидратации адсорбированного вещества III

    Защитным действием по отношению к коллоидным растворам в воде обладают белки, полисахариды, пектиновые вещества. Механизм защитного действия сводится к адсорбции молекул высокомолекулярного вещества на поверхности частиц золя. Адсорбируясь на частицах гидрозолей, макромолекулы белков и других растворимых в воде полимеров располагаются на поверхности твердой фазы так, что их гидрофильные (полярные) группы обращены к воде. Благодаря этому усиливается гидратация частиц.(Если в состав полимера входят ионогенные группы, способные к диссоциации,. как, например, в белках, то защитный слой сообщает. частице и достаточно высокий электрокинетический потенциал. Гидратная оболочка и высокий электрокинетический потенциал придают золю необычную для него агрегативную устойчивость. Цля разрушения такого золя необходимо прибавить к нему такое же большое ко- [c.264]


    Грехем [35] считал, что при специфической адсорбции образуются ковалентные связи между адсорбирующими анионами и ртутным электродом. Однако Бокрис с сотр. [24] показал, что при этом специфическая адсорбция в ряду — СГ — Вг — 1 должна не увеличиваться (что наблюдается на опыте), а уменьшаться. Поэтому указанные авторы приписали решающее значение гидратации адсорбирующего вещества. Специфическая адсорбция тем больше, чем меньше гидратация. Это предположение позволило объяснить увеличение специфической адсорбции в ряду С СГ < Вг < Г, а также специфическую адсорбцию ионов цезия. Меньшие по размеру, но более сильно гидратированные ионы некоторых других щелочных металлов не проявляют склонности к такой адсорбции. [c.25]

    Адсорбция растворенных веществ является результатом перехода молекул растворенного вещества из объема раствора на поверхность твердого сорбента под действием силового поля поверхности. При этом конкурируют два вида межмолекулярного взаимодействия гидратация молекул растворенного вещества, т. е. взаимодействие их с молекулами воды в растворе, и взаимодействие молекул адсорбирующегося вещества с атомами поверхности твердого тела. Разность энергий этих двух процессов и есть та энергия, с которой извлеченное из раствора вещество удерживается на поверхности погруженного в раствор адсорбента. Чем больше энергия гидратации молекул растворенного вещества, тем большее противодействие испытывают эти молекулы при переходе на поверхность адсорбента и тем слабее вещество адсорбируется из водного раствора. [c.189]

    Как известно, при адсорбции конкурируют два вида межмолекулярных взаимодействий гидратация молекул растворенного вещества, т. е. взаимодействие их с молекулами воды в растворе, и взаимодействие молекул адсорбирующегося вещества с атомами поверхности твердого тела. [c.348]

    Примером веществ, отрицательно адсорбирующихся на поверхности воды, являются неорганические соли. Ионы стремятся уйти с поверхности, где их сильное электрическое поле не насыщено, в раствор, где может быть выиграна энергия гидратации. [c.411]

    Основой теории строения силикатов является представление о кислотных радикалах, тетраэдрических агрегатах типа (5104) и (А104) . Основные элементы структуры сочетаются с образованием структурных скелетов, с которыми соединены положительные ионы натрия, калия, магния, кальция и др. Восемь тетраэдров образуют куб, 12 тетраэдров — гексагональную призму, а 24 тетраэдра — кубооктаэдр. Внедрение этих крупных структурных групп в кристаллическую решетку приводит к образованию структур с очень большим объемом пор молекулярных размеров даже при введении дополнительных ионов металлов остается много места для поглощения значительного количества молекул. От химического состава цеолита и зависит объем внутренних пор, например, 1 г шабазита имеет 3-10 полостей. Наибольшая длина поперечного сечения полости составляет 1,14 нм, а диаметр окна — около 0,5 нм. Каждая внутренняя полость обезвоженного шабазита может поглотить 24 молекулы воды. Молекулы поглощаемого вещества и ионы, способные к обмену, находятся внутри пор цеолитов. Структура цеолитов обеспечивает протекание обратимых процессов гидратации, дегидратации и ионного обмена. Удаление воды повышает активность цеолита, но изменяет его кристаллическую решетку. Потерянную воду цеолит адсорбирует вместо воды цеолит может поглотить другие, подходящие по размерам молекулы. Изменение основных характеристик цеолитов достигается изменением структуры скелета и ионов металлов. Например, эффективный диаметр пор в ситах типа 5А на 0,1 нм больше, чем в цеолитах 4А. При замене натрия на калий размеры пор уменьшаются. И в других цеолитах размер пор можно менять с помощью ионного обмена. Так, в цеолите 13Х заменой натрия на кальций можно получить поры диаметром 0,9 нм вместо 1 нм. [c.258]


    Присутствие в маслах природных примесей ухудшает качество лакокрасочных материалов (напр,, антиоксиданты замедляют высыхание, фосфатиды — алкоголиз). Для очистки (рафинации) М. р. и жиров, используемых в производстве этих материалов, применяется обычно комбинация трех методов 1) обработка паром или горячей водой (т. наз. гидратация), в результате к-рой фосфатиды, белковые и слизистые вещества, поглощая воду, набухают, теряют способность растворяться в масле и выпадают в виде хлопьев, удаляемых фильтрацией 2) обработка водными р-рами щелочей (щелочная рафинация) образующиеся при этом мыла обладают большой адсорбционной способностью и, оседая, увлекают фосфатиды, красящие вещества и др. примеси 3) адсорбционная отбелка природными и искусственными отбельными порошками (преимущественно активированными глинами), адсорбирующими нежировые компоненты и слизистые вещества и одновременно обесцвечивающими М. р. Очищенные таким образом М. р. наз. лаковыми маслами. Улучшение пленкообразующих свойств М. р. и жиров м. б. достигнуто путем отделения плохо высыхающих глицеридов насыщенных и мононенасыщенных к-т. Основные методы отделения — кристаллизация (вымораживание), экстракция растворителями, высоковакуумная дистилляция. [c.69]

    Ионизация молекул слабых электролитов, как было показано в гл. 1, значительно усиливает их гидратацию. В результате ионизации молекул возрастает абсолютное значение уменьшения молярной стандартной энергии гидратации — ДС и разность величин — (ДОа — ДС ) = — Д0°, т. е. абсолютное значение уменьшения стандартной энергии Гиббса избирательной адсорбции из водного раствора при ионизации молекул меньше, чем при адсорбции неионизированных молекул того же вещества. Поэтому при степени ионизации а< 1 нз водных растворов, содержащих смесь ионизированных и неионизированных молекул, избирательно адсорбируются лишь последние. Отсюда можно заключить, что при адсорбции слабых электролитов из растворов коэффициент активности растворенного вещества f, равен /,= 1—а (при а, ммоль/г 5г- [c.81]

    При адсорбции неионогенных ПАВ (НПАВ) адсорбционный с 10Й формируется как за счет длинных углеводородных радикалов, так и за счет полиоксиэтиленовых цепей соизмеримой длины, являющихся гидрофильной частью дифильных молекул. В отличие от мономерной окиси этилена длинные полиоксиэтиленовые цепи способны избирательно адсорбироваться из водных растворов на углеродных поверхностях. Так, при адсорбции полиэтилен-гликоля (мол. масса 1000) на ацетиленовом техническом углероде предельная адсорбция составляла 55 10 моль/кг. Поэтому при адсорбции дифильных молекул НПАВ конкуренция между алкильными и полиоксиэтиленовыми цепями влияет на характер ориентации на поверхности раздела фаз. Известно, что изменение дифференциальной молярной энергии Гиббса адсорбции —АО представляет собой разность значений уменьщения энергии Гиббса взаимодействия молекул растворенного вещества с поверхностью адсорбента при вытеснении молекул растворителя —ЛСа—Л(7н,о и изменения молярной энергии Гиббса гидратации молекулы [c.119]

    Согласно теории академика П. А. Ребиндера, самопроизвольное диспергирование (пептизация) достаточно гидрофильных частиц в общем случае вызывается адсорбцией воды и растворенных в ней адсорбирующихся добавок органических поверхностноактивных веществ и электролитов. В случае вяжущих веществ к адсорбционному диспергированию добавляется химическое диспергирование под влиянием растягивающих напряжений в результате химического процесса гидратации, вызывающего разбухание поверхностных слоев кристаллической решетки в микротрещинах. [c.286]

    Скорость гидратации этилена растет с повышением концентрации реагирующих веществ, но при определенном давлении водяного пара фосфорная кислота усиленно адсорбирует его, концентрация кислоты уменьшается и скорость целевой реакции падает. [c.235]

    Частицы суспензий могут адсорбировать па своей поверхности находящиеся в растворе ионы электролитов, молекулы веществ и коллоидные частицы. Это приводит к образованию защитных слоев, сообщающих агрегативную устойчивость системе. Адсорбция ионов частицами суспензий сопровождается образованием двойного электрического слоя с определенной величиной С-потен-циала. В случае адсорбции молекул, способных к гидратации, агрегативная устойчивость суспензии обусловливается созданием вокруг частиц гидратных оболочек, препятствующих агрегации. [c.240]

    Сущность прямого окисления заключается в том, что молекула органического вещества, адсорбируясь на поверхности анода, отдает электроны с одновременной или предшествующей гидратацией  [c.51]


    Следует обратить внимание, что во всех приведенных выше примерах адсорбировались вещества, растворимость которых в воде довольно мала это указывает на относитепьно слабое взаимодействие их молекул с молекулами воды как в растворе, так и в адсорбционной фазе. Если же изотермы адсорбции из водных растворов ряда спиртов (рис. 16) представить в координатах уравнения (Ш.12), то окажется, что экспериментальные данные в этом случае хорошо укладываются на прямые, отсекающие на оси ординат один и тот же отрезок lg но сам отрезок существенно меньше, чем при адсорбции из водных растворов производных бензола на этом же угле. Гидратация гидроксильных групп спиртов приводит к тому, что связь между молекулами спирта и воды не разрушается под влиянием сил адсорбции и при максимальном заполнении адсорбционного пространства адсорбционная фаза [c.67]

    В основе эмульгирующего действия лежат, как указывалось, механические свойства защитных оболочек нефтяных глобул — их прочность и способность быстро восстанавливаться при местных повреждениях, гидратация и диффузность в дисперсионной среде. Важную, но менее значительную роль играет поверхностная активность эмульгаторов. В некоторых случаях весьма активные ПАВ являются даже деэмульгаторами (этиловый и амиловый спирты, НЧК), так как, избирательно адсорбируясь, они вытесняют вещества менее активные, но с механически более прочными защитными слоями. Важной функцией ПАВ является их диспергирующее действие. Мыла, дающие прочные структурированные и сольватированные оболочки и обладающие высокой поверхностной активностью, являются оптимальными эмульгаторами, если отсутствует хлоркаль-циевая агрессия. [c.368]

    ПАВ — это общепринятое сокращение термина поверхностно-активное вещество . Свое название такие вещества получили в связи с их способностью адсорбироваться на поверхности твердых тел и на границе раздела фаз, в результате чего происходит снижение свободной поверхностной энергии. ПАВ используются в буровых растворах в качестве эмульгаторов, смачивающих агентов, пенообразователей, пёногасителей, а также для снижения гидратации поверхности глинистых частиц. [c.276]

    Молекулы воды и способные к обмену ионы находятся внутри полостей, а не в узлах кристаллической решетки, и могут проходить через отверстия. Такая структура обеспечивает протекание обратимых процессов гидратации, дегидратации и ионного обмена. Вследствие жесткого алюмосиликатиого скелета цеолита его активация, связанная с удалением кристаллизационной воды, не влечет за собой разрушения кристаллической решетки. Теряя воду, цеолит способен вновь адсорбировать ее или вместо нее молекулы других веществ. Жесткий алюмосиликатный скелет обусловливает к тому же ненабухаемость цеолитов в различных жидкостных средах, что является преимуществом перед другими ионообменными веществами. [c.109]

    Если ограниченно растворимое в воде вещество обладает в растворе свойствами слабого электролита (частично ионизировано), то на его адсорбцию существенно влияет различие в энергии взаимодействия с водой неионизированных и ионизированных молекул. Электрическое ноле органического иона является причиной ориентации диполей воды и, следовательно, усиления энергии гидратации в расчете на 1 з-ион вещества. Поскольку гидратация молекул усиливает их связь с растворителем, адсорбция более сильно гидратированных ионов сопрял ена с выполнен11ем добавочной работы, и — адсорбции ионов, как было показано выше, меньше, чем — А/ адсорбции неионизированных молекул. Таким образом, частичная ионизация слабых электролитов в растворах приводит к неодинаковым условиям адсорбции ионизированных и неионизированных молекул, причем из-за более слабой гидратации должны адсорбироваться преимущественно [c.133]

    В области адсорбции смесей органических веществ из водных растворов представляют интерес работы Н. Ф. Ермоленко с сотрудниками [267—282]. Изучение адсорбции смесей ароматических кислот из водных растворов показало, что все исследованные кислоты не только адсорбируются избирательно из смесей с салициловой и сульфосалициловой кислотами, но их адсорбция в присутствии этих кислот заметно усиливается по сравнению с адсорбцией пз индивидуальных водных растворов [267—275]. Полученные результаты, противоречащие правилу Фрейндлиха, объясняются здесь высаливающим действием салициловой и сульфосалициловой кислот вследствие высокой гидратации их ионов. Следует отметить, что И. Ф. Ермоленко и М. И. Яцевская не учитывают степени ионизации кислот [280]. Между тем константы [c.171]

    Лайонс указывает, что большое значение имеет структура комплекса. Обычно осаждение происходит легко в том случае, когда комплекс неустойчив или имеет внешнеорбитальную конфигурацию если же комплекс отличается инертностью, что обусловлено, как правило, наличием внутреннеорбитальной конфигурации (см. стр. 249), электроосаждение либо совсем не имеет места, либо дает подгоревший осадок. Различие заключается в скорости обмена координированных групп (лигандов) между раствором и ионами металла или в скорости гидратации (вытеснения координированных лигандов молекулами воды). Лайонс предполагает, что процесс электроосаждения включает стадию отщепления одного или более лигандов от частиц, находящихся в растворе, которые могут быть либо гидратированными ионами, либо частицами комплекса. Освобожденная таким образом электронная орбита заполняется электронами с орбит атомов металла или другого вещества катода. Остаточные координированные группы затем либо становятся свободными, либо адсорбируются на металле. Например, гидратированный ион цинка образует активную промежуточную [c.345]

    Против теории Ле-Шателье возражали Михаэ-лис и Амбронн а также Родт Они утверждали, что, согласно их наблюдениям, при твердении существенное значение должны иметь коллоидно-химические процессы. По мнению Михаэлиса, гидросиликаты, образовавщиеся при реакциях гидратации, не кристаллизуются, и их состав не определяется точным стехиометрическим со-отнощением образуются смещанные гели, которые содержат гидраты кремнезема, глинозема и окиси железа, адсорбирующие гидрат окиси кальция. Михаэлис полагал, что процесс твердения представляет собой взаимодействие коллоидных смешанных гелей с растворами кристаллических веществ. Когда цемент смешивается с водой, сначала образуется пересыщенный раствор гидрата окиси кальция, из которого кристаллизуются игольчатые кристаллы (Амбронн) но образование этих игольчатых кристаллов для твердения не имеет существенного значения. После определенного времени коллоидный раствор коагулирует и образуется типичный гидрогель, который сцепляет зерна цемента друг с другом в этом связующем веществе адсорбированы гидросиликаты, гидроалюминаты и гидроферриты кальция (см. А. П1, 220). За счет адсорбции, все большее и большее количество извести постепенно входит в состав геля и, наконец, вся масса приобретает типичную структуру обезвоженного [c.802]

    К четвертому классу относятся поверхностно-активные органические вещества, которые за счет их функциональных групп гидроксильных, карбоксильных, амино-, нитро-, сульфогрупп и других адсорбируются на зернах вяжущих и продуктах их гидратации Это приводит обычно к пластификации теста, к замедлению процессов схватывания и твердения, воздухововлечению и ряду других воздействий. Известны, например, добавки четвертого класса такого состава, которые делают вяжущее вещество водоотталкивающим (гидрофобным). К числу более известных пластифицирующих поверхностно-активных добавок относится сульфитно-дрожже-вая бражка (СДБ), вводимая обычно в количестве 0,1—0,2%, к  [c.40]

    Взаимодействие окиси кальция с водой ускоряется при введении ряда добавок (СаСЬ, Na l, NaOH и др.), которые при взаимодействии с известью дают соединения, более растворимые, чем Са(0Н)2. Добавки, дающие менее растворимые соединения, замедляют гидратацию это некоторые соли серной, фосфорной, щавелевой и угольной кислот. Замедляют взаимодействие с водой поверхностно-активные вещества, например ССБ, адсорбирующаяся на кристаллических зародышах Са(ОН)г, что препятствует их росту, а следовательно, и растворению СаО. [c.86]

    Для аналитика основное значение имеют размерын коллоидных частиц и связанные с высокоразвитой внутренней поверхностью адсорбционные явления. Адсорбционные свойства коллоидных частиц используют в процессе соосаждения. В этом процессе коллоидная частица, например гидроксида, захватывает осаждаемый иоа или его гидроксид, которые в обычных условиях не-осаждаются, и переводит в осадок при коагуляции коллоида. Коллоидные частицы способны, в частности, адсорбировать из раствора окрашенные вещества, концентрируя их на своей поверхности. Адсорбция посторонних, веществ часто служит причиной коагуляции коллоидов,, т. е. слипания их частиц вследствие уменьшения заряда или гидратации. Этот процесс напоминает процесс образования обычного осадка, однако при образовании обычного осадка преобладает конденсация ионов или молекул при росте кристаллов и объединение при агрегации кристаллических фрагментов, различно ориентированных. Коллоиды при коагуляции образуют коагели, в-которых до некоторой степени сохраняется индивидуальность составляющих частиц и содержится значительное количество адсорбированных на них посторонних веществ. Обратный процесс превращения коагеля в коллоидный раствор — золь — называют нептизацией. [c.59]

    Расположение ионов в Л. р. определяется их гид-ратацие — способностью связывать воду, отни.мая ее от гидратированных молекул растворенного вещества или частиц дисперсной фазы. Изучение механизма влияния ионов неорганич. солей на свойства водных р-ров и дисперсных систем показало наличие тесной связи между энергией гидратации ионов и способностью их солей повышать поверхностное натяжение воды. Интенсивное взаимодействие ионов с водой означает, что энергия связи между ионом и молекулой воды больше энергии взаимного притяжения молекул воды (т. е. ион сильнее втягивает молекулы НзО с новерхности вглубь, чем это имеет место в чистой воде, что и повышает поверхностное натяжение). Энергия гидратации ионов возрастает при переходе от ионов низшей валентности (зарядности) к ионам высшей валентности, а при одинаковой валентности — с уменьшением радиуса ионов (см. Ио 1ный радиус). В Л. р. катионы расположены в порядке возрастающей величины их радиуса, что совпадает с расположением их в периодич. системе элементов Д. И, Менделеева (в данном случае существен закономерно нарастающий объем этих ионов). Апионы обычно слабее гидратируются, чем катионы, т. е. их стремление уйти в глубь раствора с его поверхности выражено слабее. В результате этого поверхностный слой водных р-ров солей обычно заряжен отрицательно. В Л. р. закономерно нарастает способность аниона отрицательно заряжать поверхность водного р-ра по отношению к воздуху. Л. р. ионов определяют их способность вызывать коагуляцию коллоидных р-ров, причем различия в пороге коагуляции, особенно для золей с отрицательно заряженными частицами, могут быть очень значительными. Чем слабее гидратация ионов, тем больп[е их способность адсорбироваться на гидрофобных поверхностях. Способность нонов к адсорбции растет в Л. р. в направлении от 80 к СК8 , поэтому ионы СК8 оказывают обычно стабилизирующее действие на дисперсные системы. У катионов различия в адсорбируемости выражены слабее. Места членов Л. р. ионов не являются строго постоянными и могут изменяться в зависимости от условий (pH р-ра, концентрации соли, темп-ры). Действие Л. р. ионов на высаливание или набухание белков зависит прежде всего от pH раствора, напр, анионы в кислой среде, когда ионы белков заряжены положительно, по высаливающему действию располагаются в ряд СЛ 8 >)">... и т. д., т. е. имеет место обращение Л. р. Подобное обращение наблюдается у Л. р. катионов на щелочной стороне от изоэлектрич. точки, где высаливающее действие ионов падает от Сз+ к Г1+. Количественная характеристика закономерности Л. р. выражается ур-нием N = к Н — Я ), в к-ром Н ш — соответственно энергии гидратации иона и высаливаемого вещества (напр., желатина), к — константа, N — величина, [c.486]

    Механизм защитного действия сводится к тому, что заиш-щающее вещество адсорбируется коллоидными частицами и образует на их поверхности защитный слой, который придает частицам свойства высокомолекулярных соединений. Это подтверждается тем, что защищенные золи ведут себя по отношению к электролитам так же, как защищающие их вещества. Валентность коагулирующего иона имеет сравнительно малое влияние на порог коагуляции, но последний зависит от гидратации ионов. Адсорбция защитного коллоида на защищаемой взвеси, влияет на их электрокинетические свойства. Было показано, что скорость [c.159]

    Аминокислоты адсорбируются в форме катиона А , который в поверхностном слое смолы находится в обратимом равновесии с ионами водорода и незаряженными молекулами. Система на поверхности смолы находится в свою очередь в равновесии с окружающим раствором, но, так как смола несет заряд, концентрации водородных ионов на пограничной поверхности и в окружающем растворе различны. Вытеснение слабого основания А, будет определяться главным образом частичным подавлением катионной формы А, более сильным основанием А1, но оно зависит также от соотношения величин сродства смолы к катионам А] " и А . На суммарную энергию адсорбции оказывают влияние такие факторы, как валентность, степень гидратации иона, молекулярный вес н наличие ароматических колец. Последовательность вытеснения растворенных веществ определяется преимущественно степенью кислотности или основности (табл. 8). Обнаруженная экспериментально последовательность вытеснения из полистироловых смол перечисленных растворенных веществ находится в соответствии с их величинами рК. Исключение составляют пролин, метионин, цистеин, фенилалантш и тирозин. [c.62]

    П. А. Ребиндер и Г. И. Логгинов [177, 178, 179] установили, что под действием ряда адсорбирующихся органических веществ гидрофильного типа с достаточно большим числом полярных групп в молекуле, вводимых в малых дозировках в воду, гидратация извести замедляется. [c.65]

    Начальным Э1%1пом процесса гидратации является адсорбция молекул воды на поверхности вяжущего. Так как традиционные вяжущие вещества относятся к полупроводникам [1 ], то адсорбция в первую очередь протекает на донорных и акцепторных дефектах вещества. Донорные дефекты являются поставщиками электронов и ими в основном являются атомы кислорода на поверхности частиц, а акцепторные центры, представляющие собой атомы металлов на поверхности, являются ловушками электронов и образуют пустоты. Молекула воды, адсорбируясь на акцепторных центрах, в зависимости от степени переноса заряда между абсорбированным мономером воды (от величины избыточного заряда центра), диссоциирует на Н" и ОН" или абсорбируется физически. От преобладания на поверхности злектроно-акцепторных или электроно-донорных центров, поверхность приобретает кислые или основные свойства. Донорные центры обеспечивают заряжение поверхности положительно, а акцепторные, наоборот, заряжают поверхность отрицательно. [c.4]


Смотреть страницы где упоминается термин фиг гидратации адсорбированного вещества III: [c.229]    [c.134]    [c.179]    [c.165]    [c.61]    [c.189]    [c.43]   
Физическая химия силикатов (1962) -- [ c.228 ]




ПОИСК







© 2024 chem21.info Реклама на сайте