Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ароматически аминокислоты молекулярный вес

    Если две различные молекулы расположены достаточно близко, они могут влиять на флуоресценцию друг друга. Одна из них, например, может поглощать излучение флуоресценции другой, свидетельствуя о довольно эффективной миграции энергии от одной молекулы к другой при облучении молекулярного комплекса. Такое взаимодействие может происходить между ароматическими аминокислотами, в ферментах и флуоресцирующих коферментах. Следовательно, можно определять и расстояние между этими молекулами. Кроме того, свет, излучаемый отдельными молекулами [c.84]


    Если две различные молекулы расположены достаточно близко, они могут влиять на флуоресценцию друг друга. Одна из них, например, может поглощать излучение флуоресценции другой, свидетельствуя о довольно эффективной миграции энергии от одной молекулы к другой при облучении молекулярного комплекса. Такое взаимодействие может происходить между ароматическими аминокислотами, в ферментах и флуоресцирующих коферментах. Следовательно, можно определять и расстояние между этими молекулами. Кроме того, излучаемый отдельными молекулами данного вещества поток энергии определенным образом ориентирован по отношению к излучающей молекуле. Поэтому флуоресценция твердых тел сильно поляризована. В жидких невязких растворителях поляризация флуоресценции небольших молекул обычно мала, так как вследствие броуновского движения молекулы быстро меняют свое положение. Однако у больших молекул, таких, как белки, даже в жидких растворителях наблюдается менее интенсивное броуновское движение за время жизни возбужденного состояния они мало меняют свое положение, и поэтому их флуоресценция сильно поляризована. У флуоресцирующих групп, находящихся внутри белковой молекулы или соединенных с белком в виде комплексов фермент — кофермент или фермент — субстрат, также обнаруживается поляризация флуоресценции. Степень поляризации флуоресценции таких комплексов и влияние на нее различных факторов дают информацию о механизме действия фермента. Все это представляет ценность для анализа не только собственно ферментов, но и вообще всех белков. [c.178]

    Цитозольный механизм. Он характерен для липофильных гормонов, легко проникающих в клетку. К ним относятся стероидные гормоны и некоторые гормоны, производные ароматических аминокислот. Рецепторы этих гормонов локализованы в цитоплазме или в ядре и представляют собой первый молекулярный элемент, воспринимающий внеклеточный информационный сигнал посредством специфического связывания и включающий цепь последующих событий. [c.138]

    Сальмин, простой белок, не содержащий цистеина и ароматических аминокислот, не изменяет своего молекулярного веса при облучении, что установлено седиментационным анализом в ультрацентрифуге и методом светорассеяния [71]. [c.228]

    Всестороннее изучение элюирования аминокислот на гелях с небольшой пористостью (сефадексе G-10) показало, что в данном случае происходит сильная адсорбция ароматических аминокислот на матрице [29] (табл. 32.8). Это явление можно использовать для отделения некоторых аминокислот от высокомолекулярных соединений, в частности для выделения иодированных аминокислот из сыворотки крови [70]. Сочетание молекулярно-ситового эффекта и ионного обмена наблюдалось при разделении цистеина и производных глутатиона. [c.349]


    Ароматические аминокислоты при облучении в водном растворе проявляют свойства, которые типичны как для ароматических соединений, так и для аминокислот. Например, тирозин и диоксифенилаланин, подобно некоторым другим фенольным соединениям (стр. 173), после облучения в водных растворах, содержащих кислород, подвергаются характерным изменениям в спектре поглощения. Изменения сходны с изменениями, производимыми окислительными энзимами ЬбО, Г61, N16]. При нагревании облученных растворов ароматических аминокислот образуются неидентифицируемые вещества большего молекулярного веса. Из алифатических аминокислот такие вещества не возникают [Ь65]. [c.246]

    При рассмотрении вопроса о природе ферментов и их компонентов нужно всегда помнить, что наличие ферментов обнаруживается только по их действию на соответствующий субстрат. Чтобы определить специфичность фермента, необходимо исследовать его действие на различные субстраты, отличающиеся друг от друга лишь некоторыми особенностями строения молекулы. Этот метод исследования специфичности ферментов был в особенности развит Бергманом и его сотрудниками, работы которых имели исключительное значение для выяснения специфичности действия протеолитических ферментов. До появления этих работ не было известно, какие именно пептидные связи расщепляются пепсином, трипсином и другими протеолитическими ферментами. Бергман и его сотрудники [21] по разработанному ими методу синтезировали большое число различных пептидов и использовали эти пептиды в качестве субстратов для протеолитических ферментов. В результате этих исследований было установлено, что трипсин расщепляет преимущественно пептиды, содержащие основные аминокислоты — аргинин или лизин, тогда как пепсин действует главным образом на пептиды, содержащие ароматическую аминокислоту тирозин [22]. Эти данные позволили заключить, что щелочные боковые цепи аргинина или лизина специфически реагируют с молекулярными группами, расположенными на поверхности трипсина, тогда как структура ароматического кольца тирозина соответствует строению поверхности пепсина. [c.278]

    Альфа-химотрипсин является белком с молекулярным весом 21 600— 27 ООО. Он относится к группе протеолитических ферментов. Подобно трипсину, он гидролизует белки и пептоны с образованием относительно низкомолекулярных пептидов. От трипсина он отличается По действию тем, что расщепляет преимущественно связи, образованные остатками ароматических аминокислот (тирозин, триптофан, фенилаланин, метионин). В некоторых случаях химотрипсин производит более глубокий гидролиз белка, чем трипсин. Отличается также от трипсина тем, что вызывает свертывание молока, в то время как трипсин свертывания молока не вызывает. Химотрипсин более стоек, чем трипсин, и медленнее инактивируется. [c.134]

    Водорастворимые группоспецифические вещества крови представляют собой ковалентно связанные углевод-белковые биополимеры, которые содержат 80—90% углеводов. Среди аминокислот преобладают сери , треонин, пролин и аланин. Ароматические аминокислоты и аминокислоты, содержащие серу, практически отсутствуют. В состав полисахаридной компоненты входят L-фукоза, D-галактоза, N-ацетилглюкозамин, N-ацетилгалактозамин, сиаловые кислоты. Количественное соотношение различных моносахаридов мало отличается у разных групп. Молекулярная масса группоспецифических веществ составляет 0,26Ч--М,8) -10 . [c.94]

    Строение опсина пока не установлено, в основном из-за трудности выделения его в чистом виде. Молекулярная масса опсина точно не определена, по-видимому, наиболее достоверным следует считать значение порядка 27 ООО. В опсине преобладают гидрофобные остатки аминокислот, достаточно велико содержание ароматических аминокислот, присутствуют несколько остатков цистеина. Среди гидрофильных аминокислот опсина преобладают дикарбоновые. [c.181]

    Белковые вещества входят в состав протоплазмы и часто составляют больше половины ее массы. Общее содержание белков в растениях зависит от их принадлежности к тому или иному виду (см. табл. 4). В деревьях оно меньше и колеблется от 1 до 10%. Значительно больше белковых веществ в простых водорослях (20—30%), а в некоторых бактериях их содержание достигает 80%. Молекулярная масса различных белков колеблется в широких пределах от (17500 до 6800000). Изучение белков затруднено тем, что они представляют собой сложные смеси, выделение которых из растений в неизмененном виде почти невозможно. Основной способ выяснения их строения состоит в изучении продуктов их гидролитического распада, осуществленного с помощью минеральных кислот или оснований. Белковые вещества легко гидролизуются не только в присутствии кислот и оснований, но и под действием различных ферментов (протеаз, пепсина, трипсина и др.). При их распаде образуется смесь до 30 различных аминокислот. Большинство из них относится к группе аминокарбоновых кислот, а некоторые имеют ароматический и гидроароматический характер [10, с. 90]. [c.25]


    Белки - природные высокомолекулярные соединения, являющиеся структурной основой всех живых организмов. К ним относятся ферменты - катализаторы многочисленных реакций в живых организмах, дыхательные пигменты, многие гормоны. Число встречающихся в природе белков крайне велико, их частью являются а-аминокислоты НзЫ - СН(К) - СООН, где Е - углеводородный радикал алифатического или ароматического ряда, либо гетероциклический радикал, содержащий серу и азот. Различие в химическом строении белков обусловлено количеством и порядком чередования аминокислот в молекуле. Белковые молекулярные цепочки располагаются в пространстве в виде спирали или волокон. Главная особенность белков - способность самопроизвольно формировать пространственную структуру, свойственную только данному виду растения, т.е. они обладают памятью макромолекулы белков могут записать , запомнить и передать наследству информацию. В этом состоит химический механизм самовоспроизведения. [c.56]

    Таким образом, за пределами изоэлектрической точки аминокислоты начинают проводить электрический ток и разряжаются на электродах. Следует иметь в виду, что ароматические аминокарбоновые кислоты находятся в молекулярной форме и слабо подвергаются внутренней ионизации за счет передачи протона, так как ароматическая аминогруппа является слабым основанием, находясь в состоянии ил-сопряжения с бензольным ядром  [c.663]

    Современная рациональная классификация аминокислот основана на полярности радикалов (К-групп), т.е. способности их к взаимодействию с водой при физиологических значениях pH (близких к pH 7,0). Различают 5 классов аминокислот, содержащих следующие радикалы 1) неполярные (гидрофобные) 2) полярные (гидрофильные) 3) ароматические (большей частью неполярные) 4) отрицательно заряженные и 5) положительно заряженные. В представленной классификации аминокислот (табл. 1.3) приведены наименования, сокращенные английские и русские обозначения и однобуквенные символы аминокислот, принятые в отечественной и иностранной литературе, а также значения изоэлектрической точки (р1) и молекулярной массы (М). Отдельно даются структурные формулы всех 20 аминокислот белковой молекулы. [c.34]

    В тех случаях, когда в молекуле аминокислоты нет ароматического заместителя, сигнал молекулярного иона в масс-спектре или невелик, или вообще отсутствует. Это чаще всего бывает при использовании стандартного ионизационного потенциала, так как в этих условиях расщепление аминокислоты проходит очень легко. Кроме того, масс-спектральный анализ аминокислот ограничен низкой летучестью цвиттер-понных соединений. Часто можно вводить образец в спектрометр в газообразной форме, проводя осторожное вакуумное сублимирование при температурах от 150 [c.273]

    Вымываемый водами гумус, содержание которого в почвах достигает 75%, представляет собой сложный комплекс органических соединений — продуктов физико-химических и биологических процессов превращения остатков растительного происхождения. Удельный вес гумуса равен приблизительно 1,4 г см [70]. Гумусовые вещества являются продуктом конденсации ароматических соединений фенольного типа с аминокислотами и протеинами [71]. Они сходны по строению и свойствам, но отличаются молекулярным весом и соотношением функциональных групп [72]. Удельная поверхность частиц почвенного гумуса составляет в среднем 1900 м 1г [73], катионообменная емкость достигает нескольких сот миллиграмм-эквивалентов на литр. Гуминовые вещества составляют от 45 до 90% почвенного гумуса [12, 74] и представлены кислотами и их солями. В коллоидном состоянии находится лишь часть из них. [c.54]

    Лофотрихи имеют пучок жгутиков на одном из концов клетки. Ам-фитрихи имеют по одному жгутику или пучку жгутиков на противоположных концах клетки. Жгутики прикреплены к цитоплазматической мембране и клеточной стенке специальными дисками. По химическому составу жгутики состоят из белка флагеллина (от англ. flagella — жгутик), обладающего антигенной специфичностью. Молекулярная масса этого белка 40 ООО Да, он не содержит цистеина, в его составе много дикарбоновых и мало ароматических аминокислот. Субъединицы флагеллина закручены в виде спирали. Жгутики выявляют с помощью электронной микроскопии препаратов, напыленных тяжелыми металлами, или световой микроскопии после обработки препаратов специальными методами (например, после серебрения). [c.8]

    Разработанные в последние годы методы селективного гидролиза, разделения и идентификации открыли новые возможности для химического изучения структуры полипептидов и белков. Как уже указывалось, эти природные продукты включают разнообразный материал антибиотики, гормоны, токсины, ферйенты,. вирусы, волокна и т. д. Хотя за короткий период времени был достигнут большой прогресс в выяснении структуры различных природных продуктов, работа по установлению химической структуры белков в значительной степени осложнена их макромолеку-лярной природой. Изучение последовательности аминокислот в полипептидах и белках показывает наличие в них своеобразных группировок аминокислот. Например, из семи основных аминокислот, имеющихся в АКТГ, четыре расположены по соседству, а все семь включены в последовательность из 14 аминокислот из семи кислых аминокислот, ирисутствуюпщх в этом гормоне, три находятся по соседству друг с другом. В рибонуклеазе три остатка серина и три остатка аланина находятся рядом аналогична располагаются три ароматические аминокислоты в инсулине. Для ряда ферментов — тромбина, трипсина, химотрипсина и фосфоглюкомутазы было отмечено наличие одинаковой последовательности из шести аминокислот. Отмечено, что в структуре-и механизме действия протеолитических ферментов важную роль играют определенные трипептиды [160]. В настоящее время из-за ограниченности наших знаний относительно точного молекулярного механизма действия гормонов и ферментов можно делать только предположения о значении тёх или иных аминокислотных группировок. Вопрос о связи определенной последовательности аминокислот с функциями различных соединений может быть выяснен лишь по мере накопления экспериментального материала. Тем самым, по-видимому, станет возможным значительно более полное понимание механизма действия природных соединений на молекулярном уровне. [c.418]

    Изучение гелевой хроматографии аминокислот стало возможным лишь после создания гелей с небольшими размерами пор. Оказалось, что аминокислоты разделяются на молекулярных ситах не по размерам молекул, а в соответствии с их адсорбцией на матрице геля. Детально были исследованы условия адсорбционной хроматографии на сефадексе 0-10 [29]. Достаточно высокая степень разделения была достигнута в основном для ароматических аминокислот, сорбирующихся гелем [30]. Набухшие гели непригодны для скоростной хроматографии аминокислот, однако в настоящее время уже выпускаются достаточно жесткие молекулярные сита нового типа. [c.335]

    Идеальная матрица должна работать только по принципу молекулярного сита. Сшитые декстраны и полиакриламидные гели нельзя считать идеальными матрицами, и это необходимо учитывать при проведении эксперимента. Во-первых, эти материалы сильно сорбируют пептиды, содержащие остатки ароматических аминокислот (триптофана, тирозина и фенилаланина). При элюировании буферными растворами, содержащими вещества ароматической природы, мочевину или роданид калия, адсорбция несколько снижается, однако полностью не исчезает. Известно также, что адсорбция на сефадексе несколько возрастает при увеличении ионной силы [19], однако удовлетворительного объяснения этому явлению не дано. Во-вторых, матрица содержит небольшое количество карбоксильных групп. Вследствие этого независимо от молекулярного веса пептидов может наблюдаться ускорение компонентов, несущих отрицательный заряд, и удерживание или необратимая адсорбция основных пептидов. Этот эффект подавляется в том случае, если ионная сила буферного раствора превышает 0,02. [c.396]

    Азотсодержащие органические соединения представлены в бытовых сточных водах белками и продуктами их гидролиза — пептидами и аминокислотами. Белки по химическому строению являются естественными полимерами — продуктом конденсации аминокислот. Молекулярная масса белков изменяется от десятков тысяч до нескольких миллионов. Количество звеньев аминокислот колеблется от нескольких десятков до сотен тысяч. В образовании белков участвуют аминокислоты различного строения с алифатическим, ароматическим или гетероциклическим радикалами и содержащие, кроме того, другие функциональные группы. Это обусловливает разнообразие строения белковых молекул, их сложность и различную биологическую активность. Белки, содержащие только остатки аминокислот, называются протеинами. Если же в молекуле наряду с белковыми группами содержится небелковая часть, то такие соединения называются протеидами. К протеидам относятся глико- и мукопротеиды, которые представляют собой соединения белков с углеводами фосфопротеиды, содержащие фосфор липопротеиды, содержащие кроме белковой части липидные группы нуклеопро-теиды — соединения бе.лков с нуклеиновыми кислотами. В воде белки образуют коллоидные растворы, устойчивость которых зависит от pH, присутствия электролитов, температуры. Повышение температуры, действие ультрафиолетовых лучей, ионизирующего излучения, некоторых химических веществ способствует биологической инактивации белков и уменьшению их растворимости в воде. [c.164]

    А и Б. Кислые соединения. Жирные кислоты среднего молекулярного веса, алифатические кето- и оксикислоты ненасыщенные и дикарбоновые кислоты миндальная кислота нолиоксибензойные кислоты галоидсодержащие жирные п дикарбснивые кислоты ароматические аминокислоты многоатомные фенолы, энолы. [c.254]

    Протеазы распространены в животном и растительном мире существуют клеточные протеазы, осуществляющие соответствующие реакции внутри клеток. Особенно известен папаин, который выделяют нз плодов папайи. Но наиболее важны и наиболее изучены протеазы пищеварительного тракта животных и человека. Стенки желудка выделяют неактивный белок профермент) —пепсиноген. Под влиянием кислого желудочного сока и готового находящегося в желудочном соке пепсина от пепсиногена отщепляется полипептидная цепь, и он превращается в активный фермент пепсин, имеющий молекулярный вес 35 000 и давно уже полученный в кристаллическом виде. Пепсин при оптимальном pH 1,5—2,5 разрывает белки преимущественно по месту нахождения обеих ароматических аминокислот (тирозин и фенилаланин) у их аминного конца. При этом необходимо, чтобы аминокислота, соседняя с ароматической, имела такие зацепки для пепсина, как остатки СООН или 5Н, и не имела свободной КНг-группы. Этих условий оказывается, однако, достаточно для того, чтобы в желудке произошел гидролиз макромолекул белков на сравиительно небольшие пептидные цепи. Дальнейшее переваривание пищи в двенадцатиперстной кишке и далее в тонких кишках происходит в условиях уже щелочной среды. Двенадцатиперстную кишку снабжает ферментами поджелудочная железа, которая выделяет проферменты — трипсиноген, химотрипсииоген и профермент, соответствующий карбоксипептидазе. Эти проферменты (как и пепсиноген, см. выше) превращаются в двенадцатиперстной кишке в ферменты—трипсин, химотрипсин и карбоксипептидазу. [c.701]

    Химические особенности. Чужеродность и значительный молекулярный вес не являются достаточным условием для проявления иммуногенности антигена. Синтетический поли-Ь-лизин с высоким молекулярным весом не является иммуногеном. В то же время сополимеры, построенные из двух и более аминокислот, приобретают способность индуцировать иммунный ответ. Иммуногенность значительно усиливается, если в структуру сополимера включены ароматические аминокислоты. Так, например, сополимер аминокислот лизина и глутаминовой кислоты приобретает иммуногенность при минимальной мол. массе 30-40 кД. Добавление в сополимер тирозина снижает минимальную молекулярную массу, достаточную для проявления иммуногенности, до 10-20 кД. При включении еще одной ароматической аминокислоты — фенилаланина — иммуногенность сополимера проявляется при мол. массе всего 4 кД. К этой же категории явлений относится увеличение иммуногенности очень слабого антигена — желатина — добавлением небольшого количества тирозина. [c.38]

    Оксигеназы играют важную роль в процессах биосинтеза, деградации и трансформации клеточных метаболитов ароматических аминокислот, липидов, сахаров, порфиринов, витаминов. Субстратами, на которые воздействуют оксигеназы часто служат сильно восстановленные не растворимые в воде соединения их окисление приводит к тому, что продукты реакции становятся более растворимыми в воде и, следовательно, биологически активными, что важно для их последующего метаболизирования. У строго анаэробных прокариот кислород, включаемый в молекулу субстрата, происходит не из молекулярного кислорода, а из других соединений, например воды. [c.310]

    Способ связывания ТДФ с активным центром апофермента, вызывающий изменение конформации кофермента, может включать более чем один тип взаимодействия. При этом, кроме электростатического или ковалентного типа связи пирофосфатной группировки кофермента, может наблюдаться взаимодействие с обра,зованием молекулярного комплекса с переносом заряда. Такие комплексы с я-донор-но-акцепторным взаимодействием найдены при исследовании связывания коферментов с боковыми цепями ароматических аминокислот, например триптофана, у флавиновых и пир идиновых ферментов. [c.279]

    Следует далее, отметить, что когда образуются сульфокислоты из асфальтовых продуктов, то кальциевые соли кислот, ползп1ен-ные из веществ с различным молекулярным весом, сильно напоминают друг друга по мыльным качествам и по высокой растворимости в воде. Эти указания следует добавить к заключениям, во-первых, о том, что асфальтовые ядра не являются полностью ароматическими по структуре и, во-вторых, —что они, возможно, построены из повторяющихся простых соединений, связанных между собой так же, как и аминокислоты в протенах. [c.544]

    Рассмотрение принципа действия и особенностей использования аминокислотного анализатора начнем с того, что сформулируем представления об анализируемом препарате. Для наиболее интересного случая — анализа состава белка — им является смесь 20 природных аминокислот. Все компоненты этой смеси представляют одинаковый интерес, подлежат полному разделению и количественной оценке. Интервал. молекулярных масс простирается ог 75 (Gly) до 204 (Тгр), диапазон значений р1 — от 2,97 (Glu) до 10,76 (Arg). Различия в стеиени гидрофобности тоже выражены сильно от гидрофильных дикарбоновых и оксикислот до весьма гидрофобных, несущих довольно протял<енные алифатические и ароматические боковые группы. Заметим сразу, что такие различия должны облегчить задачу хроматографического разделенпя, но вряд лн позволят обойтись без ступенчатой смены элюентов. В обычных условиях хроматографии все алшнокислоты достаточно устойчивы, но следует обратить внимание с этой точки зрения и на предшествующий хроматографии этап исчерпывающего гидролиза белков и пептидов (от него будут зависеть и результаты анализа). Агрегация аминокислот маловероятна, за исключением возможности окисления цистеинов до цистинов. Не-специфическая сорбция за счет гидрофобных взаимодействий с материалом матрицы безусловно возможна, но здесь она будет использоваться в интересах фракционирования. [c.515]

    Анализируя данные по термодинамическим параметрам реакций комплексообразования эфира 18-краун-б (табл. 4.8) и р-ЦД (см. ниже табл. 4.17) с аминокислотами в воде, можно сделать следующие сравнительные выводы о взаимодействии указанных макроциклов с АК в воде. Константы равновесия реакций комплексообразования 18-краун-б с АК меньше соответствующих констант для систем р-ЦД + АК, однако 18-краун-б имеет более сильную комплексообразующую способность к АК по сравнению с р-ЦД. Ассоциация 18-краун-б со всеми АК в воде происходит по единому механизму за счет образования трех водородных связей посредством КНз-группы АК и через три электростатических взаимодействия Г Г. .. О. р-ЦД селективно ассоциирует с изученными АК и образует комплексы только с ароматическими АК за счет специфических взаимодействий, а процесс комплексообразования в большей мере, чем в случае с 18-краун-б, управляется влиянием среды. Это подтверждается существованием зависимости энтальпии комплексообразования (Д(.// ) 18-краун-б и р-ЦД от энтальпии гидратации (Д ,у ,Л) аминокислот (рис. 4.14), из которой выпадают только значения для комплексов Ь-Шз-р-ЦД, Ь-01п-18Кб, Ь-Р11е-18К6, что свидетельствует об ином механизме молекулярного узнавания этих АК указанными макроциклами. Как видно из рис. 4.14, зависимость А,Н А,,у гН) для Р-ЦД сильнее выражена, чем для 18-краун-б, что говорит о большем влиянии растворителя на процесс ассоциации АК с р- [c.227]

    Одной из главных структурных особенностей молекул металлопорфиринов является наличие сопряженной л-системы, определяющей возможность сольватационных взаимодействий соединений данного класса с разнообразными ароматическими молекулами, которые могут носить как универсальный, так и специфический характер. Металло-комплексообразование понижает ароматичность л-системы макроцикла в металлопорфирине по сравнению с соответствующим лигандом и создает благоприятные условия для специфических л-л-вза-имодействий, приводящих к образованию л-л-комплексов как с ароматическими л-донорами, так с л-акцепторами. Взаимодействия данного типа вносят значительный вклад в формирование надструктуры хромопротеинов [14, 17], агрегацию порфиринов в растворах, образование комплексов "хозяин-гость" в кристаллах, конформационные свойства порфиринсодержащих биоструктур. Поэтому комплексообразование между порфиринами и различными ароматическими молекулами (кофеин, фенантролинпроизводные, виологены, аминокислоты, нуклеиновые кислоты и т.д.) [18, 19] изучается достаточно интенсивно. Предполагают, что комплексы данного типа образуются за счет л-л-взаимодействий между ароматическими л-системами порфиринового макроцикла и молекулярного лиганда, которые могут иметь гидрофобный (донорно-акцепторный) характер или сопровождаться переносом заряда. При этом энергия взаимодействия между двумя молекулами в л-л-комплексе может быть представлена [20]  [c.306]

    Так, например, взаимодействие циклогексанона, -пропиламина и Н.ц. в метаноле при 25° и pH б—8 в течение 24 час приводит к образованию -пропилциклогексиламина с выходом 85%. Эта реакция восстановительного аминирования является общей для аммиака, первичных и вторичных аминов, ароматические амины реагируют вяло. В реакцию вступают все альдегиды и относительно пространственно незатрудненные кетоны. Выходы аминов можно повысить использованием молекулярных сит марки ЗА для связывания выделяющейся в реакции воды. Необходимо отметить, что восстановительное аминирование аммиаком замещенных пировиноградных кнслот приводит к а-аминокислотам. Так, например, из пировиноградной кислоты можно получить аланин с выходом 507о- Оптимальным для синтеза а-аминокис-лот является pH 7. [c.378]


Смотреть страницы где упоминается термин Ароматически аминокислоты молекулярный вес: [c.222]    [c.307]    [c.363]    [c.17]    [c.20]    [c.37]    [c.315]    [c.73]    [c.245]    [c.155]    [c.94]    [c.384]    [c.302]    [c.579]   
Аминокислотный состав белков и пищевых продуктов (1949) -- [ c.107 ]




ПОИСК





Смотрите так же термины и статьи:

Аминокислоты ароматические

Ароматически аминокислоты



© 2025 chem21.info Реклама на сайте