Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хроматографирование

    Калибровочные коэффициенты. Для учета различия в чувствительности детектора для каждого компонента находят калибровочные коэффициенты. Калибровку проводят по результатам хроматографирования бинарной смеси, составленной из 1-того компонента и стандарта, калибровочный коэффициент которого принимают равным 1. Калибровочные коэффициенты рассчитывают по формулам  [c.192]


    В работе [10, с. 60—63] предложено определять фракционный состав реактивных топлив с помощью газожидкостной хроматографии на хроматографе Цвет с пламенно-ионизационным детектором, работающим в дифференциальном режиме. Прибор позволяет работать как в изотермическом режиме, так и с программированием температуры термостата колонок в линейном режиме со скоростью от 1 до 40 °С в мин. Хроматографическая колонка из нержавеющей стали длиной 1 м наполнена 5% силиконового эластомера SE-30 на хромосорбе R. Газом-носителем служит азот. Нагревание от 50 до 180°С запрограммировано на скорость 5°С в 1 мин, скорость диаграммной ленты самописца 600 мм/ч. Для испытания требуется 20—30 мг топлива. Содержание отдельных фракций определяют по площадям пиков. Истинные температуры кипения этих фракций устанавливают по калибровочным кривым, представляющим собой зависимость температур удерживания смесей индивидуальных углеводородов Се—С от истинных температур кипения, полученных в различных условиях хроматографирования. [c.17]

    В самой ранней работе Андерсона и сотр.1 хроматографирование проводили на двух бумажных полосках (ватман № 1). Пробу наносили на бумагу в виде раствора в ацетоне. Для элюирования использовали воду и четыреххлористый углерод для проявления хроматограммы — раствор фторбората л-нитробензол-диазония. Количество примеси рассчитывали, замеряя площадь ее пятна и сравнивая с площадью пятна стандартного раствора. Для определения примесей, содержащихся в количестве менее 1%, их сначала концентрировали 5— 6-кратной перекристаллизацией из горячего хлорбензола. Авторам удалось выделить и идентифицировать три примеси орто-пара-изомер дифенилолпропана, соединение Дианина и трис-фенол ]. [c.186]

    При выборе оптимальных условий хроматографирования руководствуются определенными требованиями к газу-носителю п хроматографической системе. Одним из важнейших параметров хроматографирования является скорость потока газа-носителя. [c.189]

    Колонки с адсорбентом и растворами термостатируют, растворители при этом испаряются. Таким образом, в первой колонке оказывается проба мальтенов, а во второй — битума. Далее растворителями одинакового набора (например, изооктаном, бензолом и смесью бензола и этанола в соотношении 1 1) вымывают соответствующие этим растворителям группы соединений из пробы мальтенов и пробы битума. Поскольку раствор в парафиновом углеводороде в отличие от раствора в ароматическом углеводороде не содержит растворенных асфальтенов, общая площадь пиков, получаемых при разделении мальтенов, меньше общей площади пиков, получаемых при разделении битума, на величину, соответствующую содержанию асфальтенов в анализируемом битуме. При этом нужно учитывать возможное неравенство количеств мальтенов н битума, взятых на хроматографирование. Это может быть сделано сравнением пиков, полученных при элюировании изооктаном [Ъ, 6]. Таким образом, на анализ группового химического состава битумов затрачивается не более 2 ч. Определение проводят, хроматографическим методом, но принцип использования экстрагирования при выделении асфальтенов не нарушается. [c.10]


    Бумажная хроматография. Описанные методы бу.мажной хроматографии разнообразны и отличаются способом хроматографирования, применяемыми элюэнтами и проявителями, а также способами количественного определения примесей. [c.186]

    Определение компонентного состава битумов. В зависимости от выбора экстрагентов для осаждения, элюентов и адсорбентов для хроматографирования результаты определения могут быть неодинаковыми, что и наблюдается в работах разных авторов. Наибольшее применение при исследовании компонентного состава битумов у нас в стране нашли лишь несколько методик. Они отличаются в основном аппаратурным оформлением, но не полученными результатами. [c.8]

    Надежная качественная расшифровка хроматограмм была выполнена при помощи добавки эталонных углеводородов и хромато-масс-спектрометрии. При воспроизведении этих работ можно воспользоваться индексами удерживания разветвленных алканов, приведенных в конце этой главы в табл. 20. Использование значений индексов удерживания для анализа алканов нефтей всегда удобно, так как нормальные алканы обычно имеются в большинстве нефтей и доступны как эталоны. Опыт работы показал, что значения индексов удерживания разветвленных алканов достаточно хорошо воспроизводимы и мало зависят от условий хроматографирования, чего, к сожалению, нельзя сказать об индексах удерживания цикланов и ароматических углеводородов. [c.37]

    Эффективность хроматографического разделения. В процессе хроматографирования вещество, перемещаясь вдоль слоя сорбента, распределяется между подвижной и неподвижной фазами. При этом зона вещества размывается. Чем больше размывание зон двух соседних комионентов, тем труднее их разделить. [c.188]

    В практике качественного газохроматографического анализа используют следующие способы идентификации компонентов 1) сравнение параметров удерживания неизвестного вещества и эталонного соединения при идентичных условиях хроматографирования 2) применение графических или аналитических зависимостей между характеристиками удерживания и физико-химическими свойствами веществ (молекулярной массой, температурой кипения, числом углеродных атомов или функциональных групп и т. д.) 3) сочетание газовой хроматографии с другими инструментальными методами 4) применение селективных детекторов. [c.190]

    Критерии оценки разделения. Для количественной оценки хроматографического разделения используют критерии, характеризующие качество разделения в зависимости от параметров опыта — природы сорбента, температуры хроматографирования и т. д. К ним относят степень (фактор) разделения а, критерий селективности Кс, критерий разделения Д. Степень разделения а характеризует относительное удерживание компонентов разделяемой смеси и селективность выбранной неподвижной фазы, а рассчитывают ио формуле [c.188]

    График зависимости Я от о представлен на рис. 3.2. Область оптимальных скоростей потока газа-носителя соответствует минимальному значению Н. При этом наблюдается наибольшая эффективность хроматографирования. [c.189]

    Температурный режим хроматографирования обусловлен температурами испарителя, термостата колонок и термостата детектора. Температуру термостата испарителя устанавливают на 20—30 °С выше температуры кипения самого высококипящего вещества в смеси для обеспечения мгновенного испарения всех [c.189]

    Выбирают оптимальные условия хроматографирования жидких хлорметанов, хроматографируют смеси жидких хлорметанов при различных расходах газа-носителя, строят график зависимости эффективности разделения от скорости гелия, рассчитывают критерии разделения соседних компонентов. [c.195]

    Выполнение работы. Включают прибор согласно инструкции. Условия хроматографирования те же, что в варианте 1. Устанавливают расход гелия 25 мл/мин, контролируя его пенным расходомером. Указатель шкалы чувствительности устанавливают в положение 1 4 . После установления на хроматограмме стабильной нулевой линии в испаритель хроматографа вводят микрошприцем 0,3 мкл пробы смеси хлорметанов. Затем устанавливают поочередно расход гелия 35, 45, 55 и 65 мл/мин и каждый раз после достижения на хроматограмме стабильной нулевой линии (10—15 мин) в испаритель хроматографа поочередно вводят по 0,3 мкл смеси хлорметанов. При каждом расходе гелия опыт повторяют три раза. [c.195]

    Выполнение работы. Включают прибор согласно инструкции. Устанавливают температуру термостата колонки 85°С, температуру термостата детектора 130°С, температуру испарителя 130 °С. Газ-носитель пропускают через колонку со скоростью 60 мл/мин, контролируя ее пенным расходомером. Подают токовую нагрузку на ДТП 130 мА. Указатель шкалы чувствительности устанавливают в положение 1 4 . После установления на хроматограмме стабильной нулевой линии в испаритель хроматографа поочередно вводят микрошприцем по 0,3 мкл каждого спирта. Каждое хроматографирование повторяют три раза. На хроматограмме измеряют для каждого спирта. Усредняя результаты трех параллельных измерений /д. рассчитывают 1/ по формуле (3.1), Для спиртов нормального строения строят графики зависимости lgV д = f( , М, Ткип)> где пс — число атомов углерода, М — молекулярная масса, Гкип— температура кипения. В испаритель хроматографа вводят микрошприцем 0,3 мкл анализируемого раствора. Измеряют по хроматограмме tл для каждого спирта. Рассчитывают Уц по формуле (3.1). Сравнивая Уп каждого спирта и смеси спиртов, идентифицируют компоненты пробы неизвестного состава. Правильность идентификации [c.197]


    По способу для разделения примесей пробу раствора дифенилолпропана в этаноле наносили на лист ватмана № 1, пропитанный водой в качестве растворителя использовали четыреххлористый углерод, насыщенный муравьиной кислотой. Хроматографирование вели нисходящим способом для проявления хроматограммы использовали свежеприготовленную смесь водных растворов феррицианида калия и хлорного железа. Количественное определение проводили с помощью хроматометра Ланге (хроматограмму парафинировали, а затем измеряли интенсивность окраски пятен и сравнивали с калибровочным графиком). Применяли также и более простой метод, не требующий указанного прибора — метод сравнения интенсивности окраски в исследуемой и эталонной пробах. Помимо орто-пара-изомера дифенилолпропана, соединения Дианина и трис-фенола I удалось обнаружить 10 неидентифицированных примесей. На основании величины авторы предполагают, что три компонента из десяти являются фенолами с одной группой —ОН. [c.187]

    Успех хроматографического разделения палладия (II) и родия (III) определяется в основном тем, в какой мере предварительная подготовка растворов обеспечивает получение стабильных форм комплексных соединений одного состава. Для этого необходимо выполнить ряд условий раствор смеси солей перед хроматографированием следует обработать в тигле концентрированной хлороводородной кислотой применять бумагу, предварительно обработанную 6%-ным раствором хлорида лития, который играет роль высаливателя и поставщика хлорид-ионов добавить в подвижный растворитель хлороводородную кислоту. [c.213]

    В феноле примеси определяли методом газо-жидкостной хроматографии в кубовом остатке содержание фенола, и-изопропил- и л-изо-проненилфенола также определяли методом газо-жидкостной хроматографии, а остальные компоненты — тонкослойной хроматографией . В феноле были обнаружены окись мезитила (0,02%) и форон (0,01%). В кубовом остатке были обнаружены восемь компонентов установленного строения (дифенилолпропан, фенол, соединение Дианина, орто-пара- и орто-орто-изомеры дифенилолпропана, 2,4,4-три-метил-2 -оксифлаван, л-изопропил- и л-изопропенилфенол) и четыре неидентифицированных вещества. Сумма определенных компонентов составляла примерно 75%. Остальная часть, по-видимому, представляет собой трехъядерные (трис-фенолы I и II) и многоядерные фенолы, которые не разделяются при хроматографировании. [c.75]

    В другой работе хроматографирование проводили на листе ватмана №1, скрученном в цилиндр. Пробу наносили в виде раствора в этаноле. Элюирование осуществляли в камере, насыщенной аммиаком, с использованием смеси пропанола-1 и керосина. Готовую хроматограмму разворачивали и опрыскивали сначала 5%-ным раствором КазСО.-з, а затем 0,5%-ным водным раствором ди- [c.186]

    А. С. Салона и Л. А. Виноградова хроматографирование проводили нисходящим способом. На полоску хроматографической бумаги (ленинградская, быстрая ) наносили раствор дифенилолпропана в этаноле. Подвижной фазой служил раствор четыреххлористого углерода, насыщенный уксусной кислотой. Бумагу после удаления следов растворителя опрыскивали на воздухе 10%-ным раствором Na2 Oз и после высушивания проявляли, используя раствор диазотированного /1-нитроанилина. Количество примесей определяют по площади пятен. Если в дифенилолпропане содержались примеси в небольших количествах, примеси предварительно концентрировали экстракцией бензином БР-1. После испарения бензина получали примеси в виде сухого остатка, который растворяли в этаноле. В очищенном дифенилолпропане были обнаружены орто-пара-изомер дифенилолпропана и соединение Дианина. Погрешность метода 2—5 отн. %.  [c.187]

    Для определения примесей в техническом дифенилолпропане было применено хроматографирование в тонком слое силикагеля, пропитанного формами-дом, в среде хлороформа с добавкой 1% этанола . Разделившиеся вещества проявляли на хроматограмме водным раствором диазотированной сульфаниловой кислоты. Были обнаружены семь примесей, из которых идентифицированы только три — трис-фенол I, фенол и орто-пара-изомер дифенилолпропана. [c.188]

    Газо-жндкостная хроматография. В литературе имеются сведения о применении метода газо-жидкостной хроматографии для прямого анализа дифенилолпропана . Разделеление проводили на колонке, заполненной цеолитом 545 с нанесенными на него апиезо-ном Ь и поликарбонатом. Однако прямой анализ другим исследователям не удался из-за разложения дифенилолпропана . Поэтому ими было предложено сначала ацетилировать все реакционноспособные гидроксильные группы в дифенилолпропане, а затем проводить хроматографирование. [c.189]

    НОМ И перед хроматографированием алкилируют метилиодидом. Высоколипофильный катион обеспечивает быструю экстракцию и метилирование при комнатной температуре [242]. Обзор работ, посвященных применению экстрактивного алкилирования для аналитических целей, дан в [1052], другие примеры использования этого метода см. в [1054, 1487]. При алкилировании в двухфазных системах феноляты реагируют с пентафторбензилбромидом и другими бензилгалогенидами и в отсутствие МФ-катализатора, в то же время алкилирование карбоксилатов без катализатора не идет это позволяет легко отличать их друг от друга [1055, 1583]. Катализатор не требуется также и при синтезе некоторых эфиров с использованием в качестве основания лиофильно высушенного KF [1605]. Библиографические ссылки на другие работы, охватывающие все типы реакций получения эфиров, приведены в табл. 3.7. [c.158]

    Из всех перечисленных выще методов определения экранированных алкилфенолов наиболее приемлемым для определения 24М6В является метод [176]. Метод [177], связанный с предварительной хроматографией топлива, чрезвычайно трудоемок кроме хроматографирования требуется тщательная очистка топлива от природных фенолов, аминных присадок и красителей, которые мешают определению. Кроме того, по мнению авторов этого метода, большое влияние оказывает на реакцию соотношение спирта и воды. Также трудоемкой является методика определения 24М6В методом хроматографии в тонком слое [178], причем точность метода, как отмечают сами авторы, невелика. Метод Института химической физики АН СССР для определения присадок в топливе без предварительного их отделения непригоден. С помощью метода [180] авторам не удалось определить наличие присадок в реактивном топливе. [c.202]

    Сергиенко и Лебедев [145] выделили из девонской нефти Ромаш-кинского месторождения фракции твердого парафина, отвечающие-по константам индивидуальным парафиновым углеводородам Сах — Сзо нормального строения. Предельные углеводороды нефти, вымпа-ющие выше 340° С, были выделены двухкратным хроматографированием на крупнопористом активированном силикагеле. После разделения предельных высокомолекулярных углеводородов на твердые и жидкие с помощью избирательных растворителей и охлаждения твердые углеводороды подвергались карбамидной обработке. Углеводороды, образовавшие кристаллические комплексы с карбамидом после регенерации их из комплекса подвергались хроматографическому разделению по Фуксу [146]. Характеристика состава и свойств-предельных углеводородов из девонской нефти Ромашкинского месторождения приведена в табл. 14. [c.87]

    ААетоды хроматографирования и конструкции ХГ-газоанализаторов весьма раяиообразны, поэтому привести для них средние значения показателей за-трудиительно. Приводимые здесь технические данные по автоматическим газовым хроматографам являются только примером. [c.610]

    II тетрахлорметанов и статистическую обработку результатов анализа. При хроматографировании смеси жидких хлорметанов первым из колонки выходит дихлорметан, вторым-трихлорме-чан, третьим — тетрахлорметан. [c.194]

    Выполнение работы. Включают прибор согласно инструкции. Устанавливают температуру термостата колонки 80 °С, температуру термостата детектора 160°С, температуру испарителя 170°С. Газ-носитель пропускают через колонку со скоростью 65 мл/мин, контролируя ее пенным расходомером. Подают токовую нагрузку на ДТП 130 мА. Указатель шкалы чувствительности устанавливают в положение 1 4 . После установления на хроматограмме стабильной нулевой линии в испаритель хроматографа вводят микрошприцем анализируемую пробу 0,5—1,0 мкл (V m) в зависимости от содерлония компонентов. На хроматограмме получают три пика. Хроматографирование повторяют три раза. Измеряют Ir для кал<дого компонента на трех хро- [c.198]

    Расчет количественного содержания компонентов смеси проводят по площадям пиков 5, по формуле (3.9) или (3.10) методом абсолютной калибровки. Для этого вводят поочередно в испаритель хроматографа микрошприцем 0,2 0,4 0,6 0,8 мкл воды, диметилформамида и этилацетата. Каждое хроматографирование повторяют три раза. Строят градуировочные графики зависимости площадей пиков воды, диметилформамида и этилацетата от хроматографируемого количества 5 = 1(д). Вычисляют площадь пика каждого компонента на хроматограмме смеси как среднеарифметическую из трех измерений и по графику 5 = 1(д) находят массу каждого компонента в хроматографируемом количестве смеси. Содержание компонентов Xi рассчитывают по формулам (3.11) и (3.12). [c.199]

    На хроматограмме получают 4 пика. Чтобы идентифицировать пики изомеров нитрофенола, применяют метод добавок. Для этого в дозатор вводят 2 мкл смеси и 1 мкл раствора одного из изомеров и хроматографируют при тех же условиях. Высота одного пика увеличивается (может зашкалить ). Затем повторяют хроматографирование смеси с добавлением раствора другого изомера и т. д. [c.207]

    Бумага для хроматографирования (марка С Ленинградской фабрики им. Володарского, 20X5 см). [c.213]

    Определение содержания 4-нитрофенола в водном растворе 4-аминофенола. На стартовую линию хроматографической бумаги наносят 3 пробы анализируемого раствора объемом 2 мкл. После хроматографирования находят среднее значение площади пятна 4-нитрос )енолята аммония. Пользуясь рассчетной формулой и найденными значе- [c.221]

    Проводя жидкостное адсорбциог ное хроматографирование ал-кано-циклоалкано в (для фракций с началом кипения 250°С), можно сконцентрировать углеводороды по следующим подгруппам 1) нормальные или слаборазЕ.етвленные алканы, застывающие выше 20 °С 2) разветвленные алканы изостроення ( 1,45 — [c.90]

    По другому колориметрическому методу [177] содержание 24М6В определяют окислением присадки ферроцианидом калия, и. после сочетания полученного раствора с диазореактивом проводят колориметрирование. Предварительно присадку отделяют хроматографически на окиси алюминия с последующим вытеснением бензина хлороформом и пентаном. Пентан удаляет с адсорбента следы бензина и хлороформа. Присадку 24М6В удаляют этанолом. Перед хроматографированием бензин для удаления природных фенолов промывают 10%-ным водным раствором щелочи. При наличии в бензине аминных присадок его промывают 50%-ной соляной кислотой. Если бензин окрашен, его необходимо несколько раз пропустить через активированный уголь до полного удаления окраски. После хроматографирования от элюата с присадкой отгоняют пентан, охлаждают остаток до комнатной температуры, количественно переносят в мерную колбу емкостью 50 мл и добавляют до метки этанол. [c.201]

    Первые две фазы наносили на целит 545 (фракция 60—80 меш) в количестве 12 вес% носителя. Карбовакс 20 М наносили на хромосорб W (фракция 80—100 меш) в количестве-5 % веса носителя. Хроматографирование проводили на спиральных колонках из [c.73]

    Хроматографирование велось ва колонке 0,75x3 мм, на фазе хромосорб W -iW, с пламенно-иониаационном детектором. Объем пробы 0,03 мкл 20% раствора образца в хлороформе. Анализ проводили в режиме программирования, температура колонки изменялась от 210 до 320°С скорость ленты 0,85 см/мин. [c.69]

    ИК-спектры многих окисей биссульфидов и смесей продуктов окисления имеют широкую полосу в области 3200—3600 см , аналогичную полосе в спектрах поглощения растворов пиридина с водой [14]. Удалить воду из ассоциатов окисей вторичных, третичных биссульфидов и окисей биссульфидов из природных меркаптанов довольно трудно, так каК при температуре выше 50—60° происходит разложение продуктов. При перекристаллизации продуктов окисления, отгонке растворителей и хроматографировании на окиси алюминия наблюдается образование примесей с ненасыщенной связью. Появление подобных соединений можно объяснить, вероятнее всего, протеканием реакции Пуммерера [3]. Нам удалось выделить хроматографированием дисульфон ацетилтиоэфира (LIV) предполагаемого строения из продуктов окисления биссульфидов из нефтяных меркаптанов перекисью водорода в уксусной кислоте. [c.65]

    В ИК-спектрах поглощения продуктов окисления биссульфидов из природных меркаптанов, полученных окислением в уксусной кислоте перекисью водорода, имеется полоса 3200—3600см . Наряду с этим, в спектре имеются полосы сульфоновой (ИЗО и 1300 см ), карбонильной (1720 см ) и мономерно-кислотной (1750, 1420, 1230 см ) групп. Дополнительная промывка раствором соды и водой, хроматографирование на колонке бензолом (или н-гептаном и эфиром) мало меняет вид спектра продуктов окисления. Очевидно, уксусная кислота, как и вода, может частично удерживаться в ассоциатах продуктов окисления. Разветвленное строение алки/.ьных радикалов у биссульфидов из природных меркаптанов усиливает такое удержание молекул кислоты и воды в ассоциатах. [c.66]


Смотреть страницы где упоминается термин Хроматографирование: [c.589]    [c.279]    [c.189]    [c.252]    [c.91]    [c.196]    [c.200]    [c.201]    [c.202]    [c.222]    [c.202]   
Смотреть главы в:

Введение в количественный ультрамикроанализ -> Хроматографирование

Аналитическая химия малых концентраций -> Хроматографирование

Руководство по анализу кремнийорганических соединений -> Хроматографирование


Аналитическая химия. Т.1 (2001) -- [ c.274 ]

Введение в количественный ультрамикроанализ (1963) -- [ c.62 ]

Руководство по анализу кремнийорганических соединений (1962) -- [ c.123 ]

Лабораторное руководство по хроматографическим и смежным методам Часть 2 (1982) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Артефакты при хроматографировании загрязняющих веществ

Ацетилацетонаты металлов, хроматографирование

Бензол хроматографирование

Время удерживания при хроматографировании на полиароматическом геле

Задание и контроль условий хроматографирования

Извлечение при хроматографировании, постепенное

Камера для хроматографировани

Камера для хроматографирования

Камера для хроматографирования влажная

Камеры для восходящего хроматографирования

Количественный анализ аминокислот путем хроматографирования. Определение значений RP аминокислот

Колоночный способ хроматографирования жирных кислот

Краевой эффект при хроматографировании на пластинках

Ксантаты, хроматографирование

Лаборатории для хроматографирования на бумаге и их оборудование Хайс)

Лактоны, хроматографирование

Макромолекула хроматографировании

Методика хроматографирования

Методы предварительного хроматографирования

Обнаружение при хроматографировании на бумаге

Обнаружение при хроматографировании на колонках

Определение некоторых аминокислот по реакциям, проведенным перед хроматографированием

Перевод аминокислот в производные перед хроматографированием

Пластиякн для хроматографирования. Нанесение пробы и проявление хроматограммы Комплект оборудования для тонкослойной хроматографии Адсорбенты для хроматографии

Помещение для хроматографирования

Приборы хроматографирования

Приготовление бумаги для хроматографии и техника хроматографирования

Приготовление колонки для хроматографирования

Проба подготовка для хроматографирования

Проточный метод, многократное хроматографирование, ступенчатый метод

Растворители для хроматографирования

Реперы для хроматографирования

Рибонуклеиновая нуклеозидов хроматографированием

СПОСОБЫ ОБНАРУЖЕНИЯ, УСЛОВИЯ ХРОМАТОГРАФИРОВАНИЯ И ВЕЛИЧИНЫ Rf АНТИБИОТИКОВ

Свойства хелатов металлов и условия их хроматографирования

Стандартные вещества для хроматографирования

Техника хроматографирования

Транквилизаторы фенотиазиновые хроматографирование смес

Устройства для горизонтального хроматографировании

Устройства для нисходящего хроматографирования

Фенолы отделение при помощи хроматографирования на бумаге

Флеш-хроматографирование

ХОП Хлорорганические пестициды условия хроматографирования после отделения от ПХБ

Хроматографирование ДНФ-аминокислот на бумаге

Хроматографирование ДНФ-пептидов

Хроматографирование алкалоидов

Хроматографирование бактерий

Хроматографирование в колонке

Хроматографирование восходящее

Хроматографирование горизонтальное

Хроматографирование двухмерное

Хроматографирование для качественных методов

Хроматографирование для количественных методов

Хроматографирование на бумаге

Хроматографирование нефтей

Хроматографирование смеси известных веществ

Хроматографирование со свидетелем

Хроматографирование хлопчатобумажной нити

Хроматографирование, лабораторный

Хроматографирование, лабораторный прибор

Целлюлоза для хроматографирования

Штейна Мура хроматографирования

Штейна Мура хроматографирования аминокислот

Элюенты и условия хроматографирования

фенил оксиаценафтена при хроматографировании



© 2025 chem21.info Реклама на сайте