Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энергия распределение энергии по связя

    Интересно проверить число эффективных осцилляторов при распределении энергии соударяющихся молекул. Если предположить, что энергия по колебаниям связей распределяется равномерно, число осцилляторов 5 должно составлять 12 (в молекуле бутена 3 (т-связи С—С, одна я-связь С—С, 8 а-связей С—Н). Для -произвольного числа осцилляторов 5 при концентрации исходного вещества Са скорость бимолекулярного активирования подчиняется уравнению  [c.56]


    В процессе образования кристалла происходит перекрывание внешних электронных облаков атомов по аналогии с образованием химической связи в молекулах. В соответствии с методом МО при взаимодействии двух атомных электронных орбиталей образуются две молекулярные орбиТали связывающая и разрыхляющая. При одновременном взаимодействии N микрочастиц образуется N молекулярных орбиталей. Величина N в кристаллах может достигать огромных величин (порядка 10 ). Поэтому и число электронных орбиталей в твердом теле чрезвычайно велико. При этом разность между энергиями соседних орбиталей будет ничтожно мала. Так, в кристалле натрия разность энергетических уровней двух соседних орбиталей имеет порядок 10 Дж. Таким образом, в кристалле металла образуется энергетическая зона с почти непрерывным распределением энергии, называемая зоной проводимости. Каждая орбиталь в этой зоне охватывает кристалл по всем его трем измерениям. Заполнение орбиталей зоны проводимости электронами происходит в соответствии с положениями квантовой механики. Так, из условий минимума энергии электроны будут последовательно заполнять все орбитали, начиная с наинизшей, причем на каждой орбитали в соответствии с запретом Паули может располагаться лишь два электрона с антипараллельными спинами. С повышением температуры за счет теплового возбуждения электроны будут последовательно перемещаться на более высокие энергетические уровни, передавая тепловую энергию с одного конца кристалла на другой и обеспечивая таким образом его теплопроводность. [c.82]

    Строение двойной связи. Электронное строение тс-связи было рассмотрено в гл. 1. Дополнительно следует указать на следующее. Энергия разрыва молекулы по двойной связи С=С равна 611 кДж/моль так как энергия а-связи С—С равна 339 кДж/моль, то энергия разрыва тг-связи равна лишь 611-339 = 272 кДж/моль. тг-Электроны значительно легче а-электронов поддаются влиянию, например, поляризующих растворителей или воздействию любых атакующих реагентов (см. гл. 2). Это объясняется различием в симметрии распределения электронного облака а- и тг-электронов. Максимальное перекрывание -орбиталей и, следовательно, минимальная свободная энергия молекулы реализуются лишь при плоском строении винильного фрагмента и при укороченном расстоянии С=С, равном 0,134 нм, т. е. значительно меньшем, чем расстояние между углеродными атомами, связанными простой связью (0,154 нм). С поворотом половинок молекулы относительно друг друга по оси двойной связи степень перекрывания орбиталей снижается, что связано с затратой энергии. Следствием этого является отсутствие свободного вращения по оси двойной связи и существование геометрических изомеров при соответствующем замещении у атомов углерода (см. далее разд. 8). [c.166]


    Здесь нас будут интересовать лишь такие газы, термическое равновесие которых целиком определяется распределением энергии между различными степенями свободы неизменных по своему составу молекул. Так как опыт и теория однозначно показывают, что обмен энергии поступательного движения между молекулами происходит в результате немногих соударений, а превращение вращательной энергии в поступательную (и обратно) за некоторыми исключениями (например, Н2) также осуществляется в результате сравнительно небольшого числа столкновений, то длительно сохраняющиеся неравновесные состояния рассматриваемых газов могут быть связаны лишь с задержками в обмене колебательной энергии молекул, т. е. с затрудненностью превращения колебательной энергии в поступательную и вращательную (и обратно). Мысль [c.177]

    Пытаясь объяснить наблюдаемое для некоторых полимеров медленное снижение молекулярного веса и быстрое выделение улетучивающихся веществ, один из авторов этой главы около 15 лет назад предложил механизм с преимущественным разрывом концевых связей [300], который приводит к линейной зависимости уменьшения молекулярного веса от степени превращения. Однако этот механизм недостаточен для описания всех возможностей распада. Формально можно было бы рассматривать весь диапазон вероятностей распада. Этот путь, однако, не является удовлетворительным. Действительно, судя по нулевым энергиям углеводородов низкого молекулярного веса, скорости распада, этана и, нанример, пропана и бутанов должны быть различными [301]. На самом деле пиролиз последних двух происходит настолько быстрее, чем пиролиз первого, что это может считаться следствием действительного различия в связях [302]. Однако с увеличением размера молекул различия уменьшаются и должны стать несущественными в очень длинных цепях. Даже при допущении распределения энергий связи остаются не объясненными различия в выходе мономера. [c.280]

Рис. З.М. Распределение энергий связи Рис. З.М. <a href="/info/135268">Распределение энергий</a> связи
    Распределение энергии в мельнице является вопросом, за--служивающим значительного внимания как с точки зрения получения лучшего к. п. д. в механизмах промышленного назначения, так и при составлении схемы энергетического баланса для механизма, используемого в связи с исследованиями, касающимися теоретических вопросов размола. [c.408]

    Из предыдущего следует, что сечение захвата теплового нейтрона данным ядром весьма чувствительно к энергиям и ширинам его резонансных состояний. В частности, если существует резонансное состояние в пределах около 0,01 эв (положительное или отрицательное по энергии) относительно энергии связи нейтрона, то сечение захвата может быть очень большим. Если же резонансы достаточно удалены, то сечение может быть довольно малым и отвечать закону Hv. Таблицы сечений для тепловых нейтронов даются в приложении В. Поскольку величины сечений определялись различными экспериментальными методами, то не всегда легко сравнивать и табулировать их. Многие результаты были получены при использовании нейтронного спектра, характерного для определенного ядерного реактора. В других случаях применялись тепловые нейтроны, характеризующиеся достаточно хорошо максвелловским распределением по скоростям (нри температуре 20°). Ряд сечений был получен при определенных энергиях нейтронов, что обеспечивалось применением нейтронных монохроматоров. Следуя обычной практике, были составлены таблицы сечений реакций под действием нейтронов, обладающих скоростью 2,20-10 см/сек (что соответствует энергии 0,025 эв и наиболее вероятной скорости в максвелловском распределении при 20°). [c.337]

    Длины и энергии связи, валентные углы, а также экспериментально определяемые магнитные, оптические, электрические и другие свойства веществ непосредственно зависят от характера распределения электронной плотности. Окончательное заключение о строении вещества делают после сопоставления информации, полученной разными методами. Квантовомеханическая теория химической связи обобщает совокупность экспериментально полученных данных о строении вещества. [c.43]

    Явление удара отличается сложностью и необходимостью учета большого числа разнообразных факторов — диссипации энергии, распределения масс, конфигурации звеньев, свойств поверхностей контакта и других характеристик, трудно поддающихся математическому описанию. В связи с этим в инженерной практике широко используют приближенные методы, упрощающие задачи при введении ряда допущении п, используя несложный математический аппарат, получить решения, позволяющие правильно оценить усилия, деформации и перемещения, напряжения при ударе, продолжительность соударения. [c.88]


    Еще более широкие возможности открывает варьирование состава минералов в силу их исключительного многообразия. Кварц и силикаты, слагающие подавляющее большинство-пород, содержат в основном связи Si—О и связи катион — кислород атомы алюминия могут быть катионами или заменять Si. Эти связи играют различную роль при разрушении силикатных минералов разных структурных типов [275]. В кварце и каркасных силикатах (полевых шпатах) обязательно рвутся силоксановые связи в цепочечных и ленточных си-ликатах возможно скольжение и разрыв по определенным плоскостям, образованным только связями Ме—О в островных силикатах связи Si—О—Si отсутствуют. Перечисленные связи различаются по геометрическим параметрам (длина, валентные углы), распределению электронной плотности и энергии связи колебания этих величин для отдельных классов силикатов имеют более узкие пределы, [276]. Важно, что во всем диапазоне изменений полярности связей Si—О они остаются существенно ковалентными, несмотря на большую разницу [c.93]

    Оценим значение предэкспонента А. Пусть относительная скорость V см/с, значение ст (10-1 4-10-1 ) м тогда г (10-1 - -10-11) смЗ/с. В предположении Р 1, величина А также должна быть порядка (10- 11-1-10-1 ) см с. Однако для многих реакций значения А на 3—5 порядков ниже приведенной оценки. Эти отклонения обусловлены именно стерическим фактором Р, величина которого произвольно принята 1,4X0 с физической точки зрения означает пренебрежение распределением энергии по внутренним степеням свободы взаимодействующих частиц. Поэтому дальнейшее продвижение теории связано с попытками учета распределения энергии по внутренним степеням свободы [21, 30-38]. [c.56]

    Основные результаты, к которым приводит теория соударений, можно охарактеризовать следующим образом. Использование равновесной функции распределения означает, что в сущности статистическая часть задачи обходится. Что же касается динамической части задачи (расчета сечения соударения), то связь между характеристиками исходных реагирующих частиц и значением сечения соударения получена при весьма произвольных допущениях. В частности, теория не учитывает особенностей строения реагирующих частиц и внутреннего распределения энергии и поэтому плохо описывает многие элементарные процессы. [c.57]

    При интерпретации строения молекулы бензола с точки зрения метода ВС допускалось, что молекула бензола СбНб представляет собой наложение (суперпозицию) нескольких структур, каждая из которых отражает одно из возможных распределений локализованных связей. В методе МО о структурах нет речи. Упрощенный вариант метода МО, которым мы пользуемся, не всегда приводит к правильным результатам. Чтобы сравнить значения энергии структуры по Кекуле и структуры с делокализованными электронами с целью показать, что последняя энергетически выгоднее, требуется вычислить энергию структуры по Кекуле. Но эта очень сложная задача практически не поддается точному решению (Н. Д. Соколов), так как энергия и длина связей зависят от типа гибридизации (М. Ф. Мамотенко) и, кроме того, оказывается необходимым учитывать энергию взаимодействия связей и ряд других факторов. Тем не менее наличие бесспорных данных [c.121]

    Связи СС в циклопропильном фрагменте также имеют значительные эллиптичности как следствие близости критической точки цикла к критическим точкам связей в системах с трехчленными циклами. Сопряжение трехчленного цикла с ненасыщенной системой, представляемое с помощью орбиталей Уолша для циклопропана, здесь приобретает физическую основу как обусловленное топологическими свойствами плотности заряда. Близость критических точек связи и цикла в системах трехчленных циклов не только объясняет их сопряжение с ненасыщенной системой, но также позволяет предсказать интересные структурные следствия, возникающие в том случае, когда в этом взаимодействии принимает участие связь СС циклопропильного фрагмента, образуя гомосопряженную или гомо-ароматическую систему. Незначительное удлинение циклопропиль-ной связи СС, участвующей в. таком сопряжении, будет приводить к дальнейшему уменьшению расстояния между критическими точками связи и цикла. Следствиями этого являются уменьшение порядка связи до значения, меньшего единицы, и увеличение эллиптичности ее зарядового распределения, что в свою очередь увеличивает ее способность к сопряжению. В такой ситуации критические точки связи и цикла удерживаются в равновесии взаимной аннигиляцией . Вследствие почти полного исчезновения кривизны Р вдоль такого пути подхода для коалесценции этих критических точек, приводящей к разрыву связи и изменению структуры, требуется незначительная энергия. [c.65]

    Ответ заключен в роли кинетической энергии электрона. Это НС кинетическая энергия движения по орбите вокруг ядра (которая может приводить к центробежной силе, удерживающей элект-рсч вдали от ядра), так как угловой момент электрона в основном состоянии равен из лю. Это можно видеть из рис. 14.3 сфери-чсскп-симметричная орбиталь не имеет узлов, а следовательно, и. логюго момента. Точнее, поскольку 1=0, величина углового момента [г(г-(-1)] г/1 равна нулю. Подходящая кинетическая энергия связана, таким образом, с кривизной орбитали в радиальном направлении. Классически это представляет собой движение электрона, качающегося взат-вперед вдоль радиуса. Для того чтобы притянуть электрон ближе к ядру, радиальная часть его волновой Функции должна быть более резко загнутой, но кривизна приво- чт к росту его кинетической энергпи. Наблюдаемое основное состояние с электроном, прижимающимся ближе к ядру, но также и значительно распределенным в области, достаточно удаленной от [c.479]

    Орг. масса угля с содержанием С 70-85%, обычно применяемого для гидрогенизации, представляет собой самоассо-циированный мультимер, состоящий из пространственно структурированных блоков (олигомеров). Блоки включают макромолекулы из атомов углерода, водорода и гетероатомов (О, N. 8), что обусловливает неравномерное распределение электронной плотности, поэтому в блоках осуществляется донорно-акцепторное взаимодействие, в т. ч. образуются водородные связи. Энергия разрыва таких связей не превышает 30 кДж/моль. Различают блоки с мол. м. 200-300, 300-700 и 700-4000, р-римые соотв. в гептане (масла), бензоле (асфальтены) и пиридине (асфальтолы). Внутри блоков макромолекулы связаны метиленовыми, а также 0-, N- и 8-содержащими мостиками. Энергия разрыва этих связей в 10-15 раз больше энергии разрыва блоков. При Г.у. в первую очередь происходит разъединение блоков. Послед, деструкция блоков требует повыш. т-ры, присутствия активного Нд. Для получения из угля жидких продуктов необходимо наряду с деструкцией осуществить гидрирование образующихся низкомол. непредельных соединений. [c.555]

    Помимо указанного признак происхождения X. с. используют и др. критерии, по к-рым м. б. охарактеризована X. с. Так, характер распределения электронной плотности определяет полярность X. с.- большее или меньщее смещение электронной плотности от одного атома к другому при образовании связи. Тип Х.с. (ионный, ковалентный и др.) м.б. соотнесен также с характером и относит, положением особых точек на картах распределения электронной плотности (точек минимума, перегиба, точек разл. максимумов и т. п.). Весьма важным критерием является энергетический, к-рый основан на сопоставлении каждой X. с. нек-рой энергии связи. Для двухатомных молекул энергия связи определяется как энергия диссоциации. Для многоатомных молекул эта величина является условной и отвечает энергаи такого процесса, при к-ром данная X. с. исчезает, а все остальные связи остаются без изменения. X. с. подразделяют на прочные, или сильные (> 500 кДж/моль, напр. 942 кДж/моль доя Nj), слабые (от 100 до 15 кДж/моль, нат. 69 кДж/моль для NO2) и ван-дер-ваальсовы (порадка 5 кДж/моль и менее, напр. [c.236]

    Как указано в перечне на стр. 64, найдено [16], что полиизобутилен под действием ионизирующего излучения подвергается деструкции. Мы уже видели, что такое поведение можно связать с относительно низкой энергией связей в главной цепи полиизобутилена. Тщательное изучение действия на полиизобутилен излучения атомного реактор.я, г-излучения Со ° и электронов с энергией 4 Мэв было проведено Александером, Блеком и Чарлзби [43]. Поскольку очевидно, что основной реакцией является деструкция, экспериментальные результаты можно объяснить на основе представлений схемы чистой деструкции, описанной в разделе на стр. 85 и сл. Если в полимере осуществляется наиболее вероятное распределение по молекулярным весам, то применимо уравнение (10). Если начальное распределение несколько отклоняется от наиболее вероятного, то небольшой деструкции достаточно (см. стр. 88, рис. 18) для того, чтобы приблизить распределение к наиболее вероятному. Число разрывов связей 5, приходящееся на начальную молекулу средне-числеиного молекулярного веса, дается выражением [c.128]

    Гидрофильность, как и лиофильпооть вообще, определяется прежде всего величиной свободной энергии связи данного вещества или поверхности данного тела, напр, дисперсной фазы, с водой. Т. обр. гидрофильность можно оценить соответствующими тепловыми эффектами, измерения к-рых при различных т-рах позволяют с помощью методов химич. термодинамики вычислить свободную энергию связи. В этом смысле гидра гацию следова1го бы рассматривать как проявление гидрофильности. Обычно же гидрофильность характеризуют адсорбционной связью с водой, образованием с нею неопределенных соединений. Полная характеристика гидрофильности выражается распределением количества воды по величинам анергии связи. Для воды, адсорбционно связанной с единицей поверхности данного твердого тела, практически учитывают только энергию связи первого слоя молекул воды (мопомолекулярного слоя), так как энергия связи последующих слоев значительно меньше. Гидрофильность выражается, т. обр., дифференциальными теплотами смачивания данного тела водой на единицу его поверхности или теплотами адсорбции водяного пара. Для этого могут быть измерены интегральные теплоты смачивания или адсорбции при различных количествах адсорбционно связанной воды. [c.469]

    Молекулярные орбитали Нг составляются из равных долей двух атомных ls-орбиталей от атомов На и Нв. На МО Isa могут расположиться два связывающих электрона молекулы водорода, и такая орбиталь называется связывающей МО, тогда как орбиталь lsa называется разрыхляющей и часто обозначается сокращенно через а. Обратите внимание (рис. 2-12) на то, что связывающей МО соответствует более низкая энергия, чем исходным атомным орбиталям (понижение энергии эквивалентно энергии связи Н—Н), тогда как разрыхляющая орбиталь Isou имеет более высокую энергию, чем атомные орбитали. Разрыхляющая орбиталь lsa повышена настолько же, насколько понижена связывающая Is Tg, причем эта величина возрастает с ростом перекрывания атомных орбиталей. Распределение заряда в результирующей структуре идентично тому, к которому приводит описание в методе валентных связей. [c.70]

    Следует ожидать, что влияние полимера на механические свойства подложки должно зависеть от энергии ее взаимодействия с подложкой — адгезии. Прочная адгезионная связь пленки покрытия с подложкой обеспечивается при взаимодействии функциональных групп макромолекул с активными центрами поверхности. При этом в первую очередь закрепляются места выхода на поверхность дислокаций, поскольку они обладают высокой адсорбционной и каталитической активностью [91]. На рис. 3.30 схематически показано взаимодействие фрагмента полимерной макромолекулы с полупетлевым источником. (Дислокации, генерируемые приповерхностными источниками, обычно имеют форму полунетель.) Закрепление этого источника путем адгезионного взаимодействия в системе подложка — покрытие должно привести к воздействию на распределение дислокаций в приповерхностном слое. Поэтому время оседлой жизни адсорбированной молекулы влияет на подвижность поверхностных дислокаций и, в конечном итоге, на механические свойства металла. Очевидно, что интенсивность такого механизма упрочнения должна зависеть от энергии связи. [c.165]

    Измерение температуры пламени является одним из наименее надежных физических измерений. Это связано частично с экспериментальными трудностями и частично с тем, что определение самого понятия температуры пламени дать весьма трудно. В ходе процесса горения выделяется большое количество энергии, распределение которой в начальный момент в общем случае не всегда соответствует закону равнораспределенных между различными степенями свободы. Мы показали в предыдущих главах, что молекулы могут образовываться в возбужденных колебательных состояниях. Можно предположить также, что молекулы, образующиеся нри разложении или при столкновениях, могут в начальны момент обладать повышенной вращательной или поступательной энергией. Пламена содержат также такие активные вещества, как радикалы ОН и СН, которые могут вступать в химические реакции на любой поверхности, введенно в пламя теплота, выделяющаяся при такой реакнии, может нагреть поверхность до температуры выше температуры самого пламени. Так, например, температура, измеряемая при помощи термометра, введенного в зону пламени, может заметно отличаться от температуры газов в этой зоне. Сама температура пламени может иметь по крайне мере три значения, соответствующие эффективной вращательной, колебательной и поступательно температурам молекул. Кроме того, возможно, что моле гулы различных газов будут обладать до достижения равновесия различными эффективными температурами так, молекулы СОд могут в среднем обладать избыточной колебательной энергией, тогда как радикалы ОН могут первоначально иметь избыток вращательной энергии, а, скажем, атомы натрия, образующиеся в пламени при разложении хлористого натрия, будут сохранять избыточную кинетическую энер- [c.217]

    Молекула газообразного Na l обладает большой энергией связи, которую объясняют ионным характером связи. Такой тип связи лриводит к наличию у молекулы газообразного Na l большого дипольного момента, 8,97 D. Это соответствует перемеш,ению 0,8 заряда электрона на длину связи 2,36 А от атома натрия к атому хлора. Таким образом, молекулу Na l можно с достаточной точностью изобразить в виде положительного иона натрия, находяш,егося в зоне распределения внешних электронов отрицательного иона хлора. Как и в случае LiF (разд. 3.4,е) такое распределение электронов фактически скрепляет связывающие электроны остова атома натрия прочнее, чем если бы они находились на расстоянии среднего радиуса нейтрального атома натрия. [c.290]

    На основе метода МД для системы из 16 частиц, окруженных жесткой стенкой (потенциал 6—12), показано, что в малой системе имеется две фазы — жидкая капля и газ. Разработанная методика позволяет увидеть, как капля истускает газовые частицы (испарение), как они ударяются о стенку и, возвращаясь обратно, адсорбируются каплей. Распределение ча1стиц по потемциальным энергиям и энергиям связи бимодальное. Найдено распределение плотностей для обеих микрофаз. Ил. 4. Библ. 16 назз. [c.113]

    Часть высокой энтропии О3 возникает в результате многочисленности способов распределения энергии Е по различным степеням свободы. Другая часть может возникать при удлинении связей, что приводит к увеличению моментов инерции. Если мы просто сосчитаем число способов распределения 24 ккал между тремя колебаниями О3, приближенно это отвечает 65 положениям (если допустить, что слабое расхождение сопровождается вращением и ангармоничностью) обычно это составляет 8,3 кал/молъ-град и может быть взято как минимальное значение. Увеличение в длинах связен па 20% обычно дает [c.351]

    Когда в квантовохимических работах речь идет о связывающем характере той или иной МО, то при этом имеется ввиду не только и не столько относительное расположение этой МО и составляющих ее АО на шкале орбитальных энергий, сколько отвечающее данной МО распределение электронной плотности и изменение энергии химической связи при заселении этой МО электронами или при их удалении с нее. Поэтому лучше было бы считать МО связывающей, если удаление находящегося на ней электрона приводит к уменьшению энергии связи, а добавление — к ее увеличению (для антисвязЫвающих МО — [c.201]

    При качественной интерпретации соотношения между химическими сдвигами энергий связи электронов оболочки и распределением заряда в молекулах возникло много фальсификаций. В гл. 3 упоминалось, что с помошью метода молекулярных орбиталей можно рассчитать формальный заряд (8) на атоме в молекуле. Напомним, что формальный заряд определяется как электронная плотность на атоме в молекуле минус электронная плотность на свободном атоме. Из рис. 16.15 следует, что можно коррелировать формальный заряд на атоме азота в молекуле (полученный с помощью итерационных расчетов по расширенному методу Хюккеля) с наблюдаемыми энергиями связи 1. -электронов азота для ряда азотсодержащих соединений. Отметим, что для корреляции со сдвигом в энергиях фотоионизационных переходов электронов оболочки используют заряд основного состояния атома, который определяют произвольным образом. Наблюдаемый успех либо случаен, либо обусловлен тем, что члены, такие, как энергии электронной релаксации, сохраняют постоянное значение. [c.347]

    Величина предэкспоненциального мн9жителя, близкая по порядку к приведенной выше (1,4-Ю з с- ), получается при 5 не ниже 12, что подтверждает предположение о равномерном распределении энергии по колебаниям различных связей. [c.56]

    Рассмотрим в связи с этим, как может протекать молекулярный распад олефинов. Из сопоставления энергий связи в молекулах алкенов [4] следует, что наиболее слабой является я-связь С—С, далее связь С—Н в р-доложении и затем С—С-связь. Анализ распределения энергии при термическом активировании показал [21], что она равномерно расходуется по всем связям. Следовательно, в первую очередь будет разрываться п-связь с образова- [c.244]

    Рассмотренные явления могут быть представлены фрагментом диаграммы связи, изображенном на рис. 3.63. Здесь Зрх-элемент — источник давления Р , К-элемент — диссипация энергии газа в пневматической трубке вследствие сопротивления объемному потоку газа, а АР = Р1 — Рг на 1-структуре есть перепад давления на концах пневматической трубки. Подвод и распределение энергии газового потока топологически изображаются с помощью проводника энергии (ТГ-элемента) и О-структуры. Коэффициентом передачи ТР-элемента является эффективная площадь мембраны ПМИМ, которая зависит от его конструктивных особенностей. С-элемент на диаграмме характеризует способность надмембранного пространства ПМИМ накапливать энергию, а параметр элемента есть емкость этого пространства по газу. [c.280]


Смотреть страницы где упоминается термин Энергия распределение энергии по связя: [c.136]    [c.55]    [c.142]    [c.88]    [c.376]    [c.225]    [c.117]    [c.200]    [c.14]    [c.200]    [c.74]    [c.322]    [c.348]    [c.257]   
Лекции по общему курсу химии ( том 1 ) (1962) -- [ c.104 , c.107 , c.321 ]




ПОИСК





Смотрите так же термины и статьи:

Распределение по энергиям

Связь связь с энергией

Связь энергия Энергия связи

Энергия связи



© 2025 chem21.info Реклама на сайте