Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ванадий обмен ванадия с ванадием

    Опыт 2. Получение и исследование кислотно-основных свойств гидроксида ванадия (II). Исходя из фиолетового раствора, полученного в опыте 1, по обменной реакции получите гидроксид ванадия (II) и установите его кислотно-основные свойства. Учтите, что частичное растворение осадка в избытке щелочи связано с амфотерностью гидроксида цинка. (Ионы 2п + образовались при окислении металлического цинка в опыте 1.) [c.124]


    В результате обменной реакции ванадий и другие катионы связываются активными группами поверхности смол, а анионы РО4 проходят в фильтрат. [c.96]

    Неорганическая и аналитическая химия с использованием ионообменных смол. I. Обмен ванадия на катионитовой колонке [2684]. [c.234]

    Стереоизомеры. Кинетически стабильные р-дикетонаты (хелаты хрома(П1), кобальта(1И), родия(1П)) с разными лигандами не способны к быстрому обмену лигандами, и их можно разделять без всяких осложнений. Однако если лиганды несимметричны (например, Н—ТФА, И—ФОД), то комплексы, образованные ими, обычно существуют в нескольких изомерных формах. В частности, для октаэдрических комплексов возможно существование цис- и тране-изомера (рис. VI.4). Кинетически лабильные комплексы в растворе (и, по-видимому, в газовой фазе) подвержены быстрой изомеризации [21 ], поэтому, например, хроматограмма любого Р-дикетоната алюминия(1П) или ванадия(1П) всегда состоит из одного пика. Кинетически же стабильные комплексы не изомери- [c.53]

    Оксид ванадия (V), применяемый в печах при производстве катализаторов, является ядовитым веществом и вызывает изменение в кровообращении, органах дыхания, нервной системе, обмене веществ, приводит к воспалительным и аллергическим заболеваниям кожи. [c.270]

    В связи с полученными результатами представляет интерес изучение стабильности при прокалке катализаторов, промотирован-ных микродобавками металлов. Испытуемые образцы помещали в слой катализатора промышленного регенератора в специальном двухсекционном жесткозакрепленном контейнере, в одну секцию которого загружали свежий катализатор, а в другую — катализатор, содержащий 0,002 вес.% ванадия. После девятимесячного воздействия температуры и среды в промышленном регенераторе удельная поверхность и обменная способность обоих образцов практически не изменились. При этом индекс активности катализа тора, содержащего ванадий (35,6 пункта), оказался несколько выше, чем свежего катализатора, взятого из контейнера (35,5 пункта). Выход кокса при крекинге эталонного сырья составлял для обоих образцов соответственно 2,8 и 3,6 вес.%. Таким образом, увеличение активности катализатора, наблюдаемое при нанесении микродоз ванадия, сохраняется после его длительной прокалки и воздействия реальной среды в условиях работы промышленного регенератора. [c.147]

    Николаева В. А., Макарова Л. Н. Селективное травление ванадий-медь-никелевых пленок. — Обмен опытом в радиопромышленности, 1976, вып. 2, с. 49. [c.198]

    Изотопический обмен и возбуждение спектров уравновешенного газа разделены. Последнее дает возможность более гибко подбирать оптимальные условия анализа, обеспечивать высокую чувствительность определений. Разработаны методики определения водорода в алюминии, титане, ванадии, хроме, железе, кобальте, никеле, меди, цинке, иттрии, цирконии, ниобии, молибдене, палладии, кадмии, лантане, празеодиме, неодиме, тантале и вольфраме. Преимущество данного варианта заключается в возможной вариации температуры и времени обмена (для разных металлов и газов от 400—500° С до 2000—2100° С и от 5— 0 мин до 2—Зч), применении ваин (железных, никелевых, кобальтовых), графитовых тиглей различной формы и других необходимых в процессе анализа изменений. [c.23]


    Обмен двух- и трехвалентного ванадия в хлорнокислых и сернокислых растворах [2685]. [c.234]

    Отделение молибдена от ванадия анионным обменом в виде комплекса с тиогликолевой кислотой фотометрическое определение ванадия с помощью тиогликолевой кислоты [1407], [c.284]

    Отделение урана от ванадия ионным обменом и приложение этого метода к определению малых количеств урана [2629]. [c.348]

    Марголис [143] изучен гомолитический обмен кислорода на металлах серебре и платине, п на катализаторах полупроводниках пятиокиси ванадия и двуокиси марганца. Исходный кислород содержал 24% атомн. 0 . Для нарушения равновесия между молекулами [c.43]

    Сопоставление электронных свойств и структуры ванадиевых бронз, возникающих при модифицировании ванадий-молибденово-го катализатора, позволяет сделать вывод, что в бронзе существуют отдельные участки, внутри которых обмен электронов облегчен. Эти участки разделены изолирующими фрагментами, по размерам не превышающими элементарную ячейку, содержащую до 10 ионов ванадия и окружающих их ионов кислорода. [c.201]

    Активными катализаторами являются металлы, принадлежащие к переходным элементам, которые имеют под внешней оболочкой частично заполненный электронный слой и поэтому проявляют склонность к обмену электронов отбор внутри группы переходных элементов предопределяется требованием образования наименее стабильных промежуточных продуктов теплота образования и теплота активации при конверсии в аммиак могут быть небольшими, т. е. меньше 30—40 ккал (ванадий и тантал, например, в результате слишком высокой теплоты образования их нитридов исключаются как катализаторы в синтезе аммиака) для реакционной способности важны относительные расстояния атомов, атомных групп и молекул, т. е. пространственное расположение реагирующих компонентов, количественно выраженное Поляньи применение катализатора устраняет необходимость высокой энергии активации вследствие промежуточных реакций с катализатором, которые делят энергию активации на порции и частями добавляют ее или суммарно уменьшают требующуюся энергию активации для большинства каталитических превращений предлагается второй механизм [c.42]

    Щелочные или щелочноземельные металлы плюс катализатор восстановления, гидрогенизации или дегидрогенизации металл V или VI групп с ванадием в не способной к обмену форме [c.224]

    Активность окиси хрома в отношении изомеризации и отсутствие активности у окислов двух ближайших соседей хрома по периоду (ванадия и марганца) соответствует первому максимуму на графике зависимости каталитической активности окислов металлов четвертого периода от положения их в ряду в реакциях изотопного обмена молекулярного водорода и дейтерия, дегидрирования (пропана и циклогексана) и диспропорционирования циклогексена [22, 94]. Разница заключается в том, что при переходе от хрома к ванадию или марганцу каталитическая активность окислов в перечисленных выше процессах снижается, а в изомеризации она исчезает совсем. Своеобразие реакции изомеризации по сравнению с изотопным обменом и дегидрированием проявляется также в том, что следующие два максимума активности, отвечающие окислам кобальта и цинка, в реакции изомеризации не воспроизводятся, вместо них наблюдается лишь один небольшой максимум на окиси железа, которая сама по себе малоактивна и используется только вместе с окисью алюминия. Каталитическая активность окислов всех остальных металлов четвертого периода от меди до мышьяка в реакции изомеризации не проявляется. [c.28]

    При комнатной температуре пленка Т1 превращает о-На в п-На [215], а металлические Т1, 2г, Н1 ведут рекомбинацию Н-атомов, причем по активности эти металлы располагаются в ряд г > Т1 > ТЬ [216]. На циркониевой пленке происходит изотопный обмен этана с Оа даже при минусовых температурах (—80° С). Активность близка к активности пленок хрома и ванадия [74[. [c.82]

    Для решения любой частной проблемы важно подобрать подходящий ионообменник, так как в противном случае легко могут быть получены ошибочные результаты. Обычно применяются ионообменники на органической основе. Иониты, содержащие фенольные группы, обладают восстановительными свойствами и, следовательно, во многих случаях, например при работе с ионами серебра или ванадия, применяться не могут. Смолы феноло-формальдегидного типа неустойчивы по отношению к окислителям. Карбоксильные группы или аминогруппы е некоторых условиях могут служить лигандами для ионов определенных металлов, благодаря чему последние прочно связываются смолами. Далее функциональные группы ионита могут обмениваться на группы, связанные с ионами металла в комплексе в результате возникают дополнительные осложнения. При использовании монофункциональных сильнокислых или сильноосновных ионитов такие трудности обычно не появляются. Кроме того, такие смолы в широком интервале pH обладают постоянной обменной емкостью, которая зависит от заряда обмениваемых ионов и ионной силы раствора. [c.339]


    Над катализатором крекинга, содержащим 25% окиси алюминия [54], обмен между Н2 и Ьг при температуре 300° протекает довольно медленно. При большем содержании окиси алюминия и особенно в случае чистой окиси алюминия реакция обмена протекает быстрее. После предварительного прокаливания катализатора нри 650—800° скорость протекания реакции значительно повышается. Поскольку зависимость скорости реакции обмена от степени дегидратации катализатора и содержания в нем окиси алюминия несколько иная, чем нри каталитическом крекинге, можно сделать вывод, что протекание этой реакции обусловлено некоторыми специфическими свойствами катализатора, отличными от тех, которые приводят к реакции каталитического крекинга. Эти особенности, но-видимому, тесно связаны с известной дегидрогенизационной активностью окиси алюминия. Реакция дейтеро-водородного обмена — весьма чувствительный индикатор на загрязнение катализатора крекинга [54] такими металлами, как никель или ванадий, которые часто попадают в катализатор после продолжительной его эксплуатации на установке. [c.417]

    Если в растворе присутствует ванадий, то также рекомендуется перед ионным обменом произвести восстановление сернистым газом. Ванадий (IV) легко отделяется от фосфорной кислоты, в то время как ванадий (У) поглощается катионитом лишь частично [174]. Этим методом можно точно определить следовые количества фосфорной кислоты в присутствии больших количеств ванадия [54, 55, 96]. [c.254]

    Электрод для генерирования обычно изготавливают из платины его площадь составляет от 2 до 5 см . Исходная концентрация реагентов обычно равна 0,05—1 М, а сила генерирующего тока — до 50 мА. Многие реагенты генерируются при помощи реакции ионного обмен , для этого в ячейку помещают ионообменную мембрану в соответствующей ионной форме. В ходе процесса такие частицы, как С1 , Вг , 1 , Нг, ЭДТД2- и Са2+, замещаются конкурирующими ионами, выделяющимися при электролизе, например Н+ и 0Н . Эти ионы образуются при электролизе растворов сульфата натрия или других солей. Галогены — С1г, Вга и Ь — получаются при электролизе солей соответствующих галогенидов. Ионы металлов, например железа (И), олова(II) и ванадия (IV), получаются при восстановлении соединений этих металлов с большей валентностью. Ионы серебра (I), ртути (I) и ртути(II) генерируются при использовании в качестве компонентов анода соответствующих металлов. [c.432]

    Очень интересны в этом отношении данные, полученные Вютрихом и Конником [50], которые установили, что скорость изотопного обмена молекул воды во внутренней координационной сфере VO " возрастает на несколько порядков, когда в плоскости, перпендикулярной направлению связи ванадия с кислородом ванадила, кроме воды имеются некоторые другие лиганды. По мнению авторов, причина этого явления заключается в том, что координация отрицательно заряженных лигандов ослабляет электростатическое взаимодействие между комплексообразователем и координированной водой. Это предположение подтверждается тем экспериментальным результатом, что для трех комплексов, расположенных в порядке возрастания их отрицательного заряда, растет и скорость обменной реакции  [c.82]

    В области более высокой кислотности влияние pH в присутствии парамагнитных акваионов проявляется лишь в тех случаях, когда процесс релаксации контролируется химическим обменом протонов или молекул растворителя. При наличии в системе химического обмена протонов КРЭ резко увеличивается с возрастанием кислотности раствора. В качестве примера на рис. 3.3 приведена зависимость КРЭ от кислотности в растворах солей ванадила и трехвалентного титана. При обмене значительно изменяется коэффициент спин-спиновой релаксационной эффективности из-за большого вклада в него контактного взаимодействия. Коэффициент спин-решеточной релаксационной эффективности, как правило, с ростом кислотности изменяется значительно меньше. Поэтому определение парамагнитных акваионов в [c.67]

    Оксиды и гидроксиды ряда металлов также проявляют способность к ионному обмену. Однако в этом отношении они ведут себя неодинаково. Например, кислые оксиды молибдена (VI), вольфрама (VI), урана (VI), ванадия (V) практически не обладают анионообменной способностью, а основные оксиды титана (IV), висмута (1П) обладают лишь незначительной катионообменной способностью и ведут себя как аниониты. Такие амфотерные гидроксиды, как А1(0Н)з, 5п(ОН)4, ЫЬ(ОН)в, Та(ОН)б в кислой среде поглощают анионы, а в щелочной — катионы. [c.45]

    В нормальных условиях нелабильными по отношению к межхелатному обмену являются за редким исключением комплексонаты таких катионов, как бериллий(П), платина(П), палладий(П), ртуть(П), кобальт(П1), скандий(П1), ит-трий(П1), лютеций(И1), индий(П1), таллий(П1), хром(П1), платина(IV), цирконий(IV), гафний(IV), ванадий(V), молибден (VI) [320, 325, 347, 812]. Лабильные комплексонаты образуют, как правило, катионы щелочных и щелочноземельных элементов, магния(II), лантана(III), актиноидов [320, 326, 352, 812]]. Промежуточное положение занимают комплексы олова(П), кадмия(П), цинка(П), свинца(П), алюминия(П1) [320,810,813,814]. [c.423]

    К истинно минеральным компонентам нефти относятся различны растворимые соли, образованные металлами и кислотами, а также диспергированные до коллоидного состояния минеральные вещества, вмещающие нефть пород. В нефтях идентифицировано > 40 различных элементов, главными из которых являются ванадий и никель (см. гл. 7). Однако их следует рассматривать как входящие в состав элементоорганических соединений, а не минералов. Содержание твердых минв ральных частичек в нефти не превышает обычно 1,5 %. Из присутствие в нефти затрудняет ее транспортирование по трубопроводам, вызывав износ трубопроводов, приводит к отложению твердых остатков в тепла обменной аппаратуре, что ухудшает ее работу и повышает зольносл тяжелых остатков перегонки нефти. Минеральные примеси могут быть I виде растворенных в воде солей, например хлоридов, которые гидрО лизуются при нагреве с образованием хлористого водорода. Послед ний растворяет отложения сернистого железа, защищающего поверхность трубопроводов от коррозии. Высвободившийся сероводород участвует в дальнейших процессах коррозии. [c.48]

    В литературе опубликован ряд исследований по изотопному кислородному обмену на окислах металлов — полупроводниках, и почти не имеется данных по кислородному обмену на металлических окислительных катализаторах — платине и серебре. Влияние добавок на скорость кислородного изотопного обмена не исследовалось имеются лишь данные Борескова с сотрудниками по ускорению обмена на пятиокиси ванадия с примесью сульфата калия [290]. Суш,ественную роль в протекании процесса каталитического окисления различных веш еств играет подвижность кислорода, адсорбированного на поверхности контактов, мерой которой является изотопный кислородный обмен. Марголис и Киселев [291] исследовали изотопный обмен кислорода на типичных окислительных контактах металлическом серебре (катализатор окисления этилена в окись этилена) с добавкой галоидов Ag l, AgJ и на окиси меди (катализатор окисления пропилена в акролеин) с добавкой окислов лития, хрома, висмута и сернокислой меди. [c.193]

    В зависимости от состава сложных окисных систем изменяются скорость и энергия активации гетерообмена, т. е. подвижность и энергия связи кислорода в решетке твердого тела. В табл. 26 приведены скорости обмена при 480 °С и энергия активации процесса при изменении состава ванадий-молибденового катализатора. Видно, что введение иона молибдена в пятиокись ванадия заметно увеличивает энергию активации обмена, но меньше влияет на скорость обмена. Наибольшая энергия активации наблюдается для катализатора V205-b33% (масс.) МоОз, селективно окисляющего углеводороды. Эти данные подтверждаются работой [105], Установлено, что обмен кислорода в системе V-— Мо протекает с участием двух атомов неоднородной поверхности катализатора. [c.44]

    Первое, что невольно обращает а -себя внимание, — это относительная стабильность структуры гетерогенных катализаторов по сравнению с гомогенными. Кристаллическая решетка твердых катализаторов не меняется в процессе катализа — расстояния между атомами, образующими активный центр, остаются неизменными. Предположение о том, что некоторые из этих атомов могут вступать в обмен с.атомами субстрата (например, переход атомов кислорода от окислов ванадия к сернистому ангидриду), оказалось неверным — обмен, если он и имеет место, протекает очень медленно и не играет роли в катализе. Жесткость гетерогенных катализаторов резко контрастирует со способностью гомогенных катализаторов частично или полностью обезличиваться, ВХ10ДЯ в промежуточные состояния во время катализа. Крайней степени оно достигает, конечно, у простейших катализаторов, например, у ионов йода в йод-ионном катализе, но и в более сложных случаях индивидуальность гомогенного катализатора подвергается значительным изменениям как при образовании промежуточного продукта, так и при возникновении переходное состояния из этого продукта. [c.203]

    С этой точки зрения можно сказать, что в настоящее время экспериментальные данные, позволяющие непосредственно судить об эквивалентности или неэквивалентности обменной адсорбции компенсирующих ионов в двойном слое, совершенно недостаточны. Действительно, из приведенных примеров в случае золей сернистого мышьяка, золота, трехокиси вольфрама, пятиокиси ванадия и двуокиси титана, а также, вероятно, мастики процесс ионного обмена осложнен образованием малорастворимых солей в интермицеллярной жидкости. В случае адсорбции красителей коллоидной кремнекислотой мы, вероятно, имели дело с адсорбцией не ионов, а молеку.ч. Наконец, в случае окиси железа ничего определенного сказать нельзя, так как количества адсорбированных и вытесненных анионов не сравнивались при достаточно высоких концентрациях прибавленного электролита. Однако, как было указано, в случае коагуляции электролитами положительных коллоидов мы имеем косвенные указания на то, что процесс обменной адсорбции должен толковаться с более широкой точки зрения, не требующей соблюдения эквивалентности замещающихся компенсирующих ионов. Непосредственные указания на несоблюдение эквивалентности получены в нашей лаборатории при коагуляции щелочных золей кремнекислоты солями бария. Значительная адсорбция ионов Ва (— 10 N) сопровождается вытеснением очень малых количеств Н -ионов (— 10 Л ), причем концентрация Ка-ионов остается практически неизменной. [c.105]

    Ванадий У(1У) — У(У). В аналогичной работе [82] было найдено, что линия резонанса для У(У) в сильно кислом растворе уширяется при добавлении У(IV). ЦляУ(У) были найдены времена жизни порядка 10" — 10 сек, и их приписывают обмену электроном. [c.259]

    Нами, совместно с В. А. Киселевым [7], изучен гомолитический обмен кислорода на металлах — серебре и платине и на катализаторах полупроводниках—пятиокиси ванадия и двуокиси марганца. Гомолитический обмен кислорода не наблюдается при низких температурах на платине, серебре и окислах — полупроводниках МпОг, V2O5, что, вероятно, указывает на отсутствие диссоциации кислорода на атомы. С повышением температуры скорость гомолитического обмена увеличивается, а следовательно, возрастает число атомов кислорода на поверхности. Даже при 250—400° скорость гомолитического обмена меньше скорости десорбции кислорода, что указывает только на частичную диссоциацию адсорбированного кислорода. В своем докладе на Международном конгрессе по катализу Де Бур [8] указал, что при адсорбции кислорода на серебре и меди весьма вероятно существование иа поверхности молекулярных ионов кислорода О2 , которые легко могут образовать с органическими веществами гидроперекиси. [c.411]

    Интересно, что часть металлопорфирпновых комплексов сосредоточивается в пограничном слое, образуюш,емся при промывке нефти и нефтепродуктов водой. Порфирины и их комплексы извлекаются из нефти обычно экстракцией жидким пропаном. Для оклахом-ской нефти содержание порфиринов оказалось равным 200-10 "о [28]. В присутствии порфириновых комплексов тяжелых металлов эксплуатационные свойства топлив ухудшаются. Например, ванадий, присутствующий в остаточном топливе, вызывает сильную коррозию и общее разрушение с образованием выпадающих участков (щелей) металлической аппаратуры в зоне сгорания. Этот процесс происхо-дит на основе обменной реакции металла топливной системы с золой топлива, содержащей различные окислы ванадия. [c.93]

    Анионообмепное разделение в этилендиаминтетраацетатной среде имеет практическое значение для химика-аналитика. Эта среда особенно важна, когда необходимо разделить металлы, не поглощающиеся в солянокислой среде, например, щелочные металлы, никель, ванадий (IV) и хром (III). Как и при катионообменных разделениях (гл. 10. 14), наиболее важным фактором является величина pH используя зависимость доли комплексно-связанного металла от pH, можно выполнять разделения как па катионитах, так и на анионитах. Коэффициенты распределения при анионном обмене в среде ЭДТА установили Нельсон, Дей и Краус [20]. Некоторые результаты их работы представлены на рис. 15. 6 и 15. 7, [c.297]

    Для направленного изменения активности, селективности и стабильности катализаторов, помимо варьирования их состава, способа приготовления и вида предварительной обработки, нрим няют и такие методы, как добавление различных веществ в реакционную зону (СО2, ЗОз, Нд, ННд и т. д.), комплексообразование с обменными катионами металлов и другие, эффективность которых подтверждена на многих примерах и в работах, выполненных в последнее время [1]. Предложен способ модифицирования катализаторов из цеолитов 23М, ЦВК соединениями бора, фосфора, магния, сурьмы, ванадия и некоторыми другими, с помощью которого удалось резко увеличить селективность процессов диспропорционирования толуола, ароматизации олефинов С2— 4, алкилирования толуола метаном в отношении образования тг-ксилола [1, 10]. По существу, доказана возможность разработки стереоснецифических ката.питических процессов получения наразамещенных ароматических соединений. Процессы получения п-ксилола уже используются в промышленности [10]. Недавно освоено полупромышленное производство и-этилтолуола, перерабатываемого в и-метил-стирол, который, как ожидают, заменит выпускавшийся до настоящего времени винилтолуол, представлявший собой смесь 35 % тг- и 65 % л -изомеров [11]. И можно уже говорить об открытии новой области практического катализа. [c.140]

    Жирорастворимые витамины выполняют другие важные функции. Витамин А служит предшественником светочувствительного пигмента, претерпевающего цикл химических превращений в палочках сетчатки у позвоночных. Витамин Dз, или холекальциферол, образующийся из 7-дегидрохолестерола под действием солнечного излучения,-это основной предшественник 1,25-дигидроксихоле-кальциферола, который, подобно гормону, регулирует обмен ионов Са в тонком кишечнике и костях. Витамин К является кофактором при ферментативном образовании остатков у-карбок-сиглутаминовой кислоты в протромбине - Са -св языв ающем б ел ке плазмы крови, играющем важную роль в свертывании крови. Железо, медь, цинк, марганец, кобальт, молибден, селен и никель-все эти элементы необходимы для действия многих ферментов. Кроме того, в пище животных должны содержаться и некоторые другие элементы, в том числе ванадий, олово, хром и кремний однако их функции точно еще не установлены. [c.298]

    Изотопный обмен кислородом окисного катализатора с молекулярным кислородом служит характеристикой активности катализатора, так как симбатен с подвижностью кислорода в катализаторе. При введении окись ванадия проматоров (К2304) скорость обмена кислородом увеличивается. [c.520]


Смотреть страницы где упоминается термин Ванадий обмен ванадия с ванадием: [c.50]    [c.142]    [c.318]    [c.45]    [c.288]    [c.11]    [c.50]    [c.92]    [c.413]    [c.557]    [c.305]    [c.100]   
Использование радиоактивности при химических исследованиях (1954) -- [ c.24 ]




ПОИСК





Смотрите так же термины и статьи:

Ванадий изотопный обмен

Ванадий ионный обмен

Ванадий реакции обмена циклопентадиенильного лиганда

Ванадий, пятиокись изотопный обмен

Ванадия ион обмен между растворителем

Ванадия ион реакция обмена электрона



© 2025 chem21.info Реклама на сайте