Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Правила отбора для основных колебаний

    Г. ТОЧЕЧНЫЕ ГРУППЫ Для точечных групп правила отбора при колебаниях хорошо известны [И]. Поэтому, не останавливаясь на них подробно, с целью иллюстрации применим эти правила к молекуле симметричного трихлорбензола. В табл. 7 приведены основные колебания, активные в ИК- и КР-спектрах. Четыре колебания типа симметрии А1 и восемь колебаний (дважды вырожденных) типа симметрии Е активны в ИК-спектре, а четыре колебания типа Л, восемь колебаний типа Е и четыре колебания типа Е" активны в КР-спектре. Четыре колебания типа симметрии неактивны ни в ИК-, ни в КР-спектре. [c.98]


    В качестве примера рассмотрим свободный радикал СНз. На основе электронной конфигурации (табл. 18) можно предположить, что первое возбужденное состояние будет типа Е. Согласно табл. 19, это состояние не может комбинировать с основным состоянием (молекула предполагается плоской в обоих состояниях). Между тем этот запрещенный переход все же может происходить (хотя и с малой интенсивностью) за счет электронно-колебательного взаимодействия, но при условии, что колебательное квантовое число Vk антисимметричного колебания изменяется на нечетное число (ДУй= 1,3,. ..), а не на четное, как это должно быть для разрешенных электронных переходов (см. ниже). Тот же самый переход может оказаться разрешенным, если радикал в возбужденном состоянии будет неплоским (что, по-видимому, и имеет место на самом деле), так как в этом случае действуют правила отбора для точечной группы Сзг, накладывающие меньше ограничений. Но этот переход еще не наблюдался. Аналогичный запрещенный переход (Е"— Ai ) между первым возбужденным и основным состояниями молекулы ВНз экспериментально также пока не обнаружен. [c.158]

    Число, свойства симметрии и правила отбора основных колебаний [c.184]

    Приближение гармонического осциллятора достаточно корректно для описания основного колебания, т. е. перехода от и = 0 к 0=1. Помимо требований об изменении дипольного момента при ИК-переходах это приближение приводит еще к одному правилу отбора для поглощения света А1 = + 1. Поскольку при комнатной температуре большинство молекул находится в состоянии с и = 0. наблюдается практически только основное колебание. Нарушения этого правила связаны с ангармоничностью. Переходы ио 02-, ио- 1>з носят название первого и второго обертонов. Интенсивность первого обертона на порядок, а второго — на два порядка ниже интенсивности основного перехода. [c.268]

    Формула (VII.23) носит приближенный характер. В ней не учтена ангармоничность колебаний. Учет ангармоничности снимает вышеуказанные правила отбора это приводит к появлению в спектре не только обертонов, при которых одно из колебательных чисел меняется больше чем на единицу, но и частот, являющихся суммой или разностью частот различных нормальных колебаний. Если обертон или комбинация каких-либо частот совпадут случайно с основной частотой, то наблюдается так называемый резонанс Ферми, при котором соответствующий уровень расщепляется на два уровня это приводит к появлению в спектре двух частот вместо ожидаемой одной. Так, молекула СО2 имеет частоты 1330, 667,5 и 2350 см . Вместо частоты 1330 см в спектре комбинационного рассеяния наблюдаются две линии с частотами 1286 и 1388 см . Здесь обертон частоты 667,5 примерно совпадает с частотой 1330 см , вследствие чего наблюдается резонанс Ферми. Возможны и другие причины расщепления колебательных уровней многоатомных молекул. [c.210]


    Поэтому можно было бы предполагать, что частоты, наблюдаемые при поглош,ении, отражают переходы с нулевого уровня на первый, второй, третий,. .. с частотами V, 2v, Зт,. ... На самом же деле действует правило отбора, которое строго ограничивает число разрешенных переходов. Правило отбора, строго действую-ш,ее до тех пор, пока колебание остается идеально гармоническим, запрещает переходы, которые изменяют квантовое число V более чем на единицу. Следовательно, разрешенным является только основной переход (у = 0->- 1), и в этом приближении колебательный спектр содержит только основную полосу, частота которой равна V — характеристической частоте колебаний. [c.36]

    На Практике молекулярные колебания существенно, но не строго гармонические. Если ангармоничность колебания достаточно велика, то правило отбора может не соблюдаться и в спектре обнаруживается слабое поглощение, соответствующее обертону 2v. Интенсивность обертона составляет обычно от одной десятой до одной сотой интенсивности основной частоты. Другое следствие ангармоничности заключается в том, что энергетические уровни находятся не на одинаковом расстоянии друг от друга, как показано на рис. 2.10, а имеют тенденцию к сближению, в результате чего обертон 2v появляется при частоте, несколько меньшей удвоенной основной частоты v. [c.37]

    Расчет нормальных колебаний необходим такн е и в тех случаях, когда не все основные частоты проявляются в колебательных спектрах, в силу ли правил отбора, связанных с симметрией молекулы, или же по каким-либо другим причинам, а также в тех случаях, когда экспериментальные колебательные спектры не получены. [c.346]

    Правила отбора для вращательных переходов в данном колебательном состоянии, например, основном (рис. 5.2а), разрешают переходы только между соседними уровнями, так что оптическое возбуждение такого перехода может лишь выравнять заселенности уровней, но не приведет к инверсии заселенностей. Поэтому ДИК-лазеры работают в основном по схеме, представленной на рис. 5.26, когда накачка осуществляется на колебательно-вращательном переходе, а генерация — на вращательных переходах в верхнем и, возможно, нижнем колебательных состояниях. Инверсия заселенностей в возбужденном колебательном состоянии возникает за счет увеличения заселенности верхнего рабочего в лазерном переходе уровня, так что могут возникнуть каскадные переходы типа —1)—>-(/ —2)— 1 —3) —>... В нижнем (основном) колебательном состоянии инверсия создается за счет обеднения при накачке заселенности нижнего рабочего в лазерном переходе уровня при достаточной тепловой заселенности верхнего рабочего уровня. В этом случае могут возникнуть каскадные переходы (/"+ )—>,/", ... (рис. 5.26). Понятно, что в возбужденном колебательном состоянии, когда с начала возбуждения до времени заметного развития релаксационных процессов вращательные уровни практически пусты, инверсия заселенностей осуществляется легче, чем в основном состоянии, когда при комнатных температурах имеет место существенное заселение вращательных уровней. По-видимому, большинство наблюденных к настоящему времени лазерных ДИК-нереходов относится к вращательным переходам в возбужденных колебательных состояниях. Встречаются, однако, лазерные переходы и в основном колебательном состоянии. Здесь следует заметить, что пока более или менее однозначно интерпретирована лишь малая доля всех реализованных лазерных ДИК переходов. Это объясняется прежде всего совершенно недостаточным знанием вращательных спектров и молекулярных констант для возбужденных колебательных состояний. Поэтому среди этих переходов в рассматриваемом диапазоне спектра вполне могут быть и колебательно-вра-щательные лазерные переходы между различными типами колебаний. [c.170]

    Поскольку правила отбора и поляризация переходов, определенные для группы описывают в основном весь спектр, можно считать, что структурные изменения, приводящие к отклонению симметрии молекулы от ,v, незначительны. Однако, несмотря на незначительность этих искажений, колебание VI оказывается достаточно чувствительным к ним, и результат воздействия этих искажений можно заметить по спектру. [c.114]

    С. комбинационного рассеяния (КР-С.) дополняет сведения, получаемые с помощью ИК-С., и широко используется при анализе полимеров. В отличие от т. наз. дипольных переходов, активных в ИК-С., КР-спектры определяются в основном поляризуемостью макромолекулы. Кроме того, в КР-С. действуют несколько иные правила отбора. Так, для линейных цепных макромолекул активны колебания с типом симметрии Е , неактивные в ИК-С. [c.235]

    Следует также остановиться на возможных изменениях интенсивности полос поглощения при адсорбции вследствие нарушения под влиянием адсорбционного поля так называемого правила отбора. Как уже было отмечено, интенсивность полос в инфракрасном спектре определяется изменением дипольного момента молекулы при колебании по соответствующей нормальной координате. Однако, особенно в случае симметричных молекул, возможно существование колебаний, и не приводящих к изменению дипольного момента (рис. 3). Такие колебания в основном приводят к изменению поляризуемости молекул и проявляются в спектрах комбинационного рассеяния. [c.57]


    Одним из интересных методов анализа изменения структуры молекулы при адсорбции может быть исследование обертонных и составных частот. Условием проявления в спектре полос поглощения таких колебаний являются правила отбора, учитывающие симметрию каждого составного колебания [1—4]. Вследствие этого изменение симметрии одного из составных колебаний может привести к запрету или, наоборот, к появлению обычно запрещенной полосы составного колебания. Вследствие этого сочетание анализа частот основных и составных колебаний может дать дополнительную информацию об изменении геометрии и об ориентации адсорбированной молекулы. [c.57]

    Переходы в верхние состояния с к О возможны, если основное электронное состояние [см. уравнение (12)] имеет связанные с ним колебания решетки или же если кристалл имеет дефекты или содержит примеси. В случае колебаний решетки, связанных с основным электронным состоянием, формальное требование постоянства вектора к при переходе может выполняться, если в верхнем состоянии волновой вектор равен волновому вектору колебания решетки в основном состоянии. Такие переходы проявляются в спектрах поглощения слабо, так как их интенсивность зависит от способности колебания решетки вызвать в электронной волновой функции компонент не равного нулю вектора к. Однако изучение соответствующего момента перехода показывает, что правила отбора, как можно было ожидать, выводятся из группы волнового вектора. Если группа волнового вектора не имеет элементов симметрии, то направление поляризации не связано с осями кристалла. В противном случае направление поляризации может быть ограничено определенной плоскостью или осью кристалла. В каждом из случаев, приведенных в табл. 4, поглощение происходит только в направлении оси Ь или в плоскости ас в кристаллах [c.524]

    Единственным типом составных частот, характерным лишь для кристаллов, являются составные частоты колебаний молекулы с колебаниями решетки, по которым имеется ряд экспериментальных данных. Частоты колебаний решетки наблюдаются иногда как достаточно интенсивные линии в спектре комбинационного рассеяния при низких частотах (довольно близко к возбуждающей линии). В нескольких случаях составные частоты, активные в инфракрасном спектре, были сопоставлены с частотами решетки в спектре комбинационного рассеяния [24, 47, 63]. В общем составная частота (если она имеется) не подчиняется таким строгим правилам отбора для колебаний кристалла, как основная частота к волновым векторам кристалла предъявляется в этом случае требование (к + 6) = О, где к — волновой вектор экситона (внутримолекулярный), а 6 — волновой вектор ветви колебаний решетки, входящей в составное колебание, или вектор вторичного внутримолекулярного возбуждения. Таким образом, огибающая составной полосы может представлять сумму контуров двух (или более) образующих ее полос. Однако экспериментально было найдено, что составные полосы имеют примерно ту же ширину, что и основные, и что правила отбора для фактор-группы приблизительно выполняются. К сожалению, эти опыты были выполнены грубо и нуждаются в дальнейшей проверке. В частности, кажущееся приблизительное равенство по ширине основных и составных полос может быть обусловлено недостатками прибора, так как в более поздних работах существует тенденция показать, что по крайней мере основные полосы чрезвычайно узки. [c.588]

    Такая расшифровка полос спектра проводится следующими четырьмя способами. Первый способ—-чисто эмпирический и наиболее широко используемый—состоит в получении большого числа спектров соединений, молекулы которых содержат какую-то общую структурную единицу затем все эти спектры сравнивают между собой, находят общую, остающуюся приблизительно постоянной частоту и приписывают ее этой структурной единице. Успех такой операции обусловлен тем обстоятельством, что колебательные энергии и частоты определяются в основном массами атомов и сравнительно сильным взаимодействием между валентно связанными атомами и между связями этих атомов взаимодействие между валентно несвязанными атомами и между отдаленными связями неизмеримо слабее. Таким образом, хотя каждое колебание является, строго говоря, колебанием всей молекулы в целом, механическое взаимодействие между отдельными связями обычно настолько незначительно, что разрешает приписать отдельные колебания индивидуальным связям и группам. Во втором методе, который является полуэмпирическим развитием первого, спектр сложной молекулы сравнивается с поддающимся математической обработке спектром очень простого соединения, содержащего идентичные структурные группы анализ спектра простого соединения дает возможность расшифровать спектр гораздо более сложного вещества. Третий метод заключается в сравнении инфракрасного и раман-спектров одного итого же соединения правила отбора для процессов поглощения и рассеяния различны, и ко- [c.365]

    На практике колебательные спектры комбинационного рассеяния намного важнее вращательных. Поскольку линии комбинационного рассеяния света так слабы, что обертоны обнаружить невозможно, следует принять, что спектр, состоящий только из основных линий, появляется в результате гармонических колебаний. В этих условиях соблюдается правило отбора Av= + i, и спектр комбинационного рассеяния должен состоять из одной стоксовской и одной антистоксовской линий, сдвинутых по обе стороны от линии падающего луча на величину [c.217]

    Теория групп является разделом математики, который применяется к некоторым задачам, удовлетворяющим определенным требованиям. Есть много проблем, представляющих интерес для химика, к которым можно подойти с помощью этого метода. Сюда относятся описание молекулярных колебаний, классификация молекулярных электронных орбиталей, вывод правил отбора для переходов в инфракрасных спектрах и спектрах комбинационного рассеяния и электронных переходов, составление гибридных и молекулярных орбиталей, вывод расщеплений в кристаллическом поле и многочисленные другие применения. Мы изложим здесь вкратце основные понятия, необходимые для правильного использования таблиц характеров в спектроскопии. Более подробное изложение можно найти в книгах Коттона [2], Джаффе и Орчина [3]. [c.128]

    Более сложный случай представляет собой молекула двуокиси углерода, для которой правило 3 — 5 предсказывает четыре нормальных колебания. В молекуле СОг двум вырожденным колебаниям (уг на рис. 7-6) отвечает одна полоса. Эти колебания деформационные и происходят под прямыми углами друг к другу. В дальнейшем мы увидим, какую пользу в предсказании числа ожидаемых вырожденных полос оказывают соображения симметрии. У более сложных молекул некоторые из нормальных колебаний случайно могут быть вырожденными, когда две частоты колебаний оказываются равными. Такое вырождение предсказать трудно, и оно часто вызывает дальнейшие осложнения. Отнесение полос СОг более затруднительно, чем для 50г, поскольку в инфракрасном спектре и спектре комбинационного рассеяния возникает большее число полос. Полосы при 2349, 1340 и 667 см относятся соответственно к Уз, VI и что детально обосновано в книге Герцберга [1]. В рассмотренном примере основные частоты — три наиболее интенсивные полосы в спектре. В некоторых случаях при колебании происходит лишь небольшое изменение дипольного момента и основная частота слабая (см. в тексте первое правило отбора). [c.214]

    Правила отбора для основных колебаний [c.99]

    Исходя из результатов, полученных в разделах 4А — 4В, мы можем сразу же написать правила отбора для основных колебаний молекулярного кристалла, обладающего трансляционной симметрией. В ИК- и КР-спектрах активны только те переходы, для которых выражения (76) или (77) полностью симметричны. Поскольку основное состояние [c.99]

    Правила отбора для любого перехода полностью определяются уравнениями (85) и (89), если известны представления всех рассматриваемых энергетических состояний. Здесь мы укажем на несколько примеров обертонов и составных полос. Для первого обертона или двойной составной полосы начальное состояние 115 есть основное состояние (полносимметричное). Конечное состояние ф/ — это комбинация первого возбужденного состояния и двух основных колебаний VI и V2. Представление — произведение представлений двух состояний 13v и которые определяются уравнением (89), где 1 и т з/ заменены на и соответственно. Если принадлежит к активному представлению (т. е. если соответствующая величина af Ф 0), то составная полоса разрешена. Для первых обертонов, для [c.116]

    Во многих случаях для облегчения анализа спектров может быть применен чрезвычайно полезный метод, основанный на зависимости частот колебаний от масс атомов. Замещение атомов их изотопами, в частности замещение атомов водорода в углеводородах атомами дейтерия, заметно изменяет инфракрасные спектры и спектры комбинационного рассеяния н позволяет получить ряд важных сведений. Поскольку силовые постояниые практически не зависят от изотопического состава, исследование спектров полностью дейтерированных углеводородов позволяет получить допо.инительиое число частот для вычисления силовых постоянных и поэтому применяется в ряде с-дучаев. Кроме того, частичное дейтерирование симметричных молекул уменьшает их симметрию, изменяет правила отбора и приводит к расщ(шлению вырожденных колебаний на невырожденные (т. е. к снятию вырождения с некоторых колебаний). Подобные изменения часто чрезвычайно важны для определения и отнесения основных частот исходных (недейтерированных) углеводородов. [c.301]

    Наибольшим значениям молярных коэффициентов поглощения для разрешенных переходов соответствуют величины порядка е == 10 . Подобные интенсивные полосы всегда следует относить к синглетным переходам (переходы без изменения направления спина). Основное состояние почти всех органических соединений — син-глетное состояние, и вероятность изменения спина при возбуждении электронов очень мала. Переходы между электронными состояниями с одинаковой симметрией распределения заряда запрещены. Однако вследствие воздействия колебаний ядер распределение электронов в основном и возбужденном состояниях может изменяться. Это приводит к осуществлению слаборазрешенных переходов. Интенсивность полос поглощения, соответствующих запрещенным по симметрии переходам, мала (табл. 5.15). Точно так же запрещены переходы с изменением спина электрона. Тот факт, что, несмотря на эти правила отбора, подобные переходы все же можно наблюдать, объясняется сочетанием собственно синглет-ного и триплетного состояний. Однако переходы, запрещенные по спину, отличаются особенно низкой интенсивностью [58]. [c.230]

    Установление колебательных правил отбора осуществляется обычным способом. Произведение представлений исходного и конечного состояний должно содержать в своем разложении представление оператора перехода. В случае колебаний исходным состоянием является основное состояние, обладающее симметрией гамильтониана для основного состояния. Оно должно быгь полносимметричным. Вывод правила отбора основывается на том, что разрешенный колебательный переход должен происходить в возбужденное колебательное состояние, которое обладает трансформационными свойствами какой-либо компоненты оператора перехода. Для обычного поглощения или испускания излучения (инфракрасная спектроскопия) речь идет о компонентах дипольного оператора. В группе С20 компоненты дипольного оператора преобразуются по представлениям Ль В1 или В2. Все эти типы симметрии колебаний молекулы воды отвечают разрешенным в инфракрасном спектре переходам. В спектроскопии комбинационного рассеяния оператором перехода является оператор поляризуемости, который преобразуется как квадрат дипольного оператора. Его компоненгы зависят от декартовых координат как х , г/ г , ху, хг и уг. Представления, по которым преобразуются эти компоненты, обычно тоже указываются в таблицах характеров. Для группы С20 имеются компоненты поляризуемости, которые преобразуются по каждому из ее пред-сгавлений. Следовательно, любой тип колебаний молекулы с [c.335]

    Правила отбора для появления основных частот нормальных колебаний, т. е. для 1-переходов между основным состоянием молекулы фо и первыми возбул денными однофононным и колебательными состояниями сводятся к равенству представления Гф представлениям координат х, у или г, так [c.664]

    Правила отбора при поглощении в ИК области или при комОивац. рассеянии связаны с изменением электрич. ди-польного момента или соотв. поляризуемости молекулы при данном Колебат. переходе и зависят от симметрии молекулы и формы колебания. Напр., при наличии у молекул центра симметрии все колебания, проявляющиеся в ИК спектре, запрещены в спектре комбинац. рассеяния, и наоборот (правило альтернативного запрета). К. м., сопроааждающиеся в основном изменением к.-л. длин связей, наз. валентными, а изменением к.-л. углов — деформационными, в Колебания молекул. 2 изд.. М., 1972. Ю. А. Пентин. [c.266]

    Разрешенные переходы между дискретными колебательными состояниями определяются соответствуюшими правилами отбора. Основное из них гласит, что переход меШу двумя колебательными состояниями, связанный с поглощением соответствующего фотона, возможен только в том случае, если прн колебании изменяется дипольный момент молекулы. Поэтому валентные колебания двух одинаковых атомов в двухатомной молекуле (например, в Вгг) не приводят, к появлению соответствующей колебательной полосы в ее спектре. Второе основное правило отбора гласит, что разрешены переходы только между колебательными состояниями, для которых различие в колебательном квантовом числе равно единице, т, е. Аи = zf 1. Как уже было указано, это правило отбора обусловлено тем, что обертонные полосы обладают гораздо более низкой интенсивностью, чем основные. [c.162]

    В связи С тем, что для данного колебательного движения а также в связи с тем, что здесь рассматривается переход с бесколебательного уровня основного состояния, второе произведение представлений всегда содержит иолносимметричную компоненту таким образом, правила отбора будут определяться лишь первым произведением. Учитывая, как уже отмечалось, что основное состояние для большинства молекул полносимметрично, замечая также, что /"ш = Гдк = Гк, и отбрасывая Г ) , которое всегда содержит Г , получаем Го. Га - Гк Ч Г . Таким образом, второе слагаемое в Мо, пк будет отлично от нуля, если прямое произведение представления электронного состояния и представления колебания преобразуется, как одна из компонент радиуса-вектора системы [Гп Гк = Го.) этот результат определяет возможность наблюдения в спектре электронно-колебательных полос, представляющих собой наложение колебательного кванта на электронную частоту (vэл. кол = эл + > кол). [c.43]

    Ближний инфракрасный свет возбуждает молекулы до высших уровней колебательной энергии. Нелинейные молекулы, состоявшие из п атомов, имеют Зге — 6 форм колебательного движения. Однако по двум причинам не все эти формы связаны с наблюдаемыми полосами инфракрасного поглощения. Во-первых, в симметричных молекулах некоторые из основных форм должны быть идеитичными, или вырожденными во-вторых, чувствительное к инфракрасному облучению колебание в процессе возбуждения до высшего уровня должно изменить дипольный момент молекулы. Примером этого правила отбора служит частота растягивающего колебания дво11-ной углерод-углеродной связи. Соответствующая частота у большинства олефиновых соединений приходится на область между 1600 и 1680 см но отсутствует у симметричных т/)аис-алкенов. Эти соедипения не имеют дипольного момента, и растягивание связи С=С его не создает. [c.631]

    Возмущения, в которых происходит суперпозиция переходов, могут быть как внутри-, так и межхромоформными. Общие правила отбора основаны на предположении, что молекула имеет определенную конфигурацию, которая не изменяется при возбуждении. Однако атомы в многоатомных молекулах всегда совершают различные колебания, например ножничные, которые периодически изменяют конфигурацию. Прямое произведение симметризованных выражений волновых функций вращательного и электронного основного и возбужденного состояний может поэтому содержать член со свойствами симметрии трансляционного движения, в то время как произведение только электронных функций не содержит таких членов. Переход становится разрешенным в гой небольшой степени, в какой возмущающая вибрация изменяет электронную волновую функцию. Более того, конфигурации молекулы в основном и возбужденном состояниях могут настолько отличаться, что номинально запрещенные переходы становятся разрешенными вследствие изменения симметрии молекулы. Изменение электронной волновой функции в результате резкого изменения конфигурации молекулы велико, но отсутствие движения ядер во время электронного перехода (в соответствии с принципом Франка — Кондона) приводит к тому, что результирующее поглощение света обычно мало. [c.326]

    Возможности такого подхода к интерпретации спектральных проявлений адсорбции уже продемонстрированы на ряде примеров (см. главу II). Полученные в настоящее время для многих кристаллических адсорбентов, в том числе для цеолитов, потенциальные функции создают основу для проведения такого рода расчетов. Следует подчеркнуть, что расчет частот колебательных и либрационных движений молекул в поле адсорбента с учетом потенциальной энергии взаимодействия молекулы с адсорбентом представляет основной способ интерпретации спектров в далёкой инфракрасной области. Однако потенциальные функции молекулярного взаимодействия содержат параметры, смысл и значение которых могут быть раскрыты и уточнены именно с помощью спектральных исследований. В частности, большие и еще неиспользованные возможности в интерпретации спектрй колебаний поверхностных структур имеет учет симметрии поля поверхности. Особое значение это имеет при анализе спектра составных и обертонных колебаний, правила отбора которых иаи более чувствительны к симметрии составляющих колебаний и, следовательно, к симметрии поля, в котором эти колебания происходят. [c.435]

    Правила отбора для поглощения света требуют, чтобы для разрешенного перехода начальное и конечное состояния отличались типами трансляционной симметрии. Для группы Огл, приведенной в табл. 3, это означает,, что переходы, начальным состоянием для которых является состояние Ag,. могут совершаться только в состояния типов симметрии Вш, В и. и В и,-Значительный интерес для спектроскопии представляет возможность того, что эти типы симметрии, которые нельзя применить к электронной волновой функции состояния, годятся в случае внбронной волновой функции, представляющей собой сочетание электронной волновой функции и функции неполносимметричного колебания. Таким образом, комбинация электронного состояния тина симметрии Вщ с одноквантовым колебанием типа b g дает вибронное состояние симметрии Вы х sg = Bzu- Однако если принято приближение Борна — Оппенгеймера, то момент перехода из основного-состояния в это вибронное состояние равен нулю, что соответствует переходу без момента , даже если этот переход формально разрешен. Это объясняется тем, что в указанном приближении колебательные волновые функции в интеграле момента перехода могут быть вынесены в виде общего множителя за знак интеграла  [c.543]

    Основное свойство симметрии цепей — возможность построения всей цепи путем размножения элементарных фигур (мономерных звеньев), из к-рых она построена, операцией винтового смещения (рис. 2), т. е. поворотом фигуры на угол Q = 2nqjp вокруг осп цепи с одновременным сдвигом ее вдоль оси на долю периода идентичности (с/р). Частным случаем винтового смещения является, очевидно, чистая трансляция 6 = 0 или 0=2л. Симметрию макромолекулярной системы наиболее удобно рассматривать в рамках математич. теории групп. Для определения правил отбора в К. с. полимеров пользуются понятиями одномерных пространственных (линейных) математич. групп и их фактор-групп. Все спектрально активные частоты цепи получаются из рассмотрения элементарной ячейки одномерного кристалла — регулярной изолированной макромолекулы. Активны лишь те колебания, при к-рых одинаковые атомы во всех элементарных ячейках кристалла колеблются в фазе. Это т. наз. частоты группы (математич.) элементарной ячейки , или колебания, получающиеся из неприводимых представлений фактор-групп. Наиболее распространенными для макромолекул линейными группами являются фактор-группа к-рой циклическая С(2яд/ э),и % фактор-группа к-рой диэдральнаяи(2л /js). Единственным элементом симметрии группы является винтовая ось, совпадающая с осью цепи. В группе 2, кроме этого, появляются дополнительные элементы симметрии — оси второго порядка, перпендикулярные оси цепи. Группа описывает, иапр., симметрию макромолекул всех изотактич. виниловых полимеров, изотактич. полиальдегидов и др., а группа — полиоксиметилена, полиоксиэтилена и многих синдиотактич. виниловых полимеров. [c.531]

    Сложные колебания многоатомной молекулы могут быть разложены расчетом в соответствующих нормальных координатах (Герцберг, 1945 Вильсон, Дешиус и Кросс, 1955) на ряд основных типов колебаний, называемых нормальными колебаниями. Симметрия молекулы определяет, будет или нет данное нормальное колебание активно в ИК-спектре и даст ли оно полосу поглощения. Правила отбора, определяющие появление ИК-полосы поглощения, будут таким образом тесно связаны с симметрией [c.66]

    В последнее время широко распространилось определение строения сложных неорганических молекул при помощи инфракрасных спектров. Наблюдаемый спектр сравнивают со спектром, рассчитанным для принятой модели с применением математически (на основании теории групп) выведенных правил отбора (т. е. это метод проб и ошибок, ср. с разд. 6.1—6.3). Метод инфракрасной спектроскопии применяли, в частности, для определения строения гидридов бора (разд. 2.5), окислов азота, межгалогенных соединений, изомеров координационных соединений и карбонилов металлов. Так, инфракрасный спектр диборана (ВгНб) состоит из восьми полос, причем все они, по-видимому, основные. Если в структуре имеются мостиковые атомы водорода, то правила отбора предсказывают восемь частот колебаний, активных в инфракрасной области. Аналогичные исследования подтвердили, что в некоторых полиядерных карбонилах имеется два типа групп СО концевые карбонильные группы, поглощающие примерно при 2000 и мостиковые карбонильные группы, которые поглощают при ---1800 сж" . На этом основании Ре2(С0)э — карбонил такого типа — имеет структуру, приведенную на рис. 6.17. [c.213]

    Прежде всего сделаем попытку классифицировать методы в соответствии с тем, позволяют ли они получить сведения о геометрии и размерах молекул, т. е. о пространственном распределении ядер, или информацию о характеристиках связей, т. е. о пространственном и энергетическом распределении электронов. Конечно, во многих случаях один и тот же метод можно использовать для решения различных задач однако для обсуждения электронного строения молекул обычно требуется сначала построить какую-либо теоретическую модель, такую, например, как модель теории МО, в то время как определение равновесных положений ядер чаще всего основывается на соображениях симметрии или правилах отбора, не зависящих от какой-либо специальной модели. Например, дифракционные методы лишь очень редко используются для исследования распределения электронов, хотя в принципе это возможно, поскольку рассеяние падающих пучков, за исключением нейтронных пучков, происходит на электронах. Аналогичным образом с помощью спектроскопических методов, например ИК- или ЯМР-спектроско-пии, по числу наблюдаемых линий часто удается получить информацию, вполне достаточную для того, чтобы с помощью правил отбора с высокой степенью надежности опредатить форму молекулы. Однако сведения об электронных плотностях можно получить только при использовании теории, которая определяет пространственное распределение электронных оболочек более детально, чем это вытекает только из свойств симметрии. С другой стороны, мы часто не доверяем данным о размерах и симметрии молекулы, полученным с помощью только УФ-спектроскопии, если они не подтверждены результатами кристаллографических исследований или данными о колебаниях молекулы. Но даже и в том случае, когда такие подтверждения имеются, УФ-спектроскопия является в основном методом исследования электронного строения молекул. Отличительная особенность методов, чаще всего используемых для определения размеров и формы молекул, состоит в том, что они связаны с применением правил отбора, и по крайней мере в начальной стадии исследования такими методами не возникает необходимости измерять интенсивность переходов достаточно лишь установить предварительно, наблюдаются ли данные переходы или нет. Например, изучение и интерпретация данных об интенсивности в ИК-спектрах и спектрах комбинационного рассеяния представляют собой весьма трудную задачу. Тем не менее часто удается вполне однозначно определить геометрию молекулы просто с помощью анализа числа полос, проявляющихся в указанных спектрах, как это будет показано ниже на примере фторидов ксенона. [c.393]

    Рассмотрим в заключение спектр конечного кристалла (конечная цепь). Этот случай подробно рассматривается в гл. IV, но мы хотим упомянуть здесь о нем в связи с температурной зависимостью разрешенных полос поглощения. Поскольку теперь мы рассматриваем изолированный сегмент конечной длины, то борновские граничные условия не выполняются и нельзя строго применять правила отбора, справедливые для бесконечно длинной цепи. В качестве примера снова рассмотрим цепь, которая, как и на рис. 23, состоит из шести повторяющихся единиц. При температуре абсолютного нуля заселено только основное состояние. Как мы покажем в гл. IV, активными являются не только переходы О—О, но также и другие, а именно О—1, О—2 и т. д., приче.м в ряду от О—О до О—5 интенсивность переходов уменьшается. Такой низкотемпературный спектр схематично показан на рис. 25, а . При комнатной температуре, кроме основного состояния, заселены другие низкознерге-тические состояния решетки, поэтому всевозможные переходы становятся активными в ИК-спектре (рис. 25, б), но переход О—О все равно остается самым интенсивным. Слабые линии (в данном случае их 35) обычно не проявляются как отдельные полосы поглощения, а проявляются в виде широкой размытой полосы поглощения. Во многих случаях мультиплетность линий проявляется в виде непрерывного поглощения, в результате чего наблюдается возрастание фона в спектре поглощения. Можно было бы ожидать, что при низких температурах мы будем наблюдать пять отдельных линий (рис. 25, а). Спектр такого типа показан на рис. 72, а (гл. IV) для крутильных колебаний СНг-групп в С2 Ндо при —160° [30]. Эта цепь состоит из 22 групп СНг. В гл. IV она рассматривается как набор 22 связанных осцилляторов. Колебательная энергия определяется частотными ветвями (рис. 26, а) как функция —> [c.106]


Смотреть страницы где упоминается термин Правила отбора для основных колебаний: [c.307]    [c.165]    [c.266]    [c.141]    [c.141]    [c.641]    [c.171]    [c.534]    [c.337]    [c.15]    [c.101]    [c.118]   
Смотреть главы в:

Инфракрасная спектроскопия высокополимеров -> Правила отбора для основных колебаний




ПОИСК





Смотрите так же термины и статьи:

Правила отбора



© 2024 chem21.info Реклама на сайте