Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Синтез метанола побочные реакции

    Синтез метанола под давлением сопровождается образованием побочных продуктов, влияние которых на скорость образования метанола учесть весьма трудно. В то же время побочные продукты — вода, сложные эфиры, высшие спирты, альдегиды, кетоны, кислоты, углеводороды и др. — влияют на хемосорбцию исходных и промежуточных продуктов, образование активированных комплексов и в итоге — на кинетику образования метанола. Эти факторы являются одними из основных причин разнообразия применяемых лимитирующих стадий и получаемых кинетических закономерностей, поскольку условия исследований процесса практически всегда в чем-то отличались друг от друга. В исследованиях по кинетике синтеза метанола взаимодействие катализатора с компонентами реакции учитывалось также недостаточно. [c.64]


    Образующиеся при синтезе побочные продукты оказывают существенное влияние на стадию хемосорбции и на кинетику образования метанола в целом. Поэтому, для реакции синтеза метанола предложено большое количество различных кинетических уравнений, выведенных на основе выдвинутых их авторами предположений о механизме реакции. Независимо от этого, время контактирования для реальных условий процесса синтеза может быть рассчитано по формуле  [c.264]

    Считаем, что на реакцию синтеза метанола и основные побочные реакции затрачиваются газы с соотношением < =2,00. [c.145]

    Температура и давление, при которых протекает процесс образования метанола, зависят от типа используемого катализатора, состава синтез-газа. Главным источником синтез-таза является конверсия природного газа. Состав конвертируемого газа должен характеризоваться определенным соотношением компонентов (Н2+СО2) (СО+СО2). Для синтеза метанола в промышленных условиях это соотношение должно находиться в пределах 2,15—2,25. Катализаторы для синтеза метанола подразделяются на две группы цинкхромовые и медьсодержащие. Синтез на цинкхромовом катализаторе ведется при температуре 350—400 С и давлении 3-10 Па. Крайне важен контроль за параметрами процесса, чтобы подавить побочные реакции. [c.261]

    Регулировать температуру при синтезе метанола более сложно, чем при производстве аммиака, из-за многочисленных побочных, сильно экзотермических реакций. По этой причине, кроме синтез-газа, в различные точки реактора дополнительно вводят холодные газы. [c.300]

    Экзотермические процессы, происходящие с выделением тепла, характеризуются наличием оптимальной температуры, соответствующей максимальному выходу продукта. Как показано на рис. 8, при постоянстве времени контакта газа с катализатором т, давления Р и концентраций исходных веществ Си, С при возрастании температуры / выход продукта сначала повышается и затем вследствие смещения равновесия в сторону исходных веществ, обязательно проходит через максимум, соответствующий оптимальной температуре. В некоторых каталитических процессах при повышении температуры начинаются побочные реакции, и выход целевого продукта необратимо снижается значительно сильнее, чем по причине обратной реакции. Так происходит, например, при синтезе метанола и высших спиртов. [c.42]


    Важное значение имеет точная регулировка температуры в колонне синтеза. Колебания температуры приводят к развитию побочных реакций и к ухудшению качества метанола-сырца. Особенно опасны реакции метанирования, сопровождающиеся резким скачком температуры (до 1000° С) и приводящие к спеканию катализатора. Эти обстоятельства учитываются при конструировании аппаратуры для синтеза метанола. [c.7]

    Один из недостатков системы такого типа (его иногда не замечают) — опасность образования побочных продуктов или увеличения концентрации примесей. По этой причине ее не используют для реакций, в которых возможно образование побочных продуктов (например, синтез метанола), но она используется очень успешно для изучения кинетики синтеза аммиака (рис. 13). [c.59]

    В отличие от синтеза аммиака (том 1) при синтезе метанола параллельно с основной реакцией протекают побочные реакции  [c.261]

    Окисление аммиака до элементарного азота, глубокое окисление метанола до СО2, наличие побочных реакций при окислении нафталина и в процессе окислительного аммонолиза пропилена предъявляют довольно жесткие требования к технологическому режиму процесса. Все перечисленные факторы и обусловливают температурный режим окислительных процессов. Очевидно, для экзотермических процессов, протекающих вблизи термодинамического равновесия (окисление SOg, H l и др.), надо добиваться понижения температуры с увеличением степени превращения. Для процессов во внешнедиффузионной области (нанример, окисление СНдОН) желателен режим, близкий к изотермическому, особенно для избирательного катализа, при котором отклонение температуры на 10—20 град от заданной (нанример, нри синтезе высших спиртов) приводит к резкому возрастанию скорости побочных реакций или к снижению скорости основной. Очень часто термостойкость продуктов реакции диктует условия температурного режима. [c.138]

    Некоторое количество метанола можно заменить на диметиловый эфир - побочный продукт синтеза метанола. Источником катализатора является иодистый кобальт, который в условиях реакции превращается в гидрокарбонил кобальта и иодистый водород. Реакция протекает при температуре 250°С и давлении 650 атм. Как и следовало ожидать, в этих условиях метанол взаимодействует с уксусной кислотой с образованием метилацетата. Поэтому, чтобы регулировать концентрацию ме-тилацетата, в реакционную смесь вводят воду, В реакторе имеются примерно следующие концентрации упомянутых компонентов 30% метилацетата, 30% уксусной кислоты, 30% воды и 10% метанола. Метилацетат, катализатор и незначительное количество побочных продуктов возвращаются в реактор. Выход уксусной кислоты в расчете на метанол составляет 90%. [c.297]

    На рис. 3 приведены изотермы процесса синтеза метанола с учетом побочных реакций и диффузионного торможения. [c.185]

    Влияние паров воды на скорость реакции синтеза метанола связано с протеканием параллельных и последовательных побочных реакций (образование эфиров, альдегидов, спиртов) [74]. Об этом свидетельствуют следующие факты. При работе на сухом газе содержание побочных продуктов всегда возрастает при повышении температуры, парциального давления оксида углерода и снижении объемной скорости газа. Аналогичные закономерности наблюдаются и при введении паров воды. Таким образом при всех условиях, способствующих реакциям образования побочных продуктов, пары воды замедляют скорости этих реакций, что, видимо, отражается и на скорости образования метанола и в итоге повышает производительность цинк-хромового катализатора. [c.79]

    Непосредственное эксперимептальное определение равновесного состава реакционной смеси при синтезе метанола, проведенное рядом исследователей (табл. У-1), не дает надежных результатов вследствие усложнений, вызываемых протеканием побочных реакций. Поэтому единственно правильным путем определения равновесия реакцин синтеза метанола является расчет. [c.403]

    При каталитическом взаимодействии оксида углерода (II) с водородом образование кислородсодержащих соединений является побочной нежелательной реакцией. Однако возможность варьирования составом продукта синтеза путем изменения технологических параметров процесса, в частности применения других катализаторов, послужило основой разработки способа получения из синтез-газа метанола. В основе производства метанола лежат реакции, протекающие по уравнениям  [c.244]

    Основными способами получения -пропилового спирта в настоящее время можно считать выделение его из отходов производства этилового спирта ферментативным брожением, выделение из побочных продуктов синтеза метанола гидрированием окиси углерода или из продуктов изосинтеза, а также окислением пропан-бутано-вой фракции. Однако наиболее перспективным и экономически целесообразным способом получения нормального пропанола является, очевидно, каталитическое гидрирование пропионового альдегида, получаемого по реакции оксосинтеза путем карбонилирования этилена. [c.57]


    При синтезе метанола наряду с основной реакцией протекают и побочные  [c.312]

    Полученные результаты для реактора синтеза аммиака нельзя распространять на другие процессы. Синтез аммиака протекает удовлетворительно в широком диапазоне температур (400—550° С) относительно далеко от равновесия побочные реакции отсутствуют. Совсем иная картина наблюдается при проведении селективных каталитических процессов, нанример, в реакторах синтеза метанола, высших спиртов и других, где рабочий температурный диапазон узкий и отклонения от него могут привести к температурным вспышкам, побочным реакциям. [c.77]

    Это объясняется тем, что при высоких давлениях увеличивается интенсивность образования побочных продуктов. Скорость их образования уменьшается, если поддерживать на входе в слой катализатора соотношение Нг С0>4. Именно из уравнения 2.19 следует, что максимальная скорость реакции синтеза метанола на цинк-хромовом катализаторе наблюдается при соотношении Нг СО, равном 4. При пониженных давлениях образование побочных продуктов минимально, а при атмосферном давлении из водорода и оксида углерода образуется только метанол [67]. Поэтому максимальная скорость реакции наблюдается при стехиометрическом соотношении Нг СО это вытекает из уравнения 2.21. Для снижения скорости образования побочных продуктов на цинк-хромовом катализаторе предложено вводить в исходный газ пары воды [74]. Причем влияние воды проявляется более эффективно при высоких температурах, парциальных давлениях оксида углерода и малом времени контакта. [c.65]

    Синтез метанола—сложный гетерогенно-каталитический процесс, сопровождающийся образованием побочных продуктов по последовательным и параллельным стадиям реакций. Под воздействием примесей в исходном газе (соединений железа, серы, хлора) и состава реакционной среды катализатор со временем меняет химический состав и стимулирует развитие качественно новых процессов. Эти изменения не учитываются ни одним из известных кинетических уравнений и, по-видимому, ими обусловлены различия во взглядах на механизм синтеза метанола и в выборе лимитирующих стадий процесса. [c.71]

    Снижение производительности при любом размере зерна катализатора при температурах выше точки максимума производительности чаш,е всего объясняют увеличением скорости побочных реакций (изменением селективности процесса), а не приближением к равновесию. Действительно,, степень приближения к равновесию в лучшем случае достигает 36%, а при 380°С— 27% (рнс. 3.3 размер зерна 0,5—1,0 мм, давление 34,5 МПа, соотношение Нг СО = 2,2—2,3, объемная скорость газа 40-10 ч >)-Именно вследствие низкой степени превращения исходных компонентов промышленный синтез метанола проводят по непрерывной циклической схеме после выделения метанола в конденсаторах давление газа доводят до рабочего и вновь подают его в колонну — смешивают с исходным газом, поступающим из отделения конверсии. Ведение процесса при температуре выше 400 °С становится опасным, так как в результате реакций мета-нирования, сопровождаемых интенсивным выделением тепла [c.74]

    Пары воды присутствуют в газах синтеза, но концентрация их невелика. Часть их поступает вместе с исходным газом, а основное количество образуется в самом процессе в результате побочных реакций. Естественно предположить, что введение паров воды может снижать содержание примесей в метаноле-сырце за счет сдвига равновесия, например реакции  [c.78]

    ИЛИ за счет снижения скоростей побочных реакций. Эксперименты показали [94], что введение паров воды не только несколько снижает содержание примесей, но в определенных условиях значительно увеличивает активность катализатора. Установлено, что производительность катализатора меняется в зависимости от содержания паров воды в газах синтеза. В интервале исследованных температур и при давлении 32 МПа максимальное повышение производительности (на 25—45%) наблюдается при парциальном давлении паров воды, равном 0,07—0,17 МПа. При повышении температуры оптимальное содержание паров воды увеличивается (рис. 3.7 парциальное давление СО 3,8 МПа, объемная скорость газа 40-10 ч ). По достижении определенной концентрации паров воды дальнейшее повышение ее тормозит образование метанола вплоть до содержания, характерного для аналогичных условий синтеза при работе на сухом газе. Следует отметить, что чем ниже температура процесса, тем уже интервал концентраций паров воды, при котором наблюдается повышение производительности. При увеличении парциального давления оксида углерода эффект влияния паров воды остается [c.78]

    Как уже было отмечено, при синтезе метанола на катализаторах наряду с основными реакциями взаимодействия оксидов углерода и водорода протекает большое число последовательных и параллельных реакций, в результате которых получается значительное количество побочных веществ. Это не только отражается на качестве продукта, но значительно ухудшает и показатели процесса, осложняя схему выделения метанола-ректификата и увеличивая расход газового сырья и энергетические затраты. [c.96]

    Образованию побочных продуктов способствует уменьшение давления, повышение температуры и присутствие железа, которое катализирует побочные реакции. Железо аппаратов образует пентакарбонил железа с окисью углерода Fe (СО) 5, который, разлагаясь на катализаторе, покрывает его тонким слоем железа. Поэтому колонны для синтеза метанола футеруют медью или изготовляют их из высоколегированных сталей, более устойчивых к карбонильной коррозии. Циркулирующий газ очищают от карбонила железа активированным углем. Схема синтеза показана на рис, 108. В результате синтеза получается содержащий [c.257]

    Тем не менее были найдены катализаторы, особенно благоприятные для синтеза метанола используя их при больших объемных скоростях и поддерживая малой степень превращения за один проход, удается избежать побочных реакций. [c.315]

    Теоретически в установках с фракционной рециркуляцией использование сырья должно быть полным, т. е. все свежее сырье, поступающее на установку, должно подвергаться химическому превращению. В действительности, этого достигнуть не удается, особенно когда сырье и рециркулят — газообразные смеси. Дело в том, что сырье, поступающее в установку, не абсолютно чистое и содержит инертные примеси кроме того, некоторое количество инертных примесей образуется в самом процессе вследствие побочных реакций. Так, например, при синтезе метанола из окиси углерода и водорода вместе с газом синтеза вносится некоторое количество азота и углекислоты, и в процессе реакции образуется немного метана. Эти инертные примеси не расходуются на реакцию и накапливаются в циркуляционном газе. Постепенно концентрация их повышается настолько, что это начинает заметно отражаться на скорости образования полезного продукта. Для снижения концентрации инертных газов часть циркуляционного газа периодически или непрерывно удаляют из системы и заменяют свежим газом. [c.33]

    Теоретически на установках с фракционной рециркуляцией сырье должно полностью использоваться, т. е. все свежее сырье, поступающее на установку, должно подвергаться химическому превращению. В действительности этого достигнуть не удается, особенно когда сырье и рециркулят — газообразные смеси. Дело в том, что сырье, поступающее в установку, содержит инертные примеси кроме того, некоторое количество инертных примесей образуется в самом процессе при побочных реакциях. Например, при синтезе метанола из окиси углерода и водорода вместе с синтез-газом вносится некоторое количество азота и углекислоты, и в процессе реакции образуется немного метана. Эти инертные примеси не расходуются на реакцию и накапливаются в цирку- [c.38]

    Положение горячей точки при этом не предопределяется (в [1 ] граничное условие заключалось в за/] нии температуры в некоторой фиксированной точке катализатора). Это важно в связи с тем, что температура в катализаторе не должна превышать предельной температуры Т р во избежание спекания катализатора (в синтезе аммиака) или чрезмерного ускорения побочных реакций (в синтезе метанола). При применении граничного условия (9) для этого достаточно обеспечить неравенство [c.146]

    Для многих ХТП, например при синтезе метанола, наряду с основной реакцией происходят побочные превращения. При определенных условиях проведения процесса можно достичь некоторой степени превращения реагирующих веществ, соответствующей максимальному выходу целевых продуктов. Даль-нейщая интенсификация процесса с целью увеличения выхода целевых продуктов усилит эффект побочных реакций. Проведением реакции с невысокой степенью превращения за однократный пропуск при удалении продуктов реакции из реакционной зоны по мере образования их с такой скоростью, насколько это представляется возможным, можно исключить побочные превращения и при рециркуляции непрореагировавшего сырья добиться полного его превращения с максимальной селективностью процесса. [c.286]

    Окислительное дегидрирование проводят при недостатке кислорода, поэтому глубокое окисление не получает значительного развития. В то же время само дегидрирование, инициируемое кислородом, протекает быстрее, и все ранее упомянутые побочные реакции не так заметны, как при дегидрировании первичных спиртов. Это позволяет работать при более высокой температуре (500—600°С), большой скорости реакции и времени контакта 0,01—0 03 с. Выход формальдегида на пропущенное сырье достигает 80—85% при степени конверсии метанола 85—90%. Замечено, что добавление воды к исходному метанолу повышает выход и степень конверсии, по-видимому, в результате разложения ацеталей. Р атализаторами синтеза формальдегида этим методом служит металлическая медь (в виде сетки или стружек) или серебро, осажденное на пемзе. Последний катализатор оказался более эффективным и широко применяется в промышленности. [c.475]

    Экспериментально исследована кинетика синтеза углеводородов как целевого процесса и как побочной реакции в синтезе метанола. Результаты исследования позволили сделать выводы о вероятном поверхностном механизме зарождения, роста и обрыва углеводородной цепи в различных условиях поведения реакции гвдрирования монооксида углерода. [c.169]

    Решение. Синтез метанола из синтез-газа (смесь СО и На) по физикохимическим основам процесса и технологическому оформлению аналогичен синтезу аммиака. Как и азотоводородную смесь, синтез-газ получают конверсией генераторного или природного газа. Условия реакции синтеза -метанола, как и синтеза аммиака, требуют высокой энергии активации реакция идет с уменьшением объема, обратима, экзотермична процесс ведут при высоких давлениях и температурах в присутствии активного катализатора. Выход конечного продукта невелик не только вследствие приближения к равновесию, но и благодаря побочным реакциям. Процесс ведут непрерывно по циклической схеме. Уравнение реакции синтеза метанола СО + 2На СН3ОН. i [c.39]

    Метиловые эфиры (-ОМе) и этиловые эфиры (-ОЕ1) применялись в пептидном синтезе уже Фишером и Курциусом. Снятие этих защит по окончании пептидного синтеза проводят мягким щелочным гидролизом в диокса-не, метаноле (этаноле), ацетоне, ДМФ с добавлением различных количеств воды. Названные алкиловые эфиры следует применять для синтеза коротких пептидов, так как с ростом цепи гидролитическое расщепление затрудняется, а применение жестких условий гидролиза повышает опасность побочных реакций. Следует избегать избытка щелочи, в противном случае может произойти рацемизация и другие побочные реакции. Оба алкильных эфира устойчивы к гидрогенолизу и мягкому ацидолизу. При гидразиноли-зе они переходят в гидразиды, что можно использовать для дальнейшей конденсации фрагментов с помощью азидного метода. При аммонолизе метиловые и этиловые эфиры дают амиды. Это применяют в тех случаях, когда С-концевая аминокислота должна нести амидную группу. [c.117]

    Температурный режим. Синтез иетанола проводят на цинкхромовых катализаторах при 335—400 °С. Оптимальнаи температура процесса находится в интервале 360—380 С, в этих условиях на катализаторе достигается максимальный выход метанола-сырца с минимальным содержанием в нем продуктов побочных реакций. [c.439]

    Триметилфосфат синтезируют при температуре не выше-25°С без катализатора. Для подавления побочных реакций процесс ведут при значительном избытке спирта [не менее 100% (масс.) от теории). Для связывания выделяющегося хлористого водорода в реакционную смесь подают аммиак [75] или третичный амин (например, пиридин) [72, 73]. В результате образуются соответствующие соли, которые выпадают в осадок и могут быть отфильтрованы. Рекомендуется вначале постепенно вводить в течение 4—5ч р. безводный метанол фосфорилхлорид выбирая скорость его подачи таким образом, чтобы температура в зоне реакции не превышала 25 °С, а затем при той же температуре барботировать через реакционную массу аммиак до нейтральной реакции [75]. На первой стадии в -основном образуется диметилхлорфосфат, на вто рой—целевой пцодукт. Для завершения синтеза после прекращения барботирования аммиака реакционную массу перемешивают в течение примерно 10 ч, а под конец вновь в небольшом количестве подают аммиак до щелочной реакции. Хлорнд аммония отделяют от целевого продукта на центрифуге, а отжатый осадок промывают спиртом. [c.41]

    При синтезе метанола протекают также реакции с образованием побочньЕк продуктов простые и сложные эфиры, ал еги-ды и кетоны, формали, ацетали, высшие спирты, карбоновые кислоты. Общее содержание их в пересчете на органические соединения колеблется от 0,3 (на медьсодержащем катализаторе) до 5,2 % (мае.) (на цинкхромовом катализаторе). УвеличвЕше соотношения На СО в циркуляционном газе сопровождается снижением содержания побочных продуктов в метаноле-сырце (эфиров, кислот, альдегидов, непредельных соединений). [c.837]

    О карбонилировании сложных эфиров до ангидридов упоминалось ранее (см. разд. 6.2.2.2) как о побочной реакции в катализируемом соединениями никеля синтезе сложных эфиров из простых эфиров при повыщенных температурах и высоких давлениях монооксида углерода. Однако сейчас имеются сведения, что ангидриды, в частности уксусный ангидрид [103], могут быть получены в гораздо менее жестких условиях (25— 80 атм, 150—200 °С) при использовании промотированных иодом родиевых катализаторов [схема (6.116)], как в синтезе уксусной кислоты из метанола. По-видимому, реакция включает (см. разд. 6.2.1.1, 6.2.2.2) расщепление исходного соединения иодоводородом, в данном случае до уксусной кислоты и метилиодида, который каталитически карбонилируется в ацетилиодид. Конденсация последнего с уксусной кислотой приводит к ангид- [c.231]

    Весьма сложным может быть влияние температуры на каталитические процессы, в которых повыщение температуры свыше некоторого предела вызывает протекание вредньЪ побочных реакций, например, для синтеза метанола и этанола, окисления аммиака и т. д. В таких случаях необходимо анализировать влияние температуры на каждую реакцию в отдельности. То же [c.176]

    В присутствии соответствующих катализаторов может протекать множество различных и полезных реакций между окисью углерода и водородом, дающих углеводороды, спирты, альдегиды и другие кислородсодержащие соединения. Основные типы продуктов для различных катализаторов, температур и давлений в общем-установлены [75, 76]. Хотя и были предложены вероятные механизмы для этих реакций, оказалось очень трудным провести кинетическую проверку некоторых из них из-за большого числа и сложности сопутствующих реакций. Только для синтеза метанола, протекающего с малым числом побочных продуктов, были проведены точные кинетические измерения и сопоставлены с кинетической схемой [77] этот синтез приводится в разд. 5 гл. VIII. В данном разделе рассматриваются вместе синтезы углеводородов и кислородсодержащих соединений Фишера — Тропша [78] на некоторых металлических катализаторах, изосинтез высших сииртов и углеводородов на окисных катализаторах [79] и реакции оксо-синтеза , включающие гидрирование и гидроформилирование [80]. Кинетические исследования, проведенные для этих реакций, трудно интерпретировать, и доказательства их механизмов получали при изучении распределения продуктов по судьбе меченых молекул, которые вводились во время синтеза, и по структуре катализатора до и после синтезов, полученной на основании данных рентгенографии, электронографии и магнитных измерений. [c.303]

    Синтез метанола под давлением 150 ат С0 + 2Н2== СН3ОН, выход 17,5% побочные реакции 2С0 == С + СОг СО-Ь ЗН, = СН4-1-НгО 2С0 + 2Н2 = СН4 + СО Перекись марганца, выход 5% Двуокись циркония 1 Двуокись церия [ выход 2% Двуокись у )ана ) Окись цинка (металлическое железо, никель или кобальт не пригодны для синтеза метанола, потому что хотя они часто и активны в реакции восстановления окиси углерода до метанола, но значительно ускоряют побочные реакции, ведущие к образованию угля, углекислого газа и воды) 141 [c.53]


Смотреть страницы где упоминается термин Синтез метанола побочные реакции: [c.117]    [c.222]    [c.373]    [c.403]    [c.315]    [c.235]   
Курс технологии связанного азота (1969) -- [ c.258 ]




ПОИСК





Смотрите так же термины и статьи:

Побочные

Реакции побочные

Реакции синтеза



© 2025 chem21.info Реклама на сайте