Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Металлы, анализ олова

    В цветных металлах (свинец, олово, сурьма) натрий определяют методом атомно-эмиссионного анализа [115, 149, 249, 388] после перевода металлов в раствор. В стандартные растворы вводят соответствующее количество кислоты или соли основы, например олова [388] или сурьмы [115]. Предложена простая методика определения [c.166]

    Для перевода основного компонента пробы в летучее соединение иногда применяется хлорирование металлов, для чего исследуемый образец металла нагревают в токе хлора. В работах [208, 209] использовали различие упругостей паров хлорида олова и примесей для анализа олова на примеси Ag, Аи, В1, РЬ, Си, С(1, 2п, Со, КЧ и 5Ь, что позволило повысить чувствительность определения на 1 -2 порядка. [c.30]


    Специально приготовленным электродам, а также и вспомогательному электроду обычно придают одну из указанных на рис. 66 форм. Наиболее просто изготовление электродов в виде стерженьков диаметром 3—6 мм, с плоской торцовой поверхностью, слегка закруглённой по краям. Крышеобразная форма поверхности хорошо оправдывает себя при анализе легкоплавких металлов — свинца, олова и т. д. Однако, работа с плоской и с крышеобразной формами разрядных поверхностей предъявляет очень высокие требования к установке электродов в штатив, так как требует строгой параллельности разрядных поверхностей. Наименее прихотлива в этом смысле шаровая форма поверхности, хотя она более затруднительна в изготовлении. В ряде случаев известные преимущества может представлять придание электродам так называемой нормальной формы, т. е. формы, которую самостоятельно [c.84]

    Хотя система непрерывного ввода, описанная в этой главе, была сконструирована специально для натрия, ее, по-видимому, можно использовать для анализа большинства металлов, имеющих температуру плавления ниже 500°С, таких, как остальные щелочные металлы, индий, олово, свинец и т. д. Современная технология материалов, несомненно, позволяет улучшить конструкцию системы непрерывного поступления веществ на анализ и расширить диапазон ее применения для металлов, имеющих температуру плавления порядка 1000—1200 °С. Трудности работы с материалами в жидком состоянии, имеющими еще более высокие температуры плавления, предопределяют их анализ на масс-спектрометре в твердом состоянии, однако и в данном случае необходимо совершенствовать систему ввода по сравнению с применяемой в настоящее время. [c.346]

    При анализе легкоплавких металлов (свинец, олово, висмут), чтобы электроды не расплавились нацело, необходимо принимать меры предосторожности. Если анализ ведут в дуге, то делают прерывистую дугу с малой силой тока или же ведут анализ в искре. [c.197]

    Во втором опыте проводилось двухступенчатое деление. Вначале проведено полное осаждение олова и железа путем добавления щелочи до pH 9. При этом в фильтрате, содержащем железо, не обнаружено следов олова. Осадок смешивался с равным объемом исходного раствора, отделялся, промывался дистиллированной водой. В пересчете на металл анализ двух опытов дал такие результаты (в вес.%)  [c.159]

    В 1773 г. Лавуазье, повторив опыты Бойля и Ломоносова с обжиганием металлов — свинца, олова, ртути, пришел к тем же выводам, что и Ломоносов. Эти выводы позднее, в 1785 г., он подтвердил опытами по анализу и синтезу воды. В 1789 г. в Курсе элементарной химии Лавуазье писал Ничто не создается [c.10]


    Для выделения макроколичеств металлов методом соосаждения при проведении анализа олова высокой чистоты его переводят в растворимый гидроксильный комплекс (станнат) [27]. [c.67]

    Очень важно, что величины произведений растворимости разных сульфидов различаются чрезвычайно сильно. Это позволяет,, надлежащим образом регулируя величину pH раствора, разделять катионы разных металлов путем осаждения их в виде сульфидов. Так, из качественного анализа известно, что сульфиды IV и V аналитических групп осаждаются сероводородом в кислой среде, так как величины их произведений растворимости очень малы (порядка 10 29 J, менее). Наоборот, осаждение катионов П1 аналитической группы (произведение растворимости порядка 10 —10" ) сероводородом или сульфидом аммония проводят в щелочной среде (при pH около 9). Аналогичные методы нередко применяются и в количественном анализе, например для отделения катионов меди, висмута, олова и других металлов от катионов железа и т. д. Регулируя кислотность раствора при осаждении сульфидов, можно количественно разделять катионы, принадлежащие к одной и той же аналитической группе. Так, в присутствии уксусной кислоты цинк можно количественно отделить от железа, в присутствии 10 н. раствора НС1 — отделить мышьяк от олова и сурьмы и т. д. [c.121]

    В практике атомно-абсорбционного анализа наибольшее применение получили два пламени воздушно-ацетиленовое и пламя оксида азота (I) с ацетиленом. Первый тип пламени успешно применяют для определения щелочных и щелочноземельных элементов, а также таких металлов, как хром, железо, кобальт, никель, магний, молибден, стронций, благородные металлы и др. Для некоторых металлов (хром, молибден, олово и др.) чувствительность определений может быть увеличена применением обогащенной смеси. К элементам, для определения которых практически бесполезно использовать воздушно-ацетиленовое пламя, относятся металлы с энергией связи металл — кислород выше 5 эВ (алюминий, тантал, титан, цирконий и др.). Пламя ацетилена с воздухом обладает высокой прозрачностью в области длин волн более 200 нм, слабой собственной эмиссией (особенно обедненное пламя) и обеспечивает высокую эффективность атомизации более чем 30-ти элементов. Частично ионизируются 0 нем только щелочные металлы (цезий 65%, рубидий 41 %, калий 30%, натрий 4 %, литий 1 %). [c.146]

    Разделение элементов на группы в зависимости от растворимости их сульфидов широко применяется в качественном анализе. Подобные же методы нередко применяются и в количественном анализе, в частности, для отделения меди, висмута, олова и других металлов от железа. [c.93]

    Подготовка раствора для анализа. Чаще всего олово приходится определять в сплавах с другими металлами. Наиболее важные сплавы-олова — это различные бронзы (медь, олово, железо), припои (олово, свинец), типографские сплавы (сурьма, олово, свинец), латуни (цинк, медь, олово). В этих сплавах олово определяют после растворения навески в азотной кислоте, при этом, как было сказано, образуется нерастворимая -оловянная кислота. [c.173]

    Ход анализа свинцово-оловянного припоя. В качестве наиболее простого примера весового определения свинца и олова приводим методику анализа сплава, состоящего из этих двух металлов (свинцово-оловянного припоя).  [c.177]

    Применение жидких амальгам. После подготовки вещества для анализа, чаще всего приходится определять в растворе трехвалентное железо, что связано с предварительным его восстановлением. Для этого можно применить любой метод, например воспользоваться раствором двухлористого олова (см. 104). Ниже подробно описана методика восстановления амальгамой металла (см. также 100). [c.395]

    Разделение ионов в виде сульфидов. Сульфиды очень многих металлов труднорастворимы в воде. Эти свойства были использованы для разработки схемы систематического хода анализа катионов, которая была предложена более 100 лет назад известным русским химиком К. К- Клаусом, открывшим рутений. Эту схему называют сероводородный метод разделения и анализа ионов , она сохранилась с некоторыми изменениями и до настоящего времени. В табл. 26.8 представлены продукты взаимодействия катионов с сероводородом в кислой среде и с сульфидом аммония в аммиачной среде. Из этой таблицы видно, что в среде хлороводородной кислоты сероводород осаждает черные сульфиды серебра, ртути, свинца, меди, висмута, желтые сульфиды кадмия, мышьяка(И1) и (V), олова(1У), оранжево-красные сульфиды сурьмы(III) и (V) и коричневый сульфид олова (II). [c.557]

    Специальными высокочувствительными методами с применением приемов предварительного обогащения удается обнаружить еще целый ряд элементов — бор, фтор, цинк, литий, стронций, барий, медь, титан, олово и даже следы благородных металлов (серебра и золота). По-видимому, не будет преувеличением сказать, что в морской воде содержится большая часть элементов периодической системы, но одни из иих в больших, другие — в меньших, а третьи — в исчезающе малых количествах. В силу этого постановка задачи качественного химического анализа морской воды в отрыве от количественных критериев теряет смысл. Логически более правильна постановка другой задачи определить, какие элементы содержатся в морской воде в количествах, не меньших чем 0,05 %, или, скажем, какие элементы содержатся в морской воде в количествах, превышающих 10 %  [c.17]


    Методом секционирования с применением нейтронно-активационного анализа и методом показателя преломления исследовано распределение олова в зоне контакта стекломассы состава прокат с расплавами олова и сплавов на его основе в газовой среде с различным окислительным потенциалом в интервале температур 900—1100 С. Анализ кривых распределения олова для различных условий диффузионного отжига показал, что в присутствии касситерита на межфазной границе проникновение олова в стекломассу ограничивается растворимостью двуокиси олова в стекломассе данного состава, а в восстановительной газовой среде — окислительным потенциалом среды. Влияние примесей в металлической ванне на диффузионные процессы в этой системе также определяется восстановительно-окислительным равновесием в системе окислы олова — примеси металла. Табл. 2, рис. 4, библиогр. 15. [c.232]

    Спектральное определение примесей в чистом олове отличается невысокой чувствительностью. Сочетание химического обогащения со спектральным анализом повышает чувствительность до 10 —10 %. Использовано [575] фракционное испарение примесей в дуге постоянного тока из кратера угольного анода. Металлическое олово переводят в окись, добавляют угольный порошок. Уголь изменяет характер поступления примесей в облако дуги и служит буфером, восстанавливающим примеси до металла. Кальций испаряется в начальной стадии горения дуги вместе с Mg, Si, Al. Основу при анализе олова можно отделять отгонкой в виде хлорида в присутствии перекиси водорода и при хлорировании элементным хлором. В обоих случаях примеси концентрируются на оставшемся в растворе Sn la [248]. [c.127]

    В весовом анализе олово большей частью осаждают в виде сульфида, а взвешивают в форме двуокиси ЗпОз. Если олово входит в состав сплава, то его обычно выделяют, обрабатывая сплав концентрированной азотной кислотой, в виде р-оловянной кислоты , которую также перед взвешиванием переводят в двуокись прокаливанием. Выделение олова можно вести электролитически либо из ктелого оксалатного раствора, либо из аммиачного раствора тиостанната. В обоих случаях олов() осаждается на катоде в виде металла и может быть определено взвешиванием. [c.584]

    Лампы. При атомно-абсорбционном анализе олова требуется мощный источник света, поэтому лампы повышенной яркости для олова были разработаны в числе первых. По своей конструкции они сходны с лампами, описанными Салливаном и Уолшем [54], с той разницей, что вспохмогательные электроды имеют независимый подогрев. Лампу заполняли неоном. Катод изготовляли путем расплавления чистого олова во вспомогательном катоде из другого металла. [c.115]

    Условия осаждения ионов уранила аммиаком аналогичны условиям для определения бериллия [75]. Комплексон не оказывает влияния на осаждение и количественное выделение диураната аммония. Аммиак не должен содержать карбоната аммония. Поэтому лучше получать раствор аммиака непосредственно в лаборатории пропусканием газа из баллона в дестиллированную прокипяченную воду и предохранять раствор по мере возможности от влияния углекислоты воздуха. Мешающее влияние комплексона, выражающееся в медленном выделении (МН4)2и20,, наблюдалось только при высоком содержании хлорида аммония. Сульфаты и нитраты не мешают. Определение урана можно проводить однократным или двукратным осаждением в присутствии почти всех элементов. Определению мешает присутствие титана и бериллия, затем ниобия, сурьмы и олова. Вольфраматы образуют с ионом уранила нерастворимый вольфрамат уранила иО.,Н4( У04)3-ЗВ. О. Однако небольшие количества вольфрама определению не мешают. Аналогично ведет себя и молибден. При повторном осаждении получаются удовлетворительные результаты. Из анионов мешают фосфат-, арсенит- и арсенат-ионы. При анализе руд и минералов большинство мешающих элементов удаляется в основных операциях хода анализа (олово, сурьма и вольфрам при выпаривании с кислотами, остальные выделяются сероводородом). Определение урана можно проводить в присутствии тория, лантана и остальных редкоземельных металлов. [c.96]

    Восстановление в Sn . В ходе анализа олово получается при растворении сульфида SnSg в виде комплексных ионов [Sn lfi], отвечающих Sn между тем обычно открывают его используя восстановительные свойства иона Sn" " . Поэтому необходимо восстановить ион [Sn lg] в ион Sn" " , что достигается действием Mg, Al, Fe и других металлов, например  [c.430]

    Метод разделения щироко применяется в практике количественного химического анализа [ Ц, в частности при анализе чистых германия и кремния, играющих чрезвычайно больщую роль в различных проблемах полупроводниковой техники. При анализе германиевых проб тетрахлорид германия (температура кипения 83° С) испаряется из солянокислого раствора. Аналогичная методика может быть использована для анализа олова. При анализе элементарного кремния отгоняют тетрафторид из раствора пробы, обработанной смесью плавиковой, азотной и серной кислот. Для перевода основного компонента пробы в летучее соединение иногда применяется также хлорирование металлов, для чего исследуемый образец металла нагревают в токе газообразного хлора. Требуемая температура пробы определяется специфическими свойствами отгоняемого соединения и различна для разных металов. В 3 будут изложены спектрально-аналитические работы, в которых был использован такой метод обогащения проб. [c.434]

    Довести pH водной фазы (пукнт 16) до 5 и провести экстракцию диэтилднтиокарбаматов олова и мышьяка смесью 5 2 хлороформа с ацетоном. Провести анализ органической фазы [1, 2]. В водной фазе содержится Сг (III), щелочные и щелочноземельные металлы, анализ ее можно провести по исходной схеме [1, 2] или с помощью пламенной фотометрии. [c.371]

    Эксплуатационные испытания биоразлагаемых гидравлических масел на базе сложных эфиров показали возможность коррозионного износа деталей из сплавов, содержащих свинец, цинк и олово. Существенные потери массы металлов отмечены при испытании железных пластин со свинцовым, цинковым и оловянным покрытием в среде сложных эфиров триметилолпропана. Химический анализ образовавшегося осадка показал наличие свинцовых, цинковых и оловянных мыл жирных кислот. Ввод 1% карбодиимидов при 80°С резко снизил кислотное число и не привел к образованию нерастворимых осадков. [c.202]

    Купферон значительно более эффективен при осаждении катионов других металлов, в частности при анализе руд и сплавов, содержащих некоторые редкие элементы. Купферон широко применяется для осаждения ионов железа, ванадия, циркония, титана, олова, тантала, ниобия, четырехвалентного урана (ионы шестивалентиого урана не осаждаются) и др. Эти ионы осаждаются в сильнокислой среде, что позволяет отделить их от ряда других ионов, не осаждающихся в этих условиях. Таким образом названные выше ионы отделяют от алюминия, бериллия, марганца, никеля, шестивалентного урана, фосфатов и др. Осадки обычно прокаливают и взвешивают в виде окислов. [c.103]

    В. И. Данилов и И. В. Радченко впервые в СССР исследовали рассеяние рентгеновского излучения жидким свинцом, оловом, висмутом и их сплавами. Тонкий анализ кривых интенсивности, тщательное проведение экспериментов позволили им убедительно показать, что при плавлении металлов и сплавов расположение атомов относительно друг друга не становится произвольным, а сохраняет взаимную координацию, характерную для твердого состояния. В. И. Данилов, Н.В.Мо-хов и Я. М. Лабковский применили метод рассеяния под малыми углами для исследования флуктуации плотности в жидкостях. Теория метода малоуглового рассеяния рентгеновских лучей разрабатывалась А. Гинье, О. Кратки, Р. Хозе-маном, Н. В. Филипповичем и др. [c.5]

    Закон постоянных отношений, или постоянства состава, открытый работавшим в Испании французом Жозефом Луи Прустом (1755—1862), утвердился в полемике с французским химиком Клодом Луи Бертолле (1748—1822). Последний считал, что направление химической реакции, т. е. состав ее продуктов, зависит не только от природы взаимодействующих веществ, но и от их относительных количеств. Абсолютизируя результаты своих экспериментальных исследований химических равновесий, он утверждал, что все вещества имеют переменный состав, который может меняться непрерывно от одного компонента к другому например, оксиды получаются постепенным насыщением металлов кислородом. В то же время Пруст, используя значительно более точные методы анализа, показал, что на самом деле таких непрершвных переходов нет. На примере карбоната меди, оксидов олова и сурьмы, сульфидов железа в разных степенях окисления, а также других веществ он доказал определенность [c.23]

    Успешная попытка систематизировать многочисленные аналитические реакции с участием соединений металлов по определенной логической схеме была осуществлена немецким химиком Генрихом Розе (1795—1864) и описана в 1829 г. в его книге Руководство по аналитической химии . Разработанная им общая схема систематического качественного анализа металлов (катионов металлов — на современном языке) основана на определенной последовательности действия химических реагентов (хлороводородная кислота, сероводород, азотная кислота, раствор аммиака и др.) на анализируемый раствор и про укты реакций компонентов этого раствора с прибавляемыми реагентами. При этом исходный анализируемый раствор в схеме Г. Розе содержал соединения многих известных к тому времени металлов серебро, рт>ть, свинец золото, сурьма, олово, мышьяк кадмий, висмут медь, железо, никель, кобальт, цинк, марганец, алюминий барий, стронций, кальций, магний. Здесь химические элементы перечислены в последовательности их разделения или открытия по схеме Г. Розе. [c.35]

    В 1841 г. знаменитый немецкий химик К. Р. Фрезениус в книге Руководство по качественному хш1ическому анализу предложил более совершенную схему систематического качественного химического анализа многих элементов. Для построения своей схемы он выбрал систему, содержавшую наиболее важные, по его мнению, металлы или их соединения, которые он разбил на шесть групп первая группа — калий, натрий, аммоний вторая группа — барит, стронцианит, известь, магнезия третья группа — глинозем и оксид хрома четвертая группа — оксиды цинка, марганца, никеля, кобальта и железа пятая группа — оксиды серебра, ртути, свинца, висмута, меди, кадмия шестая группа — оксиды золота, платины, сурьмы, олова, мышьяковая и мышьяковистая кислоты. [c.35]

    Пользуясь сероводородом как осадителем, можно выделить в виде сульфидов металлов целую группу катионов, сходных по их реакциям с сероводородом. Поэтому сероводород называют групповым реагентом. Групповыми реагентами являются также карбонат аммония, сульфид аммония, сульфид натрия. Групповым называют такой реагент, который осаждает апределенные ионы, не осаждая при этом других ионов, присутствующих в том же растворе, и наоборот, переводит в раствор определенные ионы, находящиеся в осадке, не затрагивая при этом других ионов осадка, например, карбонат аммония осаждает катионы кальция, стронция, бария, но не осаждает катионов щелочных металлов. Раствор сульфида натрия растворяет сульфиды мышьяка, сурьмы, олова, ртути и не растворяет сульфидов меди, кадмия, висмута, свинца. Эти особенности групповых реагентов наиболее полно использованы при разработке систематического хода анализа катионов по сероводородному методу анализа, в котором все катионы подразделяют на пять групп (табл. 2). [c.11]

    Все эти недостатки существующих методов систематического анализа заставили Н. А. Тананаева подробно разработать капельный метод на бумаге или на пористых пластинках и дробный метод в полуми-кропробирках. В дробном методе важную роль играет выделение катионов из раствора в виде металлов. Это осуществляется с помощью свободных металлов. Последние можно использовать соответственно порядку расположения их в электрохимическом ряду напряжений магний, алюминий, цинк, железо, олово, медь. Магний и алюминий позволяют вытеснить большинство металлов из раствора. Однако удобнее применять цинк как менее активный металл, вытесняющий в солянокислой среде ртуть, серебро, медь, мышьяк, сурьму, висмут, олово. Выделив эти металлы, можно, например, дробным путем обнаруживать кальций в виде оксалата. [c.151]

    Некоторые металлы и неметаллы (Sn, Zn, Al, Si и др.) растворяются в щелочах, Поэтому при анализе некоторые сплавы (например, алюминиевые) растворяют в 25%-ном растворе NaOH. В раствор переходят алюминий, цинк, олово, кремний в осадке остаются железо, магний, марганец, медь и другие нерастворимые в щелочах компоненты исследуемых сплавов. [c.439]

    После получения представительной средней пробы исследуемого материала (см. Проба аналитическая) берут обычно большую навеску (до 100 г), т.к. содержание благородных металлов, как правило, низко. Навеску смешивают с шихтой. В состав последней входят коллектор (РЬО), флюсы (кварц, бура, сода и др.), восстановители (напр., древесный уголь, крахмал), иногда окислители (PbjO , KNO3 и др.). Состав и соотношение компонентов шихты определяется составом анализируемого материала. Обычно применяют тигельную плавку - восстановительно-раство-рит. плавление навески материала с шихтой при 1000-1150 С в огнеупорных (шамотных) тиглях объемом от 300 до 800 см . При этом РЬО восстанавливается до РЬ, происходит шлакование компонентов породы и образование сплава свинца с благородными металлами (веркблей). Жидкий расплав выливают в изложницы и после охлаждения веркблей отделяют от шлака. Одновременно с РЬО могут частично восстанавливаться оксиды др. металлов (меди, сурьмы, олова, никеля и т. д.), к-рые мешают дальнейшему анализу. [c.96]

    Электрогравиметрический метод анализа заключается в выделении определяемого элемента в виде металла на предварительно взвешенном катоде. После чего электрод с осадком взвешивают и определяют массу металла. Этим способом можно определять кадмий, медь, никель, серебро, олово и цинк. Некоторые вещества могут окисляться на платиновом аноде с образованием плотного нерастворимого осадка, пригодного для грави- [c.110]

    Совместного осаждения олова и кобальта можно избежать, если прекратить электролиз до того, как нотенциал катода станет слишком отрицательным. Однако в обычном варианте электрогравиметрия является грубым, неселективным методом. С его помощью в большинстве случаев с трудом удается разделить металлы на две группы а) восстанавливающиеся легче, чем поп водорода или вода б) восстанавливающиеся труднее, чем ион водорода или растворитель. Поэтому электрогравиметрический анализ обычно применим к системам, в которых определяемый ион металла является едипствеппым восстанавливающимся веществом помимо иона водорода или воды. В некоторых случаях можно повысить селективность электрогравиметрии, варьируя pH раствора или добавляя подходящий комплексообразующий агент, то есть изменяя потенциалы восстановления интересующих нас частиц. [c.116]

    Ослабление взаимодействия металл — лиганд за счет протонирования комплексоната вызывает понижение прочности связывания катиона лигандом более чем на 15 порядков [182]. При этом остается неясным, сохраняется ли выявленная структурным анализом для кристаллического состояния максимальная дентатность ЭДТА при растворении протонированного комплексоната олова (II) или же в жидкой фазе протонированные карбоксилатные ветви частично или полностью замещаются на молекулы воды. [c.136]

    В аналитической химии до самого последнего времени большое значение имел систематический качественный анализ. Если еще раз взглянуть на историю качественного химического анализа, то можно отметить некоторые ее вехи. Р. Бойль, видимо, первым использовал сероводород как химический реагент для обнаружения олова и свинца. Бергман сделал сероводород одним из главных реактивов, использовав его для получения осадков со многими металлами. В этом направлении много работали также Ж. Л. Гей-Люссак и другие химики XIX в. Отдельные качественные реакции накапливались еще со средних веков, в числе относительно новых можно назвать реакцию иода с крахмалом (Ф. Штромайер, 1815), фосфора с молибдатом (Л. Ф. Сванберг, 1848). Для получения сероводорода стали использовать аппарат Киппа (1864). Современная сероводородная схема качественного анализа оформилась в трудах Г. Розе, К. Р. Фрезениуса и др. Позднее, в основном в нынешнем веке, были предложены и другие схемы. [c.17]

    Отделение от сурьмы и олова. При анализе сплава таллия с этими металлами его растворяют в азотной кислоте, таллий переходит в раствор в виде TINO3, а олово п сурьма образуют малорастворимые метакислоты [615, 900], Отделение от мышьяка. Отделение можно осуществить отгонкой мышьяка в виде АзСЦ [453] или осаждением 1аллия в виде хромата или тионалидата. [c.68]


Смотреть страницы где упоминается термин Металлы, анализ олова: [c.157]    [c.179]    [c.337]    [c.383]    [c.186]    [c.136]    [c.250]    [c.491]    [c.220]   
Методы аналитической химии Часть 2 (0) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Металлы олово

Олово анализ



© 2025 chem21.info Реклама на сайте