Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Белки свойства золей

    Однако коллоидная химия изучает и другие высокодисперсные системы — растворы высокомолекулярных соединений белков, целлюлозы, каучука, которые на заре развития коллоидной химии получили название лиофильных (гидрофильных) золей и были причислены к типичным коллоидам, так как обладают общими свойствами, характерными для коллоидных систем. К этим свойствам относятся  [c.326]


    Высокополимерные и высокомолекулярные соединения (ВМС) и их растворы занимают особое место в коллоидно-химической классификации. Растворы ВМС, являясь, по существу, истинными молекулярными растворами, обладают в то же время признаками коллоидного состояния. При самопроизвольном растворении ВМС диспергируются до отдельных макромолекул, образуя гомогенные, однофазные, устойчивые и обратимые системы (например, растворы белка в воде, каучука в бензоле), принципиально не отличающиеся от обычных молекулярных растворов. Однако размеры этих макромолекул являются гигантскими по сравнению с размерами обычных молекул и соизмеримы с размерами коллоидных частиц. Приведенные на стр. 13 данные показывают, что размеры макромолекул (гликоген) могут быть не меньшими, а иногда большими, чем размеры обычных коллоидных частиц (золь Аи) и тонких пор. Поскольку дисперсность, как мы уже видели, существенно влияет на свойства системы, очевидно, что растворы ВМС должны обладать рядом признаков, общих с высокодисперсными гетерогенными системами. Действительно, по целому ряду свойств (диффузия, задержка на ультрафильтрах, структурообразование, оптические и электрические свойства) растворы ВМС стоят ближе к коллоидным системам, нежели к молекулярным растворам. Поскольку растворы ВМС диалектически сочетают свойства молекулярных растворов и коллоидных систем, целесообразно называть их, по предложению Жукова, молекулярными коллоидами, в отличие от другого класса, — типичных высокодисперсных систем — суспензоидов [1].  [c.14]

    Свойства золей белка в изоэлектрической точке [c.354]

    Тем не менее, в ряде случаев максимальная устойчивость коллоидных систем достигалась именно при образовании полного мономо-лекулярного слоя. Например, при добавлении желатины и некоторых других белков к золям золота или суспензиям кварца устойчивость системы обеспечивалась при толщине адсорбционного слоя около ЮА., что соответствует сплошному мономолекулярному слою. В таком состоянии молекулы желатины, переплетаясь своими концами, могут образовывать двухмерные гелеобразные структуры с повышенными структурномеханическими свойствами и большим количеством гидратированных полярных групп. Подобные упругие адсорбционные слои с очень низким поверхностным натяжением на границе раздела с водой могут наиболее эффективно защищать коллоидные частицы от возможности слипания. [c.131]

    Одним из факторов агрегативной устойчивости эмульсий является структурно-механический барьер — гелеобразно структурированные адсорбционные слои мылоподобных ИАВ на поверхности капель, сильно структурированные дисперсионной средой и обладающие повышенными структурномеханическими свойствами — вязкостью, упругостью, прочностью. Такие коллоидные адсорбционные слои представляют собой своеобразные пленочные (двухмерные) студни (гели), диффузно переходящие в золь с удалением от поверхности капель. Они обеспечивают высокую стабилизацию дисперсных систем, что особенно важно при получении концентрированных и высококонцентрированных эмульсий. Таков (по П. А. Ребиндеру) механизм стабилизирующего действия мыл, а также белков и других высокомолекулярных стабилизаторов. [c.193]


    Коллоидная защита . Смесь высокомолекулярных соединений и коллоидов нередко проявляет особые свойства. В случае преобладания в смеси полимера (белка) он адсорбируется на поверхности коллоидной частицы, образуя крупный агрегат, проявляющий гидрофильные свойства (рис. 81, fl). Устойчивость его будет средней между обоими видами взаимодействующих частиц. Это явление называется защитой золя высокомолекулярными соединениями (коллоидной защитой). [c.186]

    Таким образом, существо вопроса заключается не в том, являются ли лиофильные коллоиды действительно лио-фильными , а в том, что наиболее характерные и своеобразные свойства растворов высокомолекулярных веществ объясняются наличием длинных цепных молекул (см. восьмую главу), а не сольватацией, хотя для многих полярных полимеров и белков сольватация остается главным фактором устойчивости их растворов заметную роль играет гидратация также в устойчивости таких коллоидов, как золи кремнекислоты, гидроокиси алюминия и др. [c.13]

    Устойчивость коллоидных растворов можно повысить введением стабилизаторов. В качестве стабилизаторов используют высокомолекулярные соединения, такие,как белки, поверхностно-активные вещества и т. д. Стабилизаторы адсорбируются в поверхностном слое частиц и как бы придают золю свойства раствора использованного стабилизатора. [c.24]

    Превращение золя в гель связано с возникновением особой внутренней структуры в этой системе. Частицы коллоидных веществ, соприкасаясь друг с другом, как бы склеиваются и образуют своеобразный каркас, в ячейках которого оказывается включенным значительное количество воды. Наличие этой структуры придает гелю характерные механические (вязкоэластические) свойства. Образование тончайшей сети переплетающихся нитей во многих гелях можно наблюдать при помощи электронного микроскопа, дающего увеличение в 30 000—40 ООО раз. Такую сеть, состоящую из переплетающихся нитей гидрофильного коллоида, можно, в частности, видеть на электронных микрофотографиях мышечных белков. Интересную электронную микрофотографию (рис. 4) дает мышечный белок — актин, биологическое значение и биохимические функции которого рассматриваются в главе Мышечная ткань . [c.16]

    Со взглядами Паули не соглашается Леб . Он, как и Штаудингер, принимает, что громадные белковые молекулы без агрегации способны обусловить типично коллоидные свойства. Иными словами, беря в основу классификации чисто количественный признак — размеры частиц, Леб считает возможным рассматривать золи белка как истинные растворы, в которых кинетически действующими являются сами белковые молекулы. На каком же фактическом материале построены эти теории Прежде всего Леб считает, что большая устойчивость этой группы веществ к действию электролитов является достаточным признаком для того, чтобы отождествлять эти системы с истинными растворами. Данные, приведенные в табл. 114, показывают минимальные концентрации солей, необходимых для высаливания 0,8%-ного раствора желатины. [c.326]

    По мнению Кройта это понятно, так как образование белкового золя зависит от ряда первичных частиц, имевшихся в твердом белке, и от метода диспергирования его в золь. Следует отметить, что эти соображения, высказанные Кройтом. хотя и являются твердо установленным фактом, однако истолкование его может быть и совершенно другим. Дело в том, что так называемая история образования белковых золей сказывается в значительной степени не столько на размерах частиц, сколько на тех свойствах, которые являются для них специфическими [c.332]

    Поверхность мицелл коллоидного вещества, а также определенные радикалы громадных молекул, самостоятельно существующих в золях высокомолекулярных соединений (белки, пектины и др.), связывают часть дисперсионной среды, например, воды, находящейся в непосредственной с ними близости, значительно изменяя ее свойства (теплоемкость, способность растворять, плотность, уменьшенная упругость пара и др.). Эту воду мы назовем связанной водой она в большинстве случаев будет сорбционно-связанной средой. [c.396]

    Каркас охватывает собой весь объем дисперсной системы, которая теряет при этом свою легкоподвижность золь переходит в гель (студень). Такие студни легко образуются белками (например, студень желатина), крахмалом (крахмальный клейстер) сюда же относятся простокваша, мясной студень (пищевое блюдо) и т. д. Замечательно, что студни совмещают в себе свойства твердых и жидких тел. Как твердые тела они проявляют ряд механических свойств (твер дость, упругость и др.). В то же время по своей электропроводности студни практически не отличаются от жидких электролитов. Химические реакции и процессы кристаллизации в студнях протекают в уело виях, резко отличных от твердых сред и весьма близких к жидким В связи с этим студни обозначают как квазитвердые тела. [c.276]


    С изучением поведения коллоидов в высокочастотном электрическом поле связано исследование диэлектрических свойств коллоидных растворов. Многие золи лиофобных коллоидов содержат вытянутые частицы со значительной асимметрией в расположении электрических зарядов вследствие этого они имеют большие постоянные дипольные моменты и легко ориентируются в электрическом поле. Такие растворы характеризуются высокой диэлектрической постоянной е, например, у 1%-ного золя = 400 (для сравнения укажем, что у воды е = 80, а у большинства органических жидкостей — ниже 30). Высокий дипольный момент был найден также у молекул аминокислот, белков, нуклеиновых кислот напротив, у большинства гидрофобных коллоидов он невелик. [c.117]

    Такое единство в белковой макромолекуле противоположных свойств—кислых и основных—влечет за собою возможность обр -зования как отрицательных, так и положительных зарядов при этом, что особенно характерно, результирующий знак заряда и его величина для белка не являются постоянными, а зависят от концентрации водородных и гидроксильных ионов водной среды, т. е. от значения pH последней, как это имеет место и для амфотерных гидроокисей многовалентных металлов Ре(ОН)з, А1(0Н)з и др. Таким образом, растворам белков— типичным амфолитам—свойственна, как и лиофобным золям, способность менять не только величину, но и знак заряда частиц (способность перезаряжаться ). Разница заключается в том, что в лиофильных коллоидных растворах белков изменение величины и знака заряда происходит от изменения концентрации водородных ионов, в связи с чем и самая физическая сущность перезарядки у белковых макромолекул иная, чем у мицелл лиофобных золей, где перезарядка обусловлена специфической адсорбцией ионов. [c.174]

    Главными показателями качества кормовых дрожжей во всех странах принято считать содержание сырого протеина, влаги, золы и органолептические свойства дрожжей (табл. 10). В нашей стране, кроме этих показателей, нормируют крупность гранул и содержание металломагнитных примесей [77]. В Чехословакии нормируют содержание истинного белка, мышьяка, тяжелых металлов и кислотность дрожжей [78—79]. В Польше предъявляют особые требования к качеству белка. Там нормируют содержание белка, усвояемого организмом животных, и проверяют ферментативную активность дрожжей [80—81]. [c.223]

    Белки являются типичными представителями лиофильных коллоидов. Отсюда и вытекают важнейшие свойства растворов белков 1) значительная вязкость 2) неустойчивость, т. е. способность разрушаться при повышенной температуре, при увеличении концентрации (удалении растворителя), при изменении реакции среды pH), т. е. при действии кислот или щелочей, при действии многих органических соединений (например, спиртов) 3) способность застудневать, т. е. из золя переходить в гель (желатинироваться).  [c.227]

    В настоящее время деление коллоидных систем на две основные группы — лиофильные и лиофобные коллоиды в известной мере устарело, хотя эти термины еще широко распространены в литературе. За последние 20 лет трудами таких ученых, как В. А. Каргин, С. М. Липатов и др., доказано, что системы, ранее называвшиеся лиофильны-ми золями, на самом деле представляют собой не что иное, как истинные растворы высокомолекулярных соединений. В отличие от лиофобных золей эти растворы являются системами гомогенными и термодинамически равновесными. Исследования показали, что основной структурной единицей лиофильных золей является не мицелла (как у лиофобных золей), а сильно сольватированная (гидратированная) макромолекула высокомолекулярного. или высокополимерного соединения. Причем для многих полярных полимеров и белков сольватация является хотя и главным, но не единственным фактором устойчивости их растворов. В значительной мере характер поведения высокомолекулярных соединений в растворах определяется свойствами их длинных цепеобразных частиц — макромолекул. Огромные размеры макромолекул, превышающие в отдельных случаях размеры коллоидных частиц, объединяют эти системы с коллоидно-дисперсными системами. Сближает их и то обстоятельство, что при концентрировании растворов высокомолекулярных соединений они обращаются [c.364]

    Однако даже в состоянии золя протоплазма сохраняет пластичность, т. е. свойства твердого тела. Об этом свидетельствуют многочисленные опыты по падению в жидкой протоплазме посторонних микроскопических частиц. Из курса физики известно, что микроскопические тела падают в жидкости с постоянной скоростью (закон Стокса). В протоплазме же подобное падение идет с задержками, толчками, с отклонениями, как будто падающие частицы на своем пути встречают невидимые препятствия. На основании этих фактов был сделан вывод о том, что в протоплазме, даже в состоянии золя, имеется тончайший цитоскелет, основой которого являются вытянутые полипептидные цепи белка. Эти цепи взаимодействуют друг с другом своими боковыми цепями, образуют тончайшую сеть, т. е. молекулярный остов протоплазмы (рис. 210). [c.494]

    Фибриллярные белки растворяются большей частью только в концентрированных растворах солей. Такой раствор показывает всегда высокую вязкость (внутреннее трение), так как при течении нитевидных молекул они мешают друг другу. Многие белковые вещества по этой причине дают даже в относительно разбавленных растворах гели и показывают в состоянии золя явление тиксотропии. Оно заключается в том, что раствор, оставленный сам по себе, переходит в гель, но при движении разжижается. Общим свойством фибриллярных молекул является их способность к сильному взаимодействию между ближайшими молекулами и образованию больших агрегатов, в которых нитевидные молекулы располагаются более или менее параллельно. Такие агрегаты показывают двойное преломление. [c.83]

    Натуральный латекс представляет собой млечный сок каучуконосных растений, выделяющийся из них при подсочке. По физическим свойствам латекс—жидкость коллоидного строения, напоминающая по внешнему виду густое молоко. Натуральный латекс представляет собой дисперсию каучука в водной среде.. Как мы уже знаем, в состав натурального латекса входят каучук, вода, белки, смолы, сахара и зола. [c.232]

    В конце 30-х годов в области электрофореза наметилось новое направление, сыгравшее большую роль в изучении физикохимических свойств некоторых коллоидных систем и очень быстро развивающееся в настоящее время. Это направление связано с усовершенствованиями макроскопического метода электрофореза, сделанными Тизелиусом, Мак-Иннесом, Лонгсвордом и другими исследователями для применения электрофореза к анализу сложных белковых систем. Усовершенствования включали четыре основных момента 1) получение четкой границы между золем и боковой жидкостью, 2) подавление теплового эффекта в опыте, 3) выделение отдельных фракций белков в чистом виде, 4) применение метода Фуко—Тендера для определения границы движущихся в электрическом поле отдельных фракций белка по показателю преломления света. [c.132]

    Общей характеристикой коллоидных растворов является свойство их дисперсной фазы взаимодействовать с дисперсионной средой. В этом отношении различают два типа золей. У одних золей частицы не имеют сродства к растворителю, слабо с ним взаимодействуют и образуют вокруг себя только тонкую оболочку из молекул растворителя такие коллоиды называются лиофобными (от греческого слова phobia — ненависть) в частности, если дисперсионной средой является вода, то такие системы называются гидрофобными, например золи металлов железа, золота, сернистого мышьяка, хлористого серебра и др. В системах, у которых между Диспергированным веществом и растворителем имеется сродство, частицы приобретают более объемную оболочку из молекул растворителя. Такие системы получили название лиофильных (от греческого слова philia — любовь), а в случае водной дисперсионной среяы — гидрофильных коллоидов, как, например, растворы белка, крахмала, агар-агара, гуммиарабика и др. [c.137]

    В это же время М. Фарадей разработал методы получения золей металлов (например, Аи, Ag) и показал, что коллоидные частицы в них состоят из чистых металлов. Таким образом, ко второй половине XIX в. сложился ряд представлений о жидких коллоидных растворах и других дисперсных системах. Обобщение в 60-х годах XIX в. этих взглядов, формулировка основных коллоидно-химических идей и введение термина и понятия коллоиды принадлежат Грэму. Изучая физико-химические свойства растворов, в частности диффузию, он обнаружил, что вещества, не кристаллизующиеся из раствора, а образующие студневидные аморфные осадки (АЬОз, белки, гуммиарабик, клей) обладают весьма малой скоростью диффузии, по сравнению с кристаллизующимися веществами (Na I, сахароза и др.), и не проходят через тонкие поры, например пергаментные мембраны, т. е. не диализируют, по терминологии Грэма. Основываясь на этом свойстве, Грэм разработал метод очистки коллоидов от растворенных молекулярных веществ, названный им диализом (см. главу II). После того, как был найден способ получения чистых объектов исследования, началось бурное развитие коллоидной химии. [c.18]

    Вторая группа коллоидных систем, отличавшаяся высокой устойчивостью к действию электролитов и сравнительно хорошей растворимостью (белки, агар, желатина, крахмал и др.), называемых поэтому гидрофильными коллоидами, изучалась по аналогии с гидрофобными золями. Предполагалось, что частицы гидрофильных коллоидов также состоят из нерастворимого ядра, на поверхности которого, однако, адсорбированы не ионы, а электроней-тральные молекулы неэлектролитов (молекулярный стабилизатор), чем обусловлена их сравнительно малая чувствительность к электролитам. Различия в свойствах гидрофильных и гидрофобных коллоидов (или, с включением систем с органическими растворителями — лиофильных и лиофоб-ных коллоидов) объяснялись различием в интенсивности взаимодействия частиц этих коллоидов с растворителем, сильным связыванием растворителя (сольватацией) в лиофильных коллоидах. [c.11]

    В отличие от лиофобных золей, растворы высокомолекулярных веществ являются термодинамически устойчивыми обратимыми истинными растворами. Они подчиняются правилу фаз и их устойчивость определяется соотношением энергетического (ДЯ) и энтропийного (ТД5) членов в уравнении (VIII. 1). Для растворов полярных полимеров, обычно обладающих жесткими цепями, основное значение имеют изменения ДЯ, в значительной мере зависящие от сольватации. Тепловые эффекты, изменения упругости пара, сжимаемости и других свойств растворов при сольватации указывают, что наиболее прочно связанная часть растворителя составляет около одного слоя молекул вокруг полярных групп полимера (табл. 15). Для растворов неполярных полимеров с гибкими цепями основное значение имеют изменения энтропии смешения, во много раз превышающие идеальные значения, и непосредственно связанные с гибкостью макромолекул в растворах. Различные соотношения ДЯ и Д5, приводящие к возможности самопроизвольного растворения полимеров (Д2<0) приведены в табл. 16. Нарушение устойчивости растворов полимеров при понижении температуры, добавлении нерастворяющей жидкости или высоких концентраций солей приводит к различным случаям расслоения на две фазы, выпадения полимеров, высаливания белков и др. Зависимость растворимости полимеров от молекулярного [c.196]

    Коллоидные растворы коагулируют пои невысокой концентрации электролитов. Однако устойчивость их может быть значительно повышена путем создания дополнительно на поверхности частиц адсорбционных слоев с повышенными структурно-механическими свойствами. Стабилизация лиофобного золя за счет добавления незначительной массы высокомолекулярных (лиофильных) соединений (желатина, казеината натрия, мыла, белков и пр.), способствующих образованию на поверхности частиц адсорбционно-сольватных слоев, полностью предотвращая коагуляцию электролитами, называется защитным действием стабилизаторов. Для количественной оценки защитных свойств различных веществ введено понятие золотого числа , под которым понимают ту минимальную массу стабилизирующего вещества (в мг), которую следует добавить, чтобы защитить 10 мл красного золя золота от коагуляции с появлением синей окраски при добавке к золю 1 мл 10%-ного раствора хлорида натрия. Например, золотое число желатины равно 0,008. Это значит, что 0,008 мг ее защищает 10 мл золя золота от коагуляции 1 мл 10%-ного раствора Na l. [c.160]

    Отдельные белки обладают значительным разообразием в аминокислотном составе, химических свойствах, величине молекулярного веса и физиологической роли. Такое же разнообразие наблюдается и в отношении физико-химических свойств белков. Большинство белков имеет ясно выраженный характер лиофильных коллоидов в клетках и тканях белки находятся или в состоянии золя, или в состоянии геля. Некоторые белки образуют коллоидные растворы при растворении в воде или в спирте, для других — золеобразование возможно лишь в присутствии электролитов. Однако, наряду с растворимыми белками, [c.147]

    Такие предположения Паули развивает, основываясь главным образом на свойствах известной группы белков (альбумин, глобулин, казеин), которые в неионизи-рованном состоянии не способны давать золи. Этот факт связывается им с тем, что в нейтральном состоянии белки не гидратированы и вообще вся гидратация лиофильных систем связана исключительно с ионизацией. [c.331]

    Расположение ионов в Л. р. определяется их гид-ратацие — способностью связывать воду, отни.мая ее от гидратированных молекул растворенного вещества или частиц дисперсной фазы. Изучение механизма влияния ионов неорганич. солей на свойства водных р-ров и дисперсных систем показало наличие тесной связи между энергией гидратации ионов и способностью их солей повышать поверхностное натяжение воды. Интенсивное взаимодействие ионов с водой означает, что энергия связи между ионом и молекулой воды больше энергии взаимного притяжения молекул воды (т. е. ион сильнее втягивает молекулы НзО с новерхности вглубь, чем это имеет место в чистой воде, что и повышает поверхностное натяжение). Энергия гидратации ионов возрастает при переходе от ионов низшей валентности (зарядности) к ионам высшей валентности, а при одинаковой валентности — с уменьшением радиуса ионов (см. Ио 1ный радиус). В Л. р. катионы расположены в порядке возрастающей величины их радиуса, что совпадает с расположением их в периодич. системе элементов Д. И, Менделеева (в данном случае существен закономерно нарастающий объем этих ионов). Апионы обычно слабее гидратируются, чем катионы, т. е. их стремление уйти в глубь раствора с его поверхности выражено слабее. В результате этого поверхностный слой водных р-ров солей обычно заряжен отрицательно. В Л. р. закономерно нарастает способность аниона отрицательно заряжать поверхность водного р-ра по отношению к воздуху. Л. р. ионов определяют их способность вызывать коагуляцию коллоидных р-ров, причем различия в пороге коагуляции, особенно для золей с отрицательно заряженными частицами, могут быть очень значительными. Чем слабее гидратация ионов, тем больп[е их способность адсорбироваться на гидрофобных поверхностях. Способность нонов к адсорбции растет в Л. р. в направлении от 80 к СК8 , поэтому ионы СК8 оказывают обычно стабилизирующее действие на дисперсные системы. У катионов различия в адсорбируемости выражены слабее. Места членов Л. р. ионов не являются строго постоянными и могут изменяться в зависимости от условий (pH р-ра, концентрации соли, темп-ры). Действие Л. р. ионов на высаливание или набухание белков зависит прежде всего от pH раствора, напр, анионы в кислой среде, когда ионы белков заряжены положительно, по высаливающему действию располагаются в ряд СЛ 8 >)">... и т. д., т. е. имеет место обращение Л. р. Подобное обращение наблюдается у Л. р. катионов на щелочной стороне от изоэлектрич. точки, где высаливающее действие ионов падает от Сз+ к Г1+. Количественная характеристика закономерности Л. р. выражается ур-нием N = к Н — Я ), в к-ром Н ш — соответственно энергии гидратации иона и высаливаемого вещества (напр., желатина), к — константа, N — величина, [c.486]

    Адсорбция красителей. Ионы высокомолекулярных органических соединений, например белков, а также заряженные частицы золей, вследствие большого их размера и большого числа зарядов, обладают и исключительно большой адсорбируемостью, с чем связан ряд совершенно особых свойств растворов высокомолекулярных соединений и золей. На них мы остановимся подробно в следующих главах нашего курса. Здесь же дратко рассмотрим особенности адсорбции крупных ионов, входящих в состав органических красителей. [c.108]

    Но коллоидная химия, как уже отмечалось (стр. 11—12), ставит своей задачей также изучение систем с физико-химическими свойствами, отличными от перечисленных свойств лиофобных золей. Издавна эти системы, типичными представителями которых являются растворы белков, целлюлозы, каучука, под названием лиофильных золей причислены также к золям, или, иначе, к псевдорастворам, т. е. системам гетерогенным, имеющим мицелляр-ное строение. Такому объединению этих систем послужила общность некоторых свойств, например неспособность частиц проходить через полупроницаемые мембраны (диализ и ультрафильтрация), сравнительно небольшая величина скорости диффузии и осмотического давления, особенно при малых концентрациях растворов высокомолекулярных соединений, а также способность под влиянием внешних факторов коагулировать и пеп-тизироваться. Основную роль в этом объединении сыграла близость степени дисперсности растворенного (взвешенного) компонента тех и других систем для золей 10 —10 смГ , для растворов ВМС примерно 10 —10 см . [c.151]

    Особенно хорошо изучены функции свободных аминогрупп карбоксилов, гидроксила, тиоловых групп, имида-зола, гуанидина, фенольной группы, тиоэфирных групп и некоторых других. Свободная и удаленная от карбоксила аминогруппа лизина ведет себя почти самостоятельно , и сосредоточивание таких групп в определенных белках (лизоцим) придает этим белкам основные свойства. Карбонильные соединения образуют с аминогруппой аль-диминную группировку, способную к различным дальнейшим превращениям гидролизу, восстановлению, замещению, присоединению. Аминогруппа, конечно, играет роль фиксатора для кислотных — анионных групп (фосфатные группы флавиновых коферментов и др.). [c.174]

    Оанов1ным и важнейшим структурным веществом протоплазмы являются разнообразные белки. Они находятся в коллоидном состоянии и могут образовывать студни и золи. Что протоплазма имеет в своем составе очень большое количество воды, указывалось еще раньше, когда р/ассматривался вопрос о роли воды в организме. Вода в сочетании с протоплазматическими белками создает благоприятную среду дл Я течения химических реакций в организме. Вместе с тем это сочетание белковых веществ с водой обусловливает сохранение более или менее стойкой формы протоплазмы. Вот почему н а вопрос о физическом состоянии протоплазмы мы можем ответить, что протопл1азма одновременно и твердое и жидкое тело. Это жидкость со свойствами твердого тела, или твердое тело со свойствами жидкости точнее — протоплазма находится в коллоидном состоянии. [c.200]

    Итак, в отличие от истинных растворов, у которых растворенно вешество распадается при растворении на молекулы и даже ионы при образовании золей вещество распадается на более крунные ча стицы, состоящие из комплекса многих молекул. Эти частицы на зываются коллоидными частицами, или мицеллами. Справедливост этого утверждения подтверждена различными методами, и тольк у таких веществ, иакими являются белки, частицы предста-вляю собой типичные молекулы, обладающие коллоидными свойствам благодаря своей большой величине. [c.204]

    Близость гидрофильных коллоидов с истинными растворами далеко не формальная. Многие естественные лиофилы, и в первую очередь белки, являются молекуляр-коллоидами. Их кшлоидаше частицы, как правило, не представляют ацрегатов из многих молеиул, а являются отдельными молекулами, большие размеры которых и определяют коллоидные свойства растворов. Следовательно, золи лиофильных коллоидов в большинстве случаев являются истинными растворами, что дало право В. А. Каргину прийти к заключению об однофаэности этих коллоидных растворов. [c.285]

    Вопрос о старении лиофильных систем, несомненно, более сложен. Свести причины старения лиофильных золей к кристаллизационному упорядочению их частиц, как это только что описано по отношению к неорганическим коллоидам, вероятно, нельзя, ибо многие естественные лиофильные коллоиды, и в первую отередь белки, я-вляютоя молекуляр-коллоидами. Их растворы обладают свойствами истинных растворов, частицы их не представляют, как правило, молекулярных [c.315]

    Некоторые растворимые белки могут находиться в растворе в одном из двух состояний — в фазе золя или в фазе геля. В фазе золя молекулы белка образуют истинный раствор, тогда как в фазе геля они агрегируют и не могут далее уже оставаться в растворе. Ра1зновесие между золем и гелем определяется химическими и физическими свойствами раствора, которые влияют на взаимодействие между мономерами белка. [c.322]


Смотреть страницы где упоминается термин Белки свойства золей: [c.188]    [c.283]    [c.299]    [c.39]    [c.304]   
Учение о коллоидах Издание 3 (1948) -- [ c.354 ]




ПОИСК





Смотрите так же термины и статьи:

Золь

Мер золит

золы



© 2025 chem21.info Реклама на сайте