Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коксовый газ анализ

    На коксообразование в порах катализатора оказьшает также большое влияние гетероциклические соединения сырья, так как они в большинстве своем полярны и обладают более высоким адсорбционным эффектом, чем неполярные углеводороды. Так, при анализе состава кокса от гидрообессеривания гудрона [41] было показано, что в его состав включены сера, азот, кислород в результате деструктивного гидрирования нестабильных групп аминов, карбокси- и тиосоединений и других, входящих в состав структурных фрагментов смол и асфальтенов. Например, показано [41, 53], что дибензофуран, карбазол и дибензо-тиофен могут легко превращаться в кокс. Накопление азота и кислорода в составе коксовых отложений дибензофурана и карбазола больше, чем серы от дибензотиофена. Это связано с тем, что связь С-5 слабее, чем -N и С-О. [c.63]


    Мероприятия, рекомендуемые для предотвращения подобных взрывов, основаны на контроле накопления окислов азота в аппаратуре низкотемпературного блока, поскольку полностью удалить окислы азота из промываемого газа не представляется возможным. Установлена максимально допустимая норма накопления окислов азота в аппаратуре низкотемпературного блока. В аппаратах типа КР-32 содержание окислов азота, определяемое перманганатным методом, не должно превышать 5 кг. Если расчетное количество окислов азота в аппаратуре достигает 5 кг, то блок должен быть остановлен на отогрев и промывку. Количество накопившихся в аппаратуре окислов азота во многих случаях определяют по их содержанию в газе и расходу через низкотемпературный блок. Такая методика определения количества окислов азота, накапливающихся в аппаратуре, весьма несовершенна, так как анализы проводятся два раза в смену, и не исключена возможность залпового поступления больших количеств окислов азота в периоды между отборами проб газа. Поэтому для повышения безопасности процесса очистки конвертированного и коксового газа необходим непрерывный автоматический контроль содержания окислов азота с записью результатов на диаграмме. [c.23]

    В этой главе описаны методы анализа химического состава катализаторов, способы определения их кислотности и способы определения количества коксовых отложений. [c.102]

    Анализ коксовых отложений в трубах печи для высокотемпературного нагрева [c.100]

    При выдаче из печи коксовый пирог имеет большое количество трещин. Большая часть этих трещин, перпендикулярных к стенке камеры, берет свое начало от слоя кокса, называемого цветной капустой . Некоторые из этих трещин разделяют полностью куски кокса один от другого, другие доходят только до середины кусков, но в обоих случаях они сильно влияют на сопротивление кокса ударам и на его гранулометрические характеристики. В настоящей главе изложен анализ механизма образования трещин, перпендикулярных к стенке камеры, количество которых намного превышает все остальные виды трещин. [c.154]

    Следовательно, для характеристики влияния ширины камеры на продолжительность коксования Т предпочтительнее пользоваться коэффициентом относительной вариации, а не коэффициентами абсолютных изменений, поскольку он, по-видимому, меньше зависит от принятой продолжительности коксования. Если бы он был действительно независимым, это означало бы, что продолжительность коксования Т связана с шириной камеры- е уравнением вида Т — ke , причем коэффициент k зависит не только от ширины, но и от всех других факторов. Анализ теплопередачи в коксовых печах показывает, что качественно ширина камеры должна оказывать влияние на продолжительность коксования, причем продолжительность коксования растет не пропорционально ширине печи, а несколько быстрее (1 < п < 2). Измерения были не слишком точными, чтобы подтвердить правильность формулы Т = ke . Однако, принимая закон такого типа и выбирая величину п 1,4, этой формулой можно описать почти все результаты. [c.424]


    Производство литейного кокса ничего не изменяет в обычной технологической схеме коксового завода, но особые свойства, которыми он должен обладать, требуют принятия специальных мер. Из более детального анализа, изложенного раньше, следует, что стараются получить -крупнокусковой кокс и сохранить неизменным ситовый состав в вагранке. [c.450]

    Пробы углей были взяты из угольных бассейнов и коксовых цехов металлургических заводов. В табл. 100 приведен их перечень с элементарными и экспресс-анализами и дилатометрическим испытанием, выполненным в соответствии со стандартом при скорости повышения температуры 2° С/мин. Анализы приведены к углю 6%-ной зольности. [c.483]

    Дополнительные данные о влиянии металлов на регенерацию катализатора были получены при помощи термографического анализа. На термограммах всех образцов, содержащих кокс, обнаружен эндотермический эффект при 130—150 °С, соответствующий удалению из катализатора сорбированной воды, и экзотермический эффект в интервале температур от 300 до 750 °С, отвечающий сгоранию коксовых отложений. Характерным является понижение температуры, при которой наблюдается максимальный экзотермический эффект, обусловленное добавлением тяжелых металлов. Это понижение достигает 80 С и имеет наибольшее значение при добавлении хрома и ванадия. Обнаруженное явление указывает на то, что тяжелые металлы катализируют процесс выжига коксовых отложений. [c.171]

    Численный анализ регенерации неподвижного адиабатического слоя катализатора с помощью описанной выще модели дал следующие результаты. Выжиг кокса на зерне в лобовом участке слоя при входных температурах 450-500 °С протекает практически в кинетической области. По мере удаления от входа в регенератор градиенты распределения коксовых отложений по радиусу зерна увеличиваются. Начиная с расстояния примерно Vs от входа в регенератор, на зерне катализатора начальной закоксованности 3% (масс.) и выше реализуется режим послойного горения практически для любых концентраций кислорода х 5% (об.). Изменение распределения коксовых отложений в процессе выжига по радиусу зерна диаметром 4 мм в центре неподвижного слоя катализатора длиной 2 м при начальных условиях < = 5% (масс.), = = 500 °С-приведено на рис. 4.5. [c.85]

    Пробы кокса для анализа отбирают с коксовой площадки. В пробах кокса определяют содержание золы, летучих, серы, а также исследуют кокс на механическую прочность, на истираемость, на содержание мелочи, определяют теплотворную способность, истинный удельный вес после прокаливания при температуре 1300° и влажность. [c.325]

    Микроскопический анализ коксовых частиц, содержащихся в очищенной воде, показал, что эквивалентный диаметр частиц составляет 5-100 мк, а их концентрация равна 15-20 мг/л, т. е. данная схема обеспечивает хорошую степень очистки и длительную сохранность от эрозионного износа оборудования для извлечения кокса (насосы, гидравлические резаки, арматура) [101]. Накопленный в отстойниках при гидравлическом извлечении слой коксовой мелочи удаляется грейферным краном. [c.269]

    При сжигании на горелке открытому тиглю придают наклонное положение, располагая горелку сбоку тигля. Порошок кокса помещают на возможно большей поверхности тигля. Все сжигание проводят на газовой горелке Теклу, или лучше Меккера и только в самом конце прокаливания можно применять паяльную горелку. Окончание озоления определяют по постоянству веса. Изменение веса и тигля после повторного 20-минутного прокаливания не должно превышать 0,0002 г. Для облегчения и ускорения сжигания золу полезно перемешивать платиновой или нихромовой проволокой. В некоторых случаях, например, при анализе пирогенетического кокса проводят определение, сжигая кокс в токе кислорода в лодочках для элементарного анализа. Лодочки (обычно две) с двумя параллельными навесками помещают для сожжения в тугоплавкую трубку, нагреваемую в печи Либиха или на двух-трех сильных горелках со щелевидной насадкой. Через сжигаемый кокс осторожно, чтобы не увлечь коксового порошка, пропускают медленно струю кислорода из бомбы. Для наблюдения за скоростью прохождения кислорода струю его пропускают через промывалку с крепким раствором щелочи, считая при этом пузырьки кислорода. [c.784]

    Анализ коксового производства, с точки зрения формирования качества получаемых коксов, показывает зависимость показателей качества от следующих основных факторов. [c.81]

Таблица 7. Сравнительный анализ вариантов реконструкции коксового производства Таблица 7. <a href="/info/606472">Сравнительный анализ</a> вариантов <a href="/info/1524853">реконструкции коксового</a> производства
    Эта последняя задача представляется весьма важной, поскольку, как отмечалось в главе II, для РРБ характерна внутренняя положительная обратная связь по теплу и коксу, способствующая потенциальной неустойчивости нерегулируемого объекта. Специальное исследование [115] показало, что в статике исследуемый нерегулируемый замкнутый контур имеет одно устойчивое состояние в координатах Грь Ок. Р1 или Гр2, Ск. Р2. Для анализа были использованы уравнения теплового и коксового баланса по реактору и регенератору. [c.119]


    Экономия от снижения стоимости сырого бензола не покрывает расходов на сжатие газа при использовании установок малой единичной мощности, оснащенных поршневыми компрессорами. Абсорбция под давлением становится рентабельной, если в дальнейшем коксовый газ используется при повышенном давлении (передача газа в сеть дальнего газоснабжения, фракционная конденсация газа с выделением водорода, использование коксового газа для вдувания в доменные печи). Использование газа при повышенном давлении высокорентабельно на установках большой единичной мощности, оснащенных центробежными компрессорами, и особенно в случае использования газотурбинного привода [21]. Оптимальным давлением, как показано технико-экономическим анализом [22], является 0,8 МПа. [c.154]

    Анализ газообразных продуктов деструкции [34] показал, что основными их компонентами являются водород и метан. У коксов замедленного коксования при низких температурах (500—600 "С) в газах содержатся небольшие количества углеводородов Сг, Сз, Сд. При температурах их нагрева выше 700 С содержание водорода в газе достигает 98 объемн. %. Экстракция спирто-бензольной смесью позволяет, в зависимости от исходного содержания летучих в коксе, извлекать из него до 4,5 вес. % смолоподобных веществ плотностью 1,20 г/см с коксовым числом 50% и температурой размягчения 109 °С. Доля жидких продуктов в составе летучих тем выше, чем больше их выход на кокс. [c.141]

    Прочность и гранулометрический состав кокса, давление распирания и усадку коксового пирога определяют свойства углей, проявляющиеся в стадии пиролиза угольного вещества, которое проходит эти стадии различно в зависимости от природы угля - компонента шихты. При относительно низких скоростях нагрева одновременно и в одном объеме разные угли находятся на разных стадиях пиролиза. В результате при коксовании смеси углей - шихты создаются новые, не характерные для коксования компонентов условия протекания как физических, так и термохимических процессов, из-за чего в шихтах возможно усиление или ослабление свойств отдельных углей. Поэтому такие свойства углей, определяющие физико-механические свойства кокса, как спекаемость и коксуемость, неаддитивны и если показатели технического анализа можно для составленной шихты рассчитать по формуле [c.58]

    После закладки углей на хранение в штабеля на открытом угольном складе, в зависимости от нормативного срока хранения, ведется контроль температур в штабеле. Кроме того, штанговым пробоотборником отбираются пробы на технический анализ. При подаче шихты на обогатительную фабрику отбирают компоненты шихты после дозировочных питателей с последующим техническим анализом и определением пластометрических показателей. Контроль процесса обогащения осуществляется путем отбора и расслойки проб концентрата, промежуточного продукта и породы после всех обогатительных машин. Определяются показатели технического анализа. Шихта, подаваемая на угольную башню коксового цеха, контролируется по показателям технического анализа и плотности насыпной массы. [c.78]

    В применении к анализу технологии коксования различают три основных типа материальных балансов баланс сырья и продуктов коксования по компонентам баланс сырья и продуктов коксования по химическим элементам баланс веществ, участвующих в процессе горения в отопительной системе коксовых печей. [c.84]

    Для действующего предприятия составление материального баланса позволяет выявить ресурсы производства и источники потерь продукции, провести анализ работы коксовых печей с целью повышения качества продукции, установить влияние состава шихты, условий эксплуатации и особенностей конструкции коксовых печей на выход продуктов коксования. [c.84]

    Расчет материального баланса обычно ведут на 100 или 1000 кг влажной угольной шихты. Приходная часть баланса состоит из двух статей сухая шихта и влага шихты. Расходная часть состоит из кокса валового, коксового газа и всех улавливаемых из него продуктов коксования, выход которых иэ шихты составляет не ниже 0,1%. Последняя статья - расхождение (невязка) баланса — показывает, насколько точно сделан анализ она не должна превышать 1%. [c.84]

    Анализ состояния печного фонда коксохимической промышленности и темпов его обновления показывает, что в перспективе до 2005 года в эксплуатации останется значительное число старых коксовых батарей. Так, по данным на начало [c.201]

    Металл кубовых реакторов подвержен двум процессам науглероживанию со стороны коксового монолита и обезуглероживанию со стороны действия открытого пламени. Для анализа взято два образца. Один с нижней части оболочки над перевалом топки, второй с диаметрально проти- [c.102]

    Проведенный анализ показывает, что при воспламенении относительно крупной частицы (бч = 1,0-10 и более) при Тер = 1100° К летучие достаточно интенсивно насыщают пограничную пленку, в которой создается парогазовая смесь горючих и окислителя, определяющая условия воспламенения. Концентрация окислителя у поверхности частицы в данном случае очень быстро снижается, и коксовый остаток практически не может участвовать в процессах воспламенения и в начальных стадиях горения. [c.194]

    Анализ процесса воспламенения индивидуальных частиц твердого природного топлива наглядно показывает роль летучих в этом процессе и при учете условий теплообмена в запыленном потоке и его аэродинамики может служить базой для расчета процесса воспламенения пылеугольного факела. При воспламенении аэровзвеси пыли природных топлив выделение летучих происходит в объем, заполненный частицами топлива, которые находятся на сравнительно близком расстоянии друг от друга. В объеме происходит накопление летучих, т. е. образуется горючая смесь, при достижении определенных условий она воспламеняется и горит, причем концентрация окислителя у поверхности частиц в данном случае будет близка к концентрации окислителя в объеме. С этой точки зрения процесс воспламенения и горения аэровзвеси топливной пыли во времени можно разбить на три периода 1) подготовка горючей смеси летучие—окислитель 2) воспламенение этой смеси 3) собственно процесс горения летучих и коксового остатка. Естественно, что время на подготовку смеси летучих с окислителем, на ее воспламенение и на выгорание основной массы летучих оказывается значительно меньшим, чем время, необходимое для выгорания кокса. [c.197]

    Как известно, конвертированный и коксовый газ содержит взрывоопасные и токсичные вещества. Растворы моноэтаноламина и метанола, применяемые для очистки газов, токсичны, а жидкий азот при попадании на кол<у вызывает обмораживание. Кроме того, процессы очистки идут при высоких и очень низких температурах. Возможность возникновения пожара или взрыва, отравления или получения ожога может создаваться при нарушениях технологического режима, подсосе воздуха в газ или в результате образования в производственных помещениях взрывоопасных и отравляющих газовоздушных смесей при прорыве газов и жидкостей через неплотности оборудования, коммуникаций и запорной арматуры. Поэтому герметичность оборудования и трубопроводов отделения очистки должны проверяться ежесменно. Запрещается подтягивать крепежные детали фланцевых соединений для ликвидации пропусков газов и жидкостей, если система находится под избыточным давлением. Давление следует повышать и снижать постепенно, по установленному для данного оборудования регламенту. Инертный газ, применяемый для продувок, должен содержать не более 3% (об.) кислорода и совершенно не иметь горючих примесей. Перед продувкой газ должен подвергаться анализу. [c.52]

    Коксовые отложения имеют сложную природу, которая может меняться в зависимости от условий. В некоторых случаях, особенно при относительно низких температурах, эти отложения представляют собой неопределенного состава полимеры с высокой молекулярной массой. В процессе каталитического крекинга образуются отложения [3.15] в виде крупных агрегатов многоядерных ароматических молекул с включениями сконденсированных систем ароматических колец, содержащих прочно адсорбированные продукты реакции. Проведенные методом ретгеноструктурного анализа исследования отложений кокса, образовавшихся при 400-500°С, показали, что значительная их часть находится в графитоподобном состоянии. Тем не менее, даже такой кокс может содержать значительное количество водорода [3.16]. [c.63]

    При термокаталитической переработке происходит взаи-модсйстние железоокисного катализатора, приводящее к образованию новой твердой фазы коксовых отложений, т. е. мы имеем дело с топохимической реакцией, для которой характерны некоторые общие закономерности, а именно протекание реакции через образование ядер (зародышей) новой твердой фазы и их рост. В реакциях газа с твердым телом образование этих зародышей происходит, как правило, на поверхности твердого реагента или, по крайней мере, в слое, прилегающем к этой поверхности. После появления новой фазы реакция обычно локализуется на поверхности раздела твердых фаз — реагента и продукта реакции [3.39]. Химические свойства поверхности в принципе определяются природой протекающих химических превращений и их скоростями И то и другое может быть оценено лишь в результате трактовки косвенных измерений. В случае исследования реакции твердого тела с газом анализ может быть проведен с учетом -изменения состава газовой фазы. [c.71]

    Анализ литературных и собственных экспериментальных данных, приведенный в предыдущих главах, показывает, что в основе превращений, протекающих с тяжелым нефтяным сырьем на катализаторах, содержащих оксиды металлов переменной валентности, к которым относится и железоокисный катализатор, лежит термоокислитсльная конверсия углеводородов сырья по механизму карбоксилатного комплекса. Образование и окисление коксовых отложений, как и других продуктов окислительной каталитической кон-ис]5сии, 11]5( исходит в соответствии с закономерностями, обусловленными особенностями механизма действия катализаторов, содержа1цих оксиды металлов переменной валентности, и особенностями состава и свойств тяжелого нефтяного сырья. Некоторые закономерности накопления и окисления коксовых отложений рассмотрены ранее [3.56-3.59], более подробно этот вопрос рассматривается в следующем разделе. [c.81]

    Прп контроле производства, а также с исследовательскими целями часто приходится определять количество коксовых отложений па катализаторах. Для этого используют методы, основанные преимущестпенно на сжигании кокса с одновременным анализом продукэов сгорания или взвешиванием анализируемой навески катализатора. Однако последний способ применяют только при определениях регеперациониой характеристики катализаторов (см. гл. П1). [c.136]

    Б реальных условиях, когда содержание кокса на катализаторе превышает 10—15%, во избежание раз огрева зериа необходим медленный выжиг какса при газовой смеси, содержащей менее 0,5% иислорода. Даже при 31начительном удалении коксовых отложений повышение содержания кислорода до 2 и далее 10% можно производить, лишь оценив возможный разогрев. Поэтому возникает задача оптимального ведения регенерации катализатора в стационарном слое на основе методов математического моделирования. Поскольку сформулировать для этого случая универсальный критерий оптимальности затруднительно, целесообразен технико-экономический анализ неакольких возможных вариантов регенерации. Подробнее методы получения таких вариантов для слоя зерен будут рассмотрены в главе 1. [c.134]

    Для контроля работы печи необходимо периодически производить анализ плава. Количество ВаЗ в плаве колеблется в пределах 65—75%. Кроме ВаЗ в плаве содержится невосстановленный барит, кислоторастворимые соли бария, окислы железа и алюминия и несгоревшая коксовая мелочь. Восстановление Ва304 продолжается 1 — 1,5 ч. [c.156]

    Коксование в трубах печи может быть снижено путем уменьшения зольности исходного сырья. Минеральные составные части являются активными центрами в процессе образования коксовых пленок. Анализ коксовых отложений в трубах печч при коксовании крекинг-остатка туймазинской девонской нефти приведен в табл. 22 (зольность исходного сырья равна [c.100]

    Анализ работы установки показал, что приблизительно половина общего количества ванадия и никеля из сырья отложилась на катализаторе. По мере накопления металлов на катализаторе его селективность ухудшалась. По повышении коксового фактора с 1,0 до 3,0 относительный выход бензина в расчете на разложившееся сырье снизился с 93 до 82%. По мнению авторов [206], при таком снижении выхода бензина на установке, производящей 157 м /сут бензина, потери составят несколько тысяч долларов в сутки. Для поддержания коксового фактора на необходимом уровне пришлось увеличить расход катализатора. Сравнительная экономическая оценка потерь в выходе бензина при высоком коксовом факторе и потерь катализатора, необходимых для поддержания низкогс коксового фактора, вскрыла необходимость уменьшения количества [c.148]

    Обычно полагают, что характер изменения числа молей (объема) при выжиге кокса односторонний N N0. Это верно, если рассматривать только химические реакции. Тогда вследствие образования монооксида углерода по маршруту С-Ь 0,502- СО происходит увеличение реакционного объема. В действительности характер изменения сложнее. Качественный анализ кинетических уравнений (4.6) показывает, что могут быть реализованы такие условия окисления кокса, когда в начальный период выжига будут идти преимушественно процёЛы адсорбции кислорода и его диффузии в объеме коксовых гранул. И хотя число молей вследствие образования СО частично увеличивается, суммарный итог обратный-число молей газовой смеси уменьшается. Этот э ект обнаружен экспериментально [29] и подтвержден расчетами на ЭВМ. [c.68]

    Химические анализы кокса показали, что в его органической части массовое содержание углерода 80—86%, водорода 3—5%, серы 4—7%, азота — 1%, кислорода 4—8%. Отложения обычно представляют собой смесь органических и неорганических веществ, причем на отдельных участках органическое вещество в отложениях достигает практически 100%. Можно считать установленным, что причина образования коксовых отложений — реакции жидкофазного автоокисления реакцнонноспособных компонентов сырья растворенным кислородом. При переработке прямогопных бензиновых фракций такими компонентами являются сераорганические соединения и ароматические углеводороды, при переработке бензинов вторичного происхождения — непредельные углеводороды с сопряженными двойными связями. [c.108]

    При гидравлической выгрузке коксового пирога вместе с водой, поступающей в фильтр-отстойник, вы- носится коксовая мелочь, которая после обезвоживания отгружается потребителям как товарная продукция. Установлено [260, 261], что вынос коксовой мелочи в фильтры-отстойники на установках с жесткой схемой вьгрузки составляет до 50% от выгружаемой из камеры коксовой мелочи (количественный анализ коксовой мелочи приведен в табп. 26). [c.206]

    Данные по кинетике обезвоживания узких фракций коксовой мелочи показаны на рис. 99. Из анализа кривых видно, что естественное обезвоживание мелких фракций протекает очень медленно, с >тсрупнением фракций процесс заметно ускоряется. Так, для фракции 8-0 мм остаточное содержание влаги 5%, не опасной для смерзания, достигается за 3 сут, а для фракций 25-0 мм - за 1 сут. Если из фракций 25-0 и 8-0 мм удалить частицы кокса размером 2,5-0 мм, то обезвоживание До требуемого уровня заканчивается за 2-3 ч. За это же время во фракции 2,5-0 мм влажность снижается только до 22%, а допустимое значение достигается за 4 сут. Таким образом, присутствие влагоемкой фракции 2,5-0 мм значительно замедляет процесс обезвоживания кокса. Следовательно, целесообразно предварител зно отделять от кокса наиболее влагоемкую фракцию 2,5-0 мм и автономно доводить влажность в ней до безопасной величины. Это возможно при длительном отстаивании на специальных площадках или при использовании принудительных методов - центрифугирования, термической сушки и т. д. [c.285]

    Второй метод — ASTM D 524 (IP-14), или коксовый остаток по Ремсботтому —предназначен главным образом для анализа малолетучих продуктов, которые при атмосферной перегонке могут частично разлагаться. При анализе продуктов, содержащих зольные элементы, результат может быть завышенным. Хотя остаток и называется коксовым , он не нацело состоит из углерода, а содержит продукты, которые при пиролизе способны подвергаться дальнейшим изменениям. Коксовый остаток, определяемый данным методом, не соответствует точно коксуемости, устанавливаемой методом ASTM D 189, и между результатами этих двух методов не наблюдается достаточно близкой корреляции для всего ассортимента исследуемых продуктов. Присутствие в дизельном топливе присадки — амилнитрата и по этому методу приводит к завышению коксового остатка. [c.67]

    По окончании каждого периода подачи сырья, не выключая обогрева реактора, продувают его азотом и выжигают с катализатора образовавшиеся во время реакции смолисто-коксовые от-ложе1ШЯ. Для этого к верхней отводной трубке реактора присоединяют шланг от источника сжатого воздуха, а к холодильнику — газовые часы и параллельно с ними газометр для отбора средней пробы газа. Воздух на регенерацию подают со скоростью 20—30 л/ч. Температура регеиерации составляет 550—600 °С, продолжительность зависит от количества кокса на катализаторе и составляет 2—3 ч. Продукты сгорания анализируют в аппарате типа ВТИ. Ввиду того, что содержание углерода в коксе составляет примерно 95%, основной интерес представляет концентрация в продуктах сгорания СОа и СО. О конце регенерации можно судить по результатам анализа контрольной пробы газа, отбираемой через троЙ1ШК перед газовыми часами. Условная полнота регенерации соответствует содержанию СОд -Ь СО в дымовых газах не более 0,5% (об.). [c.154]

    Выше указывалось, что по мере подачи сырья активность катализатора падает, так как noBepxHo i i. его покрывается слоем смо-листо-коксовых отложений. Катализатор приобретает интенсивно темную окраску уже при поступлении первых порций сырья. Условно эти смолисто-коксовые отложения называют коксом, хогя элементарный анализ показывает, что содержание водорода в иих довольно значительно —5—7% и может достигать 10%. [c.158]

    В работе [76] показана нестабильность свойств дистиллятов, отбираемых сверху камеры (реактора) прн использовании прямогонного сырья и крекинг-остатка. Аналогичные изменения кривых температуры верха реактора и физико-химических констант дистиллята указывают на одни и те же причины этих изменений, которые связаны с фазовыми переходами в реакторе в процессе коксования. В первый период коксования до пороговой концентрации асфальтены накапливаются в остатке, затем они выпадают во вторую фазу. Момент выпадения асфальтенов и начало образования коксового массива четко прослеживаются на кривых изменения выходов и качества дистиллята. Чем меньше агрегативная устойчивость системы (чем больше асфальтенов и парафинов), тем скорее достигается пороговая концентрация асфальтенов и выпадение их во вторую фазу. Затем наступает при постоянной подаче сырья в реактор период непрерывного выделения асфальтенов, концентрация которых превышает порог осаждения. Результаты анализа кокса по высоте реактора показали его неодинаковое качество. Большее время, затрачиваемое на удаление кокса из средней части камеры, согласуется с высокой механической его прочиостьк> в этой зоне. При удалении кокса из нижней и верхней зоны формируется мелочь (фракции ниже 25 мм), что снижает качество электродного кокса. Это видно из данных табл. 17, полученных на различных установках замедленного коксования при работе на, различном сырье. [c.180]

    Альдегиды и кетоны мотут дать продукты конденсации и вследствие этого вязкость масел может несколько повыситься. В присутствии смол и асфальтенов наблюдается повышение вязкости и коксового числа. Насколько при окислении могут расти значения этих показателей иллюстрируется следующим примером анализа масла после работы его в автомобильном двигателе (табл. 103). [c.231]


Смотреть страницы где упоминается термин Коксовый газ анализ: [c.357]    [c.39]    [c.32]    [c.103]   
Газовый анализ (1955) -- [ c.275 ]

Газовый анализ (1961) -- [ c.275 ]




ПОИСК







© 2025 chem21.info Реклама на сайте