Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химические реакции свойства

    Каким образом катализатор может влиять на химическую реакцию Если принять, что катализатор в заметной степени при реакции не расходуется, то термодинамически можно показать, что его роль в реакции не заключается в изменении точки равновесия, а сводится к ускорению достижения равновесия. Однако в большинстве химических систем имеются метастабильные состояния, обладающие свободной энергией, промежуточной между свободной энергией реагирующих веществ и состоянием равновесия. Мы можем приписать специфичность катализатора его свойству увеличивать скорость достижения одного из таких промежуточных состояний, а не общему ускорению в направлении достижения состояния с наименьшей энергией. Так как катализатор влияет на скорость реакции и не влияет на состояние равновесия, невозможно дать общее кинетическое описание поведения катализаторов. Болес полно проанализировать поведение катализатора можно, только зная конкретный механизм, по которому протекает данная реакция. Однако целесообразно провести классификацию катализаторов по строению и связанному с ним действию катализаторов на тип реакций, протекающих по данному механизму. Для твердых тел обычно принимают следующую классификацию  [c.531]


    Автоматические системы подавления взрывов (АСПВ). Взрывоподавление основано на торможении химических реакций, достигаемом подачей в зону горения огнетушащих составов, и наличии некоторого промежутка времени от момента возникновения взрыва до его максимального развития. Этот промежуток времени, условно названный периодом индукции Тинд, зависит от физико-химических свойств горючей смеси, а также от объема и конфигурации защищаемого аппарата. Давление в аппарате при взрыве в период индукции растет сравнительно медленно. Например, для большинства горючих углеводородных смесей время индукции составляет приблизительно 20% от общего времени взрыва. [c.176]

    Помимо полярности, присущей связям в невозбужденном состоянии молекулы, каждая связь обладает еще определенной поляризуемостью — способностью изменять (увеличивать) свою полярность под действием внешнего электромагнитного поля. Поскольку такое поле может создавать и приближающаяся в ходе химической реакции молекула, поляризуемость имеет очень большое значение для химических реакций. Свойства ковалентных связей, чаще всего встречающихся в органических соединениях, представлены в табл. 8.1. [c.276]

    Названия большинства процессов не требуют дополнительных пояснений поясним лишь название реакционно-отделительные процессы. Здесь имеются в виду такие процессы, в которых в результате химической реакции образуются продукты, Отличающиеся по свойствам от исходных реагентов настолько резко, что все они или некоторые из них практически количественно уходят из [c.187]

    Индивидуальные свойства веществ, составляющих механическую смесь, сохраняются, так как составные части в смеси находятся химически неизмененными. При химических реакциях свойства исходных веществ не сохраняются, поскольку в результате их взаимодействия образуются новые вещества с новыми свойствами. [c.58]

    Растворами называются однородные системы, содержащие два или больш вешеств. Известно, что в химических соединениях постоянного состава элементы участвуют в строго определенных количественных соотношениях. При химических реакциях свойства исходных и конечных веществ резко отличны. В этом смысле растворы отличаются от химических соединений. Растворы из данных компонентов могут содержать их в тех или других относительных количествах. Свойства раствора, в особенности разбавленного, могут мало отличаться от свойств растворителя в чистом состоянии. [c.208]


    ХПЯ — физическое явление, происхождение и сущность которого в настоящее время хорошо понятны, а теория разработана на количественном уровне. Как физическое явление, ХПЯ послужила основой нового метода изучения и установления механизмов химических реакций, природы активных частиц и промежуточных продуктов в химических реакциях, свойств радикалов и т. д. В этом параграфе будут изложены наиболее важные аспекты химических приложений ХПЯ. Подробное обсуждение этих вопросов можно найти также в [25]. [c.222]

    Методы, используемые в тонком органическом синтезе, обеспечивают получение сложных органических соединений из более простых предшественников. Для промышленного производства продуктов тонкого органического синтеза очень важно найти наиболее удобный, безопасный и дешевый способ получения таких предшественников. В основу выбора должны быть положены знания о механизмах химических реакций, свойствах используемых соединений и рациональных методах их очистки. Обычно в каждом синтезе можно выделить четыре части  [c.6]

    Одна из важных характеристик синтеза — выход синтезированного продукта, который часто определяет выбор методики проведения синтеза. Выход продукта выражается в процентах и определяется отношением количества полученного вещества к количеству этого вещества, теоретически рассчитанному по уравнению реакции. Выход зависит от ряда факторов обратимости химических реакций, свойств исходных и конечных веществ, их растворимости, количества проводимых операций и т. д. Поэтому практический выход продукта -не может быть равен теоретическому. [c.5]

    Поверхность молекулы белка обладает огромным числом дискретных точек, в которых разыгрываются многие физические и химические реакции. Свойства белка в значительной степени являются функцией относительного содержания различных аминокислот. Растворимость, гидратация, основные и кислые свойства, заряд молекулы и т. д. являются в известной мере отражением соотношения полярных и неполярных групп. Однако было бы неверным объяснять всю многообразную гамму свойств белков одними функциональными группами. Вся молекула как таковая, последователь- [c.325]

    Направление научных исследований неорганическая, органическая, биологическая, физическая и пищевая химия, радиохимия изучение катализа и катализаторов, кристаллизации, кинетики химических реакций, свойств различных материалов проблемы коррозии. [c.335]

    Кроме того, Блэк показал, что газообразные вещества не только выделяются твердыми телами или жидкостями, но могут активно с ними соединяться, вступать в химические реакции. Это открытие сделало газы менее загадочными. Теперь на них стали смотреть как на обычные вещества, несколько отличающиеся по свойствам (по крайней мере химическим) от более знакомых твердых и жидких веществ. [c.40]

    Для того чтобы проанализировать структуру детонационной волны, следует рассмотреть три области несжатые газы, сжатые, но не прореагировавшие газы и полностью сгоревшие газы позади реакционной зоны. Главное различие между первоначальными зонами горения и зонами позади ударного фронта заключается в том, что в последних поддерживается относительно высокая температура и плотность сжатых газов (см. рис. XIV.6 и XIV. ). Следовательно, изучение свойств ударных волн представляет интерес ради выяснения их возможного влияния на химические реакции. [c.406]

    Когда два атома сталкиваются и вступают в реакцию, они или соединяются вместе, обобществляя свои электроны, или же вновь расходятся после перераспределения электронов. Именно это обобществление или перераспределение электронов и вызывает изменение свойств веществ, наблюдаемое при проведении химических реакций. [c.157]

    Уравнения (1.26) и (1.27) могут использоваться при любой аналитической форме члена г(с). Однако исследование свойств процесса абсорбции с быстрой химической реакцией может быть проведено без введения каких-либо определенных форм зависимости г с). Действительно, непосредственно из уравнения (1.27) можно увидеть, что в режиме быстрой реакции скорость абсорбции не зависит от времени диффузии to, а именно, от гидродинамических условий в жидкой фазе. Этот очень важный вывод составляет основу метода измерения поверхности раздела фаз. [c.28]

    Очень важным свойством решения уравнения (5.9), даже в его общей форме, является то, что отношение скоростей химической и физической абсорбции не зависит от времени диффузии. Это объясняется тем, что при увеличении скорости абсорбции, вследствие химической реакции, стадии, лимитирующие скорость процесса, меняются местами. При повышении скорости абсорбции за счет химической реакции стадией, лимитирующей скорость процесса, становится диффузия второго реагента из объема жидкости по направлению к границе раздела фаз, а не диффузия абсорбированного компонента от границы раздела в объем жидкости, или иными словами, первый процесс протекает при более высокой общей движущей силе. [c.62]


    Так как профиль концентраций, свойственный большинству разделительных массообменных процессов, характеризуется участками концентрирования, т. е. накопления тех или иных веществ, то это свойство в совмещенных процессах позволяет значительно повысить скорости химических реакций за счет создания для них благоприятных условий (например, размещение твердого катализатора, подвод тепла) в зонах с повышенной концентрацией реагентов. Это же обстоятельство позволяет увеличить селективность реакций за счет создания неблагоприятных условий (отсутствие катализатора, подвод хладагентов и другие) для вторичных и обратных процессов в зонах концентрирования продуктов реакции. [c.190]

    Химическое превращение, химическая реакция есть главный предмет химии. Изучение различных свойств элементов и молекул дает в сущности для химии вспомогательный материал, облегчающий главную задачу, задачу рационального управления химическим превращением... [c.158]

    Как ВИДНО из значений АС химических реакций, в ряду А1 — Si — Р — S — С1 ПО мере усиления неметаллических признаков элементов кислотные свойства их оксидов резко возрастают. [c.251]

    Важный шаг в этом направлении в начале ХУП1 в. сделал английский ботаник и химик Стивен Гейле (1677—1761). Он изобрел прибор для собирания газов над водой. Этот прибор известен ам под названием пневматической ванны . Пары, образующиеся я результате химической реакции, Гейле отводил через трубку в сосуд с водой, опущенный вверх дном в ванну с водой. Пузырьки газа поднимались в верхнюю часть сосуда и вытесняли оттуда воду. Таким образом Гейле собирал газ или газы, образующиеся в результате реакции. Сам Гейле не идентифицировал собранные газы и не изучал их свойств, однако сконструированный им прибор для собирания газов сыграл важную роль в развитии пневматической химии. [c.39]

    В большинстве случаев жидкостная экстракция осложняется химической реакцией. В этом случае целевое веш,ество исходного раствора первоначально вступает в химическую реакцию с компонентами экстрагента, а затем продукты реакции растворяются в экстрагенте. Для улучшения физических (плотность, вязкость) и (или) экстракционных (избирательность) свойств экстрагента экстракционный реагент растворяют в инертном растворителе. Под инертностью растворителя понимается неспособность образовывать химические соединения с извлекаемым веш,еством. Примером подобного процесса может служить экстракция щелочью меркаптанов из газоконденсата. Здесь экстрагентом является водный раствор щелочи, экстракционным реагентом — щелочь, вступающая в химическое взаимодействие с меркаптанами, инертным растворителем — вода. [c.98]

    Обратимые реакции. Если продукты химической реакции могут сами реагировать, воспроизводя первоначальные вещества, то наблюдаемая скорость реакции будет уменьшаться по мере накопления продуктов реакции. В конце концов должно быть достигнуто состояние динамического равновесия. В этом состоянии обе реакции, как прямая, так и обратная, имеют равные скорости. Такие системы относятся к типу обратимых реакций. Их изучение представляет большой интерес, поскольку можно кинетическое поведение подобных систем связать с термодинамическими свойствами (равновесием) конечной системы. [c.32]

    Одним из наиболее характерных свойств пламени является его способность излучать энергию. Излучение — следствие перехода молекулы или атома из возбужденного состояния в основное при этом в виде излучения выделяется квант энергии, равный /IV (Н — постоянная Планка, V — частота электромагнитного колебания). Излучение пламени может иметь тепловую или хемилюминесцентную природу. В первом случае переход атомов (молекул) в возбужденное состояние обусловлен их тепловым движением и является следствием обмена энергии при соударениях, во втором случае переход в возбужденное состояние происходит вследствие протекающих в пламени экзотермических химических реакций. [c.114]

    Химические свойства простых веществ. В химических реакциях металлы обычно выступают как восстановители. Неметаллы, кроме фтора, могут проявлять как окислительные, так и восстановительные свойства. При этом характер изменения восстановительной и окислительной активности простых веществ в группах и подгруппах су-щест венно зависит от природы партнера по реакции и условий осуществ-ленпя реакции. Обычно в главных подгруппах проявляется общая тенденция с увеличением порядкового номера элемента окислительные свойства неметаллов ослабевают, а восстановительные свойства металлов усиливаются. Об этом, в частности, свидетельствует характер изменения стандартной энергии Гиббса образования однотипных соединений. Например, в реакции окисления хлором металлов главной подгруппы И группы [c.237]

    Последующее развитие теории детонации было направлено на описание явления с учетом различных проявлений возмущений, возникающих во фронте детонационной волны. Теоретически рассматривались также некоторые свойства детонационной волны, в частности концентрационные пределы ее распространения. На основании анализа взаимосвязи между детонацией и обусловливающей ее химической реакцией горения Я. В. Зельдович пришел к выводу, что в детонационной волне вследствие большой скорости ее распространения изменение состояния газа происходит на длине свободного пробега молекулы (величина порядка см). В этих условиях теплопроводность и диффузия активных центров не могут принимать участия в механизме распространения детонационной волны. Способность смеси к распространению детонации определяется скоростью химических реакций, обусловливающих ее самовоспламенение во фронте детонационной волны. [c.142]

    Вблизи концентрационных пределов, когда стационарное распространение детонационной волны лимитируется скоростью химической реакции, обусловливающей самовоспламенение смеси, на положение пределов существенно влияют активные присадки, не изменяющие термических свойств смеси [158]. В то же время эти активные присадки не оказывают заметного влияния на скорость стационарного распространения пламени. Так, например, не было обнаружено изменения скорости распространения детонационной волны в углеводородо-кислородной смеси при введении в нее небольших количеств тетраэтилсвинца. Эти наблюдения свидетельствуют об определенных различиях механизмов возбуждения детонационной волны и ее распространения. [c.143]

    В первой (кинетической) стадии горения, включающей пред-пламенное окисление и появление очагов воспламенения, скорости химических реакций, которые значительно меньше скоростей диффузии реагирующих компонентов, определяют скорость процесса в целом. В этой стадии скорость и характер превращения ТВС определяются ее физико-химическими свойствами, т. е. в основном зависят от фракционного и углеводородного состава топлива, от наличия в нем присадок, активирующих горение. [c.148]

    Рассматривая задачи технической кинетики, необходимо помнить, что химическая реакция не всегда определяет скорость превращения. Как было уже указано, реакции могут сопутствовать различные физические процессы, которые в определенных условиях оказывают значительное влияние на скорость превращения и, следовательно, должны учитываться в зависимости скорости превращения от свойств реакционной системы. [c.204]

    Одной из основных идей современной физики и химии является понятие о квантованных состояниях нли квантованных энергетических уровнях. Большое значение этих представлений для химии обусловлено тем, что все равновесные свойства газов могут быть вычислены на основании данных об энергетических уровнях их молекул. К этим свойствам относятся термодинамические величины теплоемкости, энтропии, свободные энергии образования и константы равновесия химических реакций. Во многих случаях величины, вычисленные таким образом, точнее, чем найденные экспериментально в других случаях вычисления являются единственно доступным в настоящее время методом получения необходимых данных, так как проведение соответствующих экспериментальных измерений практически невозможно. [c.292]

    Кроме вопросов статической структурной химии, таких как идентификация протонов, хрушшровок атомов и молекул в целом, ЯМР-методом решаются вопросы динамики молекул — конформационной химии, кинетики и механизмов химических реакций, свойств переходных состояний и др. [c.127]

    Авторы отдают себе отчет в том, что электрохимия переменных токов охватывает в действительности значительно более широкую область, чем об этом можно судить по содержанию настоящей работы. В частности, оказались не затронутозши такие важные направления, как исследование кинетики объемных химических реакций, свойства цепей переменного тока при наложении постоянной поляризации, процессы электрокристаллизации, коррозионные явления и другие теоретические вопросы. При рассмотрении измерительной техники не затрагивались специфические проблемы изготовления электрохимических ячеек, подготовки электродов и электролита, техники измерения при поляризации постоянным током и т. п. Все эти вопросы получили достаточное отражение в отечественной и зарубежной обзорной литературе [50-61]. [c.11]

    Те1 10Д1шамические исследования фазового равновесия жидкость - пар в системах с химическими реакциями становятся все более актуальными. В работах [1-з1 рассмотрен ряд вопросов,касающихся терюдинамики фазового равновесия в системах с равновесными химическими реакциями. Целыо настоящей работы является вывод термодинамических соотношений для системы с реакцией, не достигшей химического равновесия. Эти соотношения позволяют описать изменение термодинамических свойств раствора в ходе химического превращения и связать их со скоростью химической реакции. Свойства подобных систем представляют непосредственный интерес в связи с исследованиями процессов разделения реагирующих, веществ. [c.3]

    Хемостарение системы идет одновременно с известным физическим старением осадка, что приводит к изменению свойств осадка и системы осадок—раствор в целом. При этом происходит как изменение физических свойств, так и химического состава осадка. В зависимости от типа вторичной химической реакции свойства [c.88]

    Изложенные соображения о различии электрохимических и химических реакций и о предмете и содержании электрохимии отвечают воззрениям, слол ившимся в отечественной литературе. В согласии с расширенным определением электрохимии к ней можно отнести явления, связанные с электрохимическими свойствами коллоидов, с химическими реакциями, вызванными действием света или потока радиоактивных частиц (и приводящими к возникновению разности потенциалов), с электрохимическими явлениями в животных и растительных организмах и т. п. Представляется, однако, более правильным говорить в этих случаях о коллоидной электрохимии, фотоэлектрохимии, радиоэлектрохимии, биоэлектрохимии и т. д., сохранив название собственно электрохимии для [c.13]

    Пути и и П1 включают в себя частичную или полную диссоциацию комплексного иоиа, т. е. чисто химическую стадию, протекающую в объеме электролита эта стадия не зависит от свойств электрода. В результате гомогенной химической реакции образуются частицы, которые подвергаются разряду на электроде, т. е. эта реакция предшествует акту разряда. Для пути И специфическим является разряд нейтральных частиц, для пути П1—появление двух чисто химических стадий завершающая стадия (б) цути П1 должна протекать здесь по схеме, приведенной -на рис. 14.5. Для этих двух путей также. появляется необходимость отвода избыточных ионов СЫ от поверхности электрода. [c.295]

    Следовательно, приближение к равновесию всегда носит характер экспоненциального спада п затухающие колебания не возникают. Это является общим свойством всех процессов установления химического равновесия. Принцип микроскопической обратимости (называемый также принципом детального равновесия) утверждает, что при равновесии сложной системы химических реакций каждая отдельная реакция должна находиться в равновесии. Это исключает возможность образования непрерывных циклов, например цепи реакций А В С А, скорости которых таковы, что концентрации всех веществ остаются постоянными. Таким образом, очевидно, что, приближаясь к равновесию, разность между текущими концентрациями веществ и их равновесными значениями затухает экспоненциально, а не путем затухающих колебаний. Конечно, в ходе реакции концентрации некоторых веществ могут проходить через максимумы или минимумы, прежде чем достигнуть своих равновесных значений. Однако число таких экстремумов ограничено (их может быть не более В — 1 в процессе, включающем Я независпмых реакций), в то время как в случае затухаюшцх колебаний чпсло максимумов и минимумов бесконечно. [c.78]

    Опоеделение параметров уравнений звеньев. Для определения значений коэффициентов и других параметров уравнений необходамо знать физико-химические свойства перерабатываемых ьешеств, константы скоростей химических реакций, коэффициенты теплопередачи, коэффициенты массоотдачи и т.д. [c.14]

    Для сравнения основно-кислотных свойств бинарных соединений можно воспользоваться данными по АС соответствующих химических реакци 1. Ниже приведены реакции взаимодействия оксидов элементов 3-го пеэиода с оксидом натрия  [c.251]

    При обычной температуре элементарный углерод весьма инертен. При высоких же температурах он непосредственно взаимодействует с многими металлами и неметаллами. Углерод проявляет восстановительные свойства, что широко используется в металлургии. Окислительные свойства углерода выражены слабо. Вследствие различия в структуре алмаз, графит и карбин по-разному ведут себя в химических реакциях. Для графита характерны реакции образования кристаллических соединений, в которых макромолекулярные слои С200 играют роль самостоятельных радикалов. [c.394]

    Независимые реакции обладают тем свойством, что каждая химическая реакция системы, состоящей из к компонентов, записывается с помощью линейной комбинации. Не число всёх стехиометрически возможных реакций z, а только число независимых реакций R должно приниматься во внимание при определении числа степеней свободы системы, причем R..  [c.114]

    В промышленных условиях активность катализатора практически любого нефтехимического гетерогенно-каталитического процесса со временем уменьшается вследствие образования коксовых отложений на активной поверхности. Для восстановления основнь1х характеристик закоксованные катализаторы периодически подвергают окислительной регенерации. Окислительная регенерация закоксованных катализаторов представляет собой совокупность химических реакций, протекающих при взаимодействии кислорода с коксом и приводящих к его удалению с активной поверхности катализатора в виде газообразных продуктов окисления. Физико-химические закономерности этих реакций определяются количеством и способностью кокса к окислению, составом газовой фазы, температурой и свойствами поверхности, на которой происходит окисление. [c.68]

    Кинетическая м диффузионная область. Очень важно правильно определить, протекает процесс в диффузионной области или кинетической, т. е. что является определяющей—скорость массопередачи или скорость химической реакции. Основными переменными, позволяющими это oбнapyжиtь, служат скорость потока и температура. Уравнение (VI, 2) показывает, что скорость массопередачи почти прямо пропорциональна скорости потока. С другой стороны, такое изменение рабочих условий совершенно не сказывается на скорости химической реакции. Влияние температуры на массопередачу выражено только в изменении физических свойств веществ в критериях подобия. Однако суммарное влияние температуры на скорость массопередачи весьма незначитель- [c.181]


Смотреть страницы где упоминается термин Химические реакции свойства: [c.6]    [c.84]    [c.202]    [c.15]    [c.231]    [c.149]    [c.259]   
Общая химия (1974) -- [ c.18 ]




ПОИСК





Смотрите так же термины и статьи:

Изучение физико-химических свойств, реакций идентификации и количественного определения витаминов

Межмолекулярная дегидратация спиртов Реакция Вильямсона Химические свойства простых эфиров

Некоторые химические свойства и реакции галогенидов серебра

О применении линейной формы зависимости при расчетах термодинамических свойств веществ и параметров химических реакций

Общие химически свойства Действие кислот и оснований. Реакции просоединения, элекпрофильного замещения, гсиогенирования. нитрования, сульфирования. ацилирования, взаимного превращения гетероциклов

Определение термодинамических свойств веществ и параметров химических реакций в некоторых частных случаях

Оптические свойства. Магнитооптический эффект Фарадея Гидратация ионов. Инфракрасные спектры поглощения Магнитная восприимчивость. Электропроводность. Диэлектрическая проницаемость. Вязкость. Химические реакции Гетерогенные системы

Основные термодинамические свойства веществ и па- i раметры химических реакций

Основные термодинамические свойства веществ и параметры химических реакций

Особенности термодинамических свойств веществ и параметров химических реакций при очень высоких температурах

Реакции 0-Ме—С связи. Химические свойства металлоорганических соединений переходных металлов

Свойства, химические реакции и производные целлюлозы Технические целлюлозы и их анализ

Связь между физико-химическими свойствами керосиновых фракций, направлением реакции окисления и ее скоростью

Синтез бутадиена по Лебедеву. Дегидрирование олефинов Дегидратация 1,4-бутандиола. По реакции Принса Химические свойства 1,3-диенов

Содержание Б Определение термодинамических свойств веществ и параметров химических реакций в некоторых частных случаях

Типы заместителей н. их влияние на химические свойства и реакции ароматических соединений

Физико-химические свойства и реакции

Физико-химические свойства и реакции карбонилов железа

Физико-химические свойства продуктов реакции озона с СС-связями

Физические и химические свойства белков. Цветные реакции на белки

Фталевый ангидрид химические свойства см Реакции

Химическая структура и свойства фурановых соединений Реакции двойных связей цикла

Химические реакции н свойства карбоновых кислот нефти

Химические свойства алкенов Реакции присоединения (водорода, галогенов, галогенводородов, воды, алканов, формальдегида), правило Марковникова Реакции полимеризации, окисления, озонирования, замещения Оксосинтез, изомеризация

Химические свойства ароматических углеводородов Реакции присоединения. Гидрирование, галогенирование. Восстановление по Бергу. Реакции окисления. Озонирование

Химические свойства и основные реакции

Химические свойства и реакции цеолитов

Химические свойства п реакции парафинов

Химические свойства реакции амидных групп

Химические свойства, качественные реакции и количественное определение хинонов

Химические свойства, реакции и применение я-аллильных комплексов

Химическое строение и свойства веществ, имеющих кислую реакцию

Ш у ш у н о в. Весовой метод исследования состава и свойств продуктов гетерогенных химических реакций

связи некоторых физических свойств тел с их химическими реакциями



© 2024 chem21.info Реклама на сайте