Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

связи некоторых физических свойств тел с их химическими реакциями

    Классификация химических реакций с какой-либо единой точки зрения невозможна. Ограниченной является и классификация реакций, предложенная Д. И. Менделеевым. По смыслу сказанного им ниже, она относится только к реакциям, протекающим в газообразной фазе с участием одного или двух различных веществ. Первоосновой менделеевской классификации явились унитарные воззрения в химии, горячим сторонником которых Д. И. Менделеев выступал с самого начала своей научной и педагогической деятельности. Заметим также, что впервые Д. И. Менделеев дал и обосновал свою классификацию химических реакций в работе О связи некоторых физических свойств тел с их химическими реакциями , опубликованной в 1858 г. (см. Д. И. Менделеев. Собр. соч., т. 1. Л., ОНТИ —Химтеорет, 1937, стр. 325), а в последующие годы приводил в лекциях по теоретической химии и в Основах химии . [c.69]


    О связи некоторых физических свойств тел с их химическими реакциями.................325—347 [c.7]

    Перед началом практикума по органической химии мастер производственного обучения должен рассказать учащимся о некоторых особенностях выполнения органических реакций. Эти особенности связаны с физическими и химическими свойствами органических веществ. [c.83]

    Деструкция полимеров — это разрушение макромолекул - под действием различных физических и химических агентов. В результате деструкции, как правило, уменьшается молекулярная масса полимера, изменяется его строение, а также физические и механические свойства полимер становится непригодным для практического использования. Следовательно, этот процесс является нежелательной побочной реакцией при химических превращениях, переработке и эксплуатации полимеров. В то же время реакции деструкции в химии высокомолекулярных соединений играют и положительную роль. Эти реакции используют для получения ценных низкомолекулярных веществ нз природных полимеров (например, аминокислот из белков, глюкозы из крахмала), а также для частичного снижения молекулярной массы полимеров с целью облегчения их переработки. С помощью некоторых деструктивных процессов можно определять строение исходных полимеров и сополимеров. Процессы, приводящие к разрыву химических связей в макромолекулах, как уже отмечалось, используют для синтеза привитых и блок-сополимеров. [c.67]

    Необходимо отметить, что теория валентных связей и теория молекулярных орбиталей взаимно дополняют друг друга. Теория валентных связей позволяет наглядно представить себе процесс образования химической связи и строение молекул на основании учета пространственной направленности атомных орбиталей. Она позволяет также качественно объяснить перераспределение электронов, которое происходит при химических реакциях. Однако в дальнейшем мы убедимся, что для некоторых типов химических систем теория валентных связей не в состоянии полностью объяснить наблюдаемые химические и физические свойства, которые в то же время прекрасно согласуются с теорией молекулярных орбиталей. Более того, по мере изучения химии можно убедиться, что теория молекулярных орбиталей позволяет получать количественные данные о химических связях и об энергетических состояниях молекул и ионов. [c.117]


    Рентгеновские измерения значительно облегчают исследование элементарных частиц, составляющих полимер. Физические свойства, например вязкость, эластичность и твердость, и химические свойства, например сопротивляемость воде и другим реагентам, определяются природой основных молекул и размером и конфигурацией частиц полимера. При рассмотрении природных и синтетических полимерных продуктов возникает вопрос, химическую реакцию или физический процесс представляет рост молекулы при образовании полимера. Коллоидно-химические исследования привели к заключению, что классическое понятие молекулы неприменимо к высокомолекулярным веществам. Часто думали, что эти полимерные соединения построены не так, как низкомолекулярные соединения, а с участием физического процесса, называемого агрегацией частица при этом увеличивается, образуя мицеллу. Многочисленные работы Штаудингера доказывают, однако, что большинство полимерных соединений следует рассматривать как частицы, у которых некоторые атомы связаны с помощью основных валентностей, как у низкомолекулярных соединений, подобных парафиновым углеводородам. [c.654]

    Успехи газовой хроматографии во многом связаны с развитием эффективных методов идентификации, характерной особенностью которых является широкое использование, наряду с газо-хроматографическими, также комбинации различных физических и химических методов для отождествления пиков на хроматограмме. Общая схема применения некоторых распространенных методов идентификации в газовой хроматографии показана на рис. 13. Проведение качественного анализа включает часто следующие стадии (этапы) 1) предварительную подготовку пробы, 2) хроматографическое разделение с использованием химических реакций и селективных детекторов, 3) выделение и физико-химическое изучение отдельных фракций, 4) повторные газо-хроматографические исследования отдельных фракций. Таким образом, для онределения состава анализируемой смеси применяют как хроматографические методы, основанные на измерении величин удерживания, так и методы, основанные на физико-химических свойствах определяемых компонентов. [c.35]

    Созревание теста и развитие у него вязкоэластических свойств принято объяснять образованием белками клейковины пространственной сетки путем сшивания белковых молекул, присутствующих в отдельных частицах муки. Эти молекулы находятся в исходной муке в форме плотно свернутых клубков и удерживаются в такой конфигурации физическими силами, в частности внутримолекулярными ковалентными дисульфидными мостиками между остатками цистеина. Перемешивание теста сопровождается разрывом некоторых сравнительно слабых когезионных связей (таких, как водородные связи), что делает возможным гидратацию, набухание и развертывание молекул белков в солевом растворе теста. Это влечет за собой ряд внутри- и межмолекулярных химических реакций белков и заканчивается образованием устойчивой трехмерной структуры созревшего теста. Согласно общепринятому представлению, важнейшими из этих реакций, по-видимому, являются реакции тиол-дисульфидного и дисульфид-дисульфидного обмена. [c.605]

    Выше дано достаточно полное описание зонной энергетической схемы идеального кристалла хлорида калия особенности же кривых, описывающих зависимость Е(к) от к и эффективных масс [4 ] не могут быть перенесены на азиды. Однако на практике электроны и дырки могут захватываться вакантными узлами решетки с образованием F-и F-центров соответственно, а также небольших их агрегатов, поглощающих свет в ближней инфракрасной, видимой и ближней ультрафиолетовой областях [11, 20]. Эти дефекты, в частности -центры и анионные вакансии, могут снижать энергию, требуемую для образования экситона на соседних атомах (а, -полосы) [И, 21]. С топохимической точки зрения более важно, однако, отметить, что локальное снижение энергии, требуемой для образования экситонов, может происходить также на краевых дислокациях [22]. Другим типом дефектов, существование которых имеет громаднейшее значение для реакций термического разложения, являются коллоидные центры. В сущности они представляют собой включения металла, образующиеся обычно в галогенидах щелочных металлов в результате агрегации F-центров [И]. Возникший коллоидный центр можно непосредственно уподоблять дискретным ядрам продукта, на которых в некоторых системах локализуется термическое разложение. Таким образом, создается важное связующее звено между физическими и химическими свойствами этих систем. [c.135]


    С такой структурой ароксилов хорошо согласуются их химические и физические свойства. Ароксилы имеют интенсивную окраску и реагируют как О- и как С-радикалы. Изучение некоторых модельных реакций позволило выяснить особенности поведения феноксильных радикалов в процессах ингибированного окисления, установить связь между строением и антиокислительной активностью фенольных соединений. [c.314]

    Распределение заряда электронов в молекуле во многом определяет ее физические свойства (дипольный момент), химические свойства в кислотно-основных реакциях, реакциях комп-лексообразования и др. Качественно данная проблема может быть обсуждена в рамках любого из подходов к объяснению химической связи (метод ВС, метод МО), до некоторой степени дополняющих друг друга количественные расчеты требуют применения ЭВМ. [c.110]

    Химические реакции применяются для анализа углеводородов только в особых случаях. Большая часть операций разделения и идентификации основана на физических действиях, так как обычно физические свойства более чувствительны к незначительным изменениям строения, которые следует различать. В результате реакций сульфирования, галоидирования или нитрования обычно образуются не определенные характерные соединения, а сложные смеси вследствие протекания нежелательных побочных реакций. Однако имеются некоторые пункты, на которые химические реакции могут пролить известный свет. С точки зрения авторов, наиболее важной реакцией при изучении состава нефти, не считая элементарного анализа, является гидрогенизация ароматических углеводородов. О применении этой реакции будет сказано на стр. 264—268. В настоящем подотделе будут специально рассмотрены реакции, в которых участвует водород, связанный с третичным атоллом углерода, реакции с участием двойных связей, дегидрогенизация нафтенов и исследования ароматических углеводородов с помощью химических способов. [c.170]

    Результаты исследования свидетельствуют о том, что между поведением стали при граничном трении в присутствии углеводородов и химическими реакциями, протекающими на поверхностях трения с участием металла, углеводорода и кислорода, может быть установлена связь. Более того, оказалось, что эффективность смазочного действия углеводородов на некоторых режимах трения обусловлена появлением на поверхностях трения продуктов реакции органического происхождения однако детальный механизм действия этих веществ может быть сформулирован лишь в результате дальнейших исследований их физических свойств и, в особенности, реологических характеристик систем, образуемых ими в зоне контакта. [c.104]

    Выражение термодинамического сродства через свободную энергию шозБОЛяет нам обобщить химические реакции, подводя под категорию реакций и многие физические процессы, и, в частности, изменения агрегатных состояний вещества. С химическими реакциями эти процессы имеют следующие общие черты во-первых, в результате изменений агрегатных состояний получается вещество с другими физическими свойствами во-вторых, эти процессы связаны с поглощением или выделением теплоты в-третьих, как, например, при кристаллизации переохлажденной жидкости, мы имеем процесс, ведущий к устойчивому равновесию, причем в адиабатных условиях этот процесс, как показано, ведет к возрастанию энтропии, а в изотермических условиях, подобно химическим реакциям, сопровождается уменьшением свободной энергии. Мы можем, таким образом, изменение агрегатных состояний рассматривать как некоторый предельный случай химических реакций, когда количество другого реагирующего вещества равно нулю. [c.166]

    МЕЖМОЛЕКУЛЯРНОЕ ВЗАИМОДЕЙСТВИЕ — взаимодействие двух элек-тронейтральных молекул, вызываемое силами притяжения или отталкивания. Межмолекулярные силы притяжения, называемые иногда силами Ван дер Ваальса, много слабее валентных сил, но именно М. в. обусловливает откло нения от законов идеальных газов, переходы от газообразного состояния к жидкому, существование молекулярных кристаллов, явления переноса (диффузия, вязкость, теплопроводность), тушение люминесценции, уширение спектральных линий, адсорбции и др. М. в. всегда представляет собой первую стадию элементарного акта химической бимолекулярной реакции. При больших расстояниях между молекулами, когда их электронные оболочки не перекрываются, преобладают силы притяжения при малых расстояниях преобладают силы отталкивания. Короткодействующие силы имеют ту же природу, что и силы химической (валентной) связи и возникают при условии, когда электронные оболочки молекул сильно перекрываются. Частным случаем М. в. является водородная связь. М. в. определяет агрегатное состояние вещества и некоторые физические свойства соединений. [c.157]

    Не существует соединений, содержащих положительно заряженные ионы водорода. В степени окисления -f 1 водород образует только полярные связи. При взаимодействии с активными металлами (К, Na, Са и др.) водород образует гидриды типа NaH, СаНг. Это твердые кристаллические вещества, имеющие ионное строение типа Na l, в состав которых водород входит в виде отрицательно заряженного иона Н . По некоторым физическим свойствам такие гидриды напоминают гало-гениды, но по химическим свойствам они резко отличаются от галогенидов. Например, с водой гидриды энергично взаимодействуют с выделением водорода по уравнению реакции [c.160]

    Гетерогенный катализ и хемосорбция находятся в очень тесной связи. Простое упругое столкновение между молекулой и поверхностью не приводит к химической реакции. Чтобы реакция произошла, необходимо образование, хотя бы временно, связи определенного типа между адсорбентом и адсорбатом. Это явление Ленгмюр и другие назвали хемосорбцией, в отличие от физической или ван-дер-ваальсовой адсорбции. К сожалению, изучение хемосорб ционных связей является далеко не легким делом вследствие относительно слабой адсорбции и заметного влияния адсорбента. Здесь редко применимы методы, обычные в структурной химии. Некоторые сведения можно получить из теплот адсорбции, но наиболее интересное явление (снижение теплоты адсорбции почти до нуля при насыщении поверхности) до сих пор не находит удовлетворительного объяснения. Большое число кинетических данных и систематическое использование обменных реакций дали в этой области меньше сведений, чем можно было ожидать. Изучение некоторых физических свойств, например поверхностного потенциала, может скорее усложнить, чем облегчить понимание этих явлений. [c.8]

    Однако принципиально новым в этой работе явился не количественный чет влияния среды на скорость превращения (этим уже ранее занимались Бертло и Пеан де Сен-Жиль [10], а также Вант-Гофф [19]), а объяснение этого влияния химическим действием индифферентного растворителя, которое наиболее ярко было показано Меншуткиным позже, в богатых экспериментальным материалом статьях 1890 и 1900 гг. Меншуткин подробно не объяснял механизм химического действия индифферентного растворителя, а лишь упоминал о возлюжности образования ассоциатов растворителя и растворенного вещества. Ж. Каррара, А. Гемптин и А. Бекерт, а также некоторые другпе физико-химики разделяли взгляды Меншуткина по поводу химического характера действия инертного растворителя на скорость реакций, хотя такая точка зрения не была общепринятой. Ряд авторов (Нернст, Г. Эйлер, Вант-Гофф) считали, что скорость реакции связана с физическими свойствами (диэ.тектрической проницаемостью) индифферентного растворителя. Оствальд полагал, что индифферентный растворитель действует на реакции, в нем происходящие, каталитически [24]. [c.301]

    Учитьшая перечисленные и некоторые другие недостатки программы, в новую её редакцию были внесены соответствующие изменения и дополнения. В частности, предусмотрено изучение таких важнейших вопросов химической технологии процессов переработки нефтяных и газовых фракций, как группы реакций распада. уплотнения и риформировання молекул углеводородов, степени термокаталитических превращений фракций и методика их оценки, реакции превращения, взаимодействия и образования различных классов углеводородов и другие. Обновленной программой предусмотрено также изучение основ химмотологии, которые необходимы для обоснования роли. и связи физических свойств и углеводородных составов фракций, и.слользуемых для получения важнейших прод)тстов, с их товарными характеристиками. Отводится время на ознакомление с методами идентификации и количественного определения классов углеводородов в их сложной смеси.. В то же время нз программы исключена часть вопросов, которые рассматриваются в курсе органической химии. [c.9]

    Однако широкое внимание эта проблема привлекла только после публикации работ С.Ван Хеердена [433], О. Билу и Н. Амундсона [210]. Появление множественных стационарных состояний обычно обусловлено нелинейной природой скоростей реакций и наличием некоторых форм обратной связи. Обратная связь может быть создана либо самоускоряющей, либо самоингибирующей стадией реакции или обратной связью материала или энергии. В некоторых случаях обратная связь создается изменениями физических свойств или констант скоростей реакций в ходе химического превращения [201,239,325,364,438]. [c.225]

    Для решения задач по яеорганической хим-ии -необходимо зна(ние не только химических, о и физических свойств веществ качественных реакций на катионы и анионы способов разделения смесей веществ,-окислительно-восстанов ительных реакций. Чтобы решить задачи по органической химии, нужно знать теорию химического строения органических соединений, генетическую связь между различными классами органических соединений, установление строения веществ по их свойствам, возможные, наиболее рациональные пути синтеза некоторых органических веществ, механизм и условия осуществления тех или иных химических реакций. Задачи в сборнике составлены таким образом, что для успешного решения каждой из них долгйны быть использованы знания нескольких разделов химии. Во всех задачах числовые значения подобраны так, чтобы они составляли кратные доли моля, не требуя длительных арифметических операций и фиксируя основное внимание на химических превращениях. Решения задач вынесены в самостоятельный раздел сборника с тем, чтобы читатель, ознакомившись с содержанием задачи, мог попытаться самостоятельно наметить пути ее решения, а затем воспользоваться готовым решением для самоконтроля. [c.4]

    В принципе все физические свойства кристаллов зависят от их структуры и, следовательно, от дефектности решетки. Однако не все свойства в равной мере чувствительны к наличию дефектов. Обычно число равновесных дефектов относительно невелико, поэтому к мало чувствительным свойствам относятся все те, которые зависят только от средних значений молекулярных параметров частиц в решетке. Сюда относятся такие термодинамические свойства, как теплоемкость и энергия кристаллов. Более чувствительны к наличию дефектов оптические свойства кристаллов в области основной полосы поглощения. Высокочувствительны те физические свойства, которые практически полностью определяются наличием отдельных дефектов в кристаллической решетйе — диффузия в кристаллах, электропроводность примесных полупроводников, поглощение света вне основной полосы поглощения, люминесценция, некоторые магнитные свойства, скорость химических реакций в кристаллах. Для химии большое значение имеет равновесная нестехиометричность ионных кристаллов, возникающая в связи с появлением в решетке структурных дефектов. [c.271]

    Табулированы и обсуждены имеющиеся данные по физическим и химическим свойствам полимеров изобутилена. Рассмотрены химические свойства и превращения олиго- и полиизобутиленов, которые подразделены на превращения концевых групп двойных связей (реакция присоединения и расщепления) звеньев основной цепи, боковых метильных групп (заместител ьные реакции) и распад основной цепи (деградация, деполимеризация, сшивка). В ряду различных воздействий на полимер проанализированы химические, физические и высокоэнергетические методы воздействия (реагенты и окислители, механохимия, ультразвук, плазма тлеющего разряда, ионизирующие излучения и др.). Особенно выделены направленные превращения полимеров изобутилена, открывающие пути технического применения полимеров изобутилена (каталитическое ионное гидрирование, алкилироваьше фенолов и аминофенолов, каталитическая деполимеризация и некоторые другие). Суммированы аналитические характеристики полиизобутилена спектроскопические (ИК, ЯМР) данные, касающиеся основной цепи и дефектов структуры вязкостные, реологические и молекулярно-массовые параметры их взаимосвязь и методы определения (фракционирование, озонолиз, гель-проникающая хроматография и др.). Совокупное сочетание различных методов обеспечивает высокую степень надежности полученной информации, касающейся аналитических характеристик полиизобутилена. [c.379]

    Ясная концепция характерных черт химического поведения ароматических молекул эмпирически была развита очень давно, а в двадцатых годах нашего столетия начала интерпретироваться и находить свое выражение в понятиях электронных теорий химии, развитых Ингольдом [27] и Робинсоном [4]. Возникновение понятия ароматичность связано с химическим поведением некоторых соединений в самых разнообразных реакциях, а также, в некоторой степени, с физическими свойствами, такими, например, как диамагнитная восприимчивость, характерными для ароматических молекул. Ароматический характер обычно связывался с различными типами реакционной способности, а не со свойствами изолированной молекулы в ее основном состоянии, и наиболее ранняя удовлетворительная теория, а именно теория мезомерии, подчеркивала эту типично химическую точку зрения. Затем, в короткий период около 1930 года, история которого хорошо известна, Хюккель, Полинг и другие показали совместимость теории мезомерии и ароматического секстета с квантовой физикой электронов. Исходным пунктом являются два основных метода приближенного количественного описания ароматических систем метод валентных схем (ВС) и метод молекулярных орбит (МО), основные достоинства которых в том, что они хорошо обоснованы с физической точки зрения и что при помонди их можно вычислить термохимическую энергию резонанса — величину, которая может быть измерена. Энергия резонанса является свойством основного состояния изолированной молекулы, оказывающим лишь второстепенное влияние на реакционную способность, и концентрирование на ней внимания типично для физической точки зрения. В теории ароматичности центр тяжести сместился с химического поведения на физические свойства, и это отражает значительно большие успехи (по крайней мере вплоть до последнего времени) полуколичествен- [c.7]

    Концепция ароматичности, н в первую очередь, ароматического секстета электронов, была развита для то-го, чтобы отразить некоторые аспекты химического поведения определенного класса молекул, в особенности относящиеся к их реакционной способности. На язык электронных представлений она была впервые переведена в теориях химии ароматических молекул, развитых Ингольдом [1] и Робинсоном [2]. Позднее, около 1930 г., Хюккелем, Полингом и другими было показано соответствие этих теорий квантово-физическим представлениям об электронах. С тех пор, и все в большей степени, ароматичность ассоциировалась одновременно с физическими свойствами молекул (термохимической энергией резонанса, диамагнитной восприимчивостью) и с типично химическими свойствами, связанными с реакциями и реакционной способностью. Кроме того, теоретически предсказанная связь между делокализацией тс-электронов и ароматическими свойствами привела к осознанию того, что ароматичность можно ожидать во всех случаях, когда условия стереохимии, наличие пригодных для использования орбит и число электронов делают возможной делокализацию электронов в циклической системе. С этой точки зрения важен не тип атомов, участвующих в делокализованной системе, а тип орбит. Можно рассматривать 1,3, 5-триазин и боразол (ВзНзНб) как вещества, имеющие качественно тот же ароматический характер, что и бензол, хотя и слабо проявляющийся. Дальнейшее расширение понятия приводит к тому, что трополон (I) [3] можно рассматривать как ароматическую систему, а циклопентадиенильные кольца в ферроцене (И) как обладающие ароматичностью в результате образования комплекса. [c.31]

    В предыдущих главах мы рассматривали химию соединений, содержащих одну функциональную группу. Однако большое ЧИСЛО важных органических соединений содержит две или более функциональные группы. Во многих случаях химия таких соединений очень сходна с химией соответствующих монофункциональных соединений, но в некоторых случаях наличие в молекуле двух групп вызывает появление уникальных химических и физических свойств. Например, углерод-углеродная двойная связь в a,f -нeнa ыщeнныx карбонильных соединениях вступает в реакции нуклеофильного присоединения (рис. 9.1,а), хотя [c.205]

    Объяснение механизма превращений красителя в условиях воздействия излучений тесно связано с познанием механизма радиолиза воды и изучением свойств образующихся при этом химически активных продуктов. Согласно общепринятой в настоящее время схеме, первичный акт действия излучения на воду сводится к акту ионизации молекул воды и образованию свободных гидроксилов и атомов водорода. По данным физических онре-делеиий, проведенных в газовой фазе и, повидимому, применимых в какой-то мере также и к конденспровапной фазе, иа акт ионизации воды затрачивается около половины всей поглощенной энергии. Другая ноловина ее расходуется на возбуждение молекулы воды. Образующиеся возбужденные молекулы воды также способны диссоциировать на П-атомы и свободные гидроксилы, причем этот процесс был бы более выгодным в смысле затраты энергии, так как на диссоциацию молекулы воды требуется только немного более 5 эв [8]. Однако, вследствие близкого расположения атомов Н и радикалов ОН, образуемых при диссоциации молекулы возбужденной воды, эти продукты практически полностью рекомбинируют. Их использование для проведения вторичных химических процессов с участием растворенных веществ оказывается возможным только для некоторых реакций, в особо благоприятных условиях. Как было показано нами [7], к такому типу радиационно-химических реакций относится реакция окисления двухвалентного железа в атмосфере кислорода в растворах с высоким содержанием серной кислоты. Предполагая, что все разложение воды обусловлено ионизацией, получено значение выхода атомов И и радикалов ОН, близкое 3,6/100 эв поглощенной энергии. Это значение выхода является, очевидно, максимальным и достигается лишь при условии наличия в растворе достаточно высокой концентрации веществ, легко связывающих образующиеся Н-атомы или радикалы ОН и ингибирующих протекание рекомбинационных реакций типа [c.86]

    Следующий вопрос, с которым мы сталкиваемся, — это вопрос о том, какое именно физическое свойство может наиболее достоверно характеризовать основность. Измерение констант равновесия включает по крайней мере три или четыре соединения основание и сопряженную ему кислоту, кислоту и сопряженное ей основание, не говоря уже о сольватированных соединениях. Хорошо известно, что порядок измерения основности в некотором ряду веществ может измениться даже на обратный, если для координации использовать кислоты с различными стерическими требованиями [50]. Аналогичная инверсия может наблюдаться и при более слабых взаимодействиях оснований с донорами водородной связи [30]. Поэтому можно было бы попытаться использовать некоторые свойства свободной молекулы в газовой фазе, такие, как дипольный момент или ионизационный потенциал, чтобы получить идеальный или внутренний фактор основности, который дает значение электронной плотности в точке основности молекулы. Хотя такие измерения лучше коррелируются с идеализированной моделью (контролируемой, например, с помощью индукционного эффекта), они далеки от реальности химического эксперимента. Поскольку химик обычно имеет дело с реакциями, которые происходят между молекулами в растворе, для него очень важны эмпирические данные о системах в условиях эксперимента. Поэтому измерение термодинамических констант кислотно-основных реакций представляется наиболее реальцым путем оценки основных свойств веществ. [c.198]

    Имеющиеся косвенные доказательства существования водородной связи между карбонильной группой при С-2 пиримидинового кольца и водородом гидроксильной группы при С-2 остатка рибозы можно разбить на две группы. Одна группа — это данные о различии физических свойств или химической реакционной способности для пиримидиновых нуклеозидов и их производных, в которых имеется гидроксильная группа при С-2 (например, уридин, уридин-З -фосфат, уридин-5 -фосфат) и производных, в которых эта гидроксильная группа отсутствует (например, 2 -дезоксиури-дин, уридин-2 -фосфат, алкилурацилы). Помимо уже упоминавшихся данных по УФ-спектрам производных уридина сюда относятся данные о различии констант ионизации для производных цитозина этих двух групп отличия в спектрах ЯМР пиримидиновых нуклеотидов 33, а также различие в скоростях протекания некоторых реакций рибо- и дезоксирибонуклеозидов (например, фотохимической гидратации производных цитидинакаталитического гидрирования и гидроксиламинолиза 9 производных уридина). [c.141]

    Не подлежит сомнению, что и множество общих физических свойств, при подробном их изучении, окажется также в периодической зависимости от атомных весов, но и в настоящее время с некоторою полнотою известны лишь немногие из них, и мы остановимся на одном наиболее легко и часто определяемом — удельном весе в твердом и жидком состоянии, тем более, что связь его с химическими свойствами и отношениями выступает На каждом шагу. Так, напр., из всех металлов щелочные, а из всех металлоидов, при близких весах атомов, галоиды, — наиболее энергичны по своим реакциям, и они оказываются обладающими между соседними простыми телами наименьшим удельным весом, как видно из прилагаемой таблицы (стр. 97—99 [П]). Таковы Na, К, кЬ, Сз между металлами и С1, Вг, ] между металлоидами- А так как столь малоэнергические металлы, как 1г, Р1, Аи и уголь или алмаз среди близких простых тел, обладают наибольшею плотностью, то степень сгущения материи, очевидно, влияет на ход превращений, веществу свойственных, и потом зависимость эта от атомного веса, хотя и очень сложна, явно периодического свойства. Чтобы дать себе некоторый отчет в этом отношении, иожно представить легчайшие простые тела рыхлыми и как губка удобопро-ницаемыми другими, тогда как тяжелейшие — более сдавленными, с трудом расступающимися для вмещения других элементов. Удобнее всего эти отношения понимаются, когда вместо удельных весов [418], относящихся к единице объема, взять для сличения удельные объемы атомов, т.-е. частные А в из веса атома А на удельный вес 5. Так как весомая часть вещества, по всему смыслу атомного учения, не наполняет его пространства, а окружена средою (эфирною, как обыкновенно пред- [c.93]

    Еще большее значение имела, наверное, обзорная статья Бартона и Куксона [64], посвященная основам конформационного анализа, терминологии, существованию предпочтительных конформаций и особенно следствиям из этого факта, которые обстоятельно иллюстрированы на примерах из химии алифатических, алициклических и гетероциклических соединений. Цель этой статьи — суммировать положения конформационного анализа, наиболее важные с точки зрения химика-органика. Авторы обзора пишут в связи с этим Основной принцип конформационного анализа состоит в том, что физические и химические свойства молекулы могут быть поставлены в соответствие с ее предпочтительной конформацией [там же, стр. 47], причем существуют явления, которые находятся в прямой связи с такой конформацией физические свойства, подобные полосам поглощения в ультрафиолетовом и инфракрасном спектрах, и некоторые химические свойства, обусловленные стерическим сжатием ( ompression), и явления, которые обусловлены одновременно и конформационным фактором и необходимостью определенной геометрической структуры для переходного состояния в данной реакции, что обычно сводится к расположению участвующих в ней центров на одной линии или в одной плоскости (подробнее об этом — в следующей главе). [c.308]

    Этот важный класс полупроводниковых кристаллов является объектом особого интереса с 1952 г., когда Велькер впервые привлек к нему внимание исследователей [36]. По природе связей некоторые кристаллы элементов П1—V групп являются аналогами атомарных полупроводников IV группы, на которые они похожи также по структуре и по свойствам. Поэтому можно ожидать, что для них типичны многие из описанных выше реакций в Ge и Si. И в самом деле, многие из этих полупроводников хорошо характеризуются равновесной степенью ионизации и поведением в них ионизированных примесей (рис. 1 и табл. 1). Особенно полно с физической точки зрения исследован антимо-нид индия. Все же в полупроводниках III—V исследовано еще относительно мало химических реакций. Но ввиду того что все эти вещества в конце концов могут быть получены в виде очень чистых монокристаллов, ожидается, что этот пробел в наших знаниях будет скоро восполнен. [c.282]

    Что Кекуле во время составления первого выпуска еще не владел методом теории химического строения и так же, как и раньше, мог развивать логические выводы из теории атомности, не стараясь и не умея их использовать в качестве теоретической базы для объяснения химических явлений, об этом могут свидетельствовать многие места этого выпуска. Так, в Обзоре изомерных соединений СпНгп—[37, стр. 138] Кекуле описывает для соединений, содержащих два атома углерода, три хлорида и два бромида, а для соединений с тремя атомами углерода, наоборот — два хлорида и три бромида. Основанием для этого послужили неправильные данные некоторых исследователей. Кекуле не пытается проанализировать эти результаты, странные для каждого сторонника теории химического строения, и дать им какое-либо объяснение. Вот что он пишет об этой изомерии Причину различия этих изомерных соединений, естественно, надо искать в метамерии, т. е. в том, что хлор- или бром-атомы внутри молекулы занимают разное место, что они связаны с разными сродствами углеродной группы [там же, стр. 139—140]. Последнее можно истолковать в смысле признания различия единиц сродства у атомов углерода, однако это шло бы вразрез со всеми остальными высказываниями Кекуле, в которых он нигде не признает этого различия. Таким образом, здесь имеется еще один пример того, что Кекуле в 1863 г. еще не был способен применять логические выводы из теории атомности к анализу конкретного материала. Даже тот факт, что некоторые из этих изомеров, отличающихся лишь физическим свойствам, при химических реакциях давали одни и те же продукты, Кекуле объяснял молекулярными перегруппировками вместо того, чтобы проанализировать их с точки зрения взаимной связи атомов. [c.39]

    Синтетические смолы как связующие компоненты твердых смазочных материалов применяют шире, чем природные плен-кообразователи. Многие природные смолы почти полностью отвечают требованиям, предъявляемым к защитным и декоративным покрытиям, но они не могут выдержать больших механических нагрузок, действию которых подвергаются смазочные пленки. Правда, между природными и синтетическими смолами порой трудно провести границу. Примером могут служить алкидные смолы, которые принято считать синтетическими, хотя они содержат в своем составе растительные масла. Некоторое количество модифицированных природных смол находит применение при изготовлении твердых смазок. В качестве связующих в эти смазки чаще вводят те вещества, которые придают им необходимые физические свойства после термообработки. Реже используют вещества, которые медленно образуют пленку при химической реакци.т с кислородом воздуха. [c.112]

    Арилцикланы. Исследование спектров КР фе-нилциклопропана и некоторых арилцикланов было предпринято в связи с появившимися в литературе за последнее время работами, в которых трехуглеродный цикл рассматривался как ненасыщенный и принималась возможность некоего специфического взаимодействия, так называемого сопряжения А-цикла с двойными связями и бензольным кольцом, по аналогии с подобными представлениями о сопряжении двойной связи и бензольного кольца. Проводя такую аналогию, обычно делают ссылки на формальное сходство ряда химических реакций соединений, содержащих А-цикл и соединений, содержащих двойную связь. Рассматривалось также сходство некоторых закономерностей в физических свойствах соединений, содержащих двойную связь, и соединений, содержащих А-цикл для обоснования предполагавшегося специфического взаимодействия — сопряжения между А-циклом и бензольным кольцом в молекулах фенилциклопропана и его замещенных. [c.215]


Смотреть страницы где упоминается термин связи некоторых физических свойств тел с их химическими реакциями: [c.148]    [c.48]    [c.137]    [c.60]    [c.17]    [c.10]    [c.421]    [c.153]    [c.413]    [c.251]    [c.155]    [c.17]   
Д.И. Менделеев Жизнь и труды (1957) -- [ c.19 ]




ПОИСК





Смотрите так же термины и статьи:

Некоторые физические свойства

Физические н химические свойства

Химическая связь

Химическая связь связь

Химические реакции свойства

Химический связь Связь химическая



© 2025 chem21.info Реклама на сайте