Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ориентация молекул и скорость реакции

    Для некоторых реакций можно избавиться от распределения по скоростям, применяя метод скрещенных молекулярных пучков (рис. 22-2). Вместо реакций между молекулами, диспергированными в растворе или газе, пропускают сквозь друг друга пучки молекул или ионов в вакуумной камере, где присутствует пренебрежимо малое число других молекул. Молекулы в пересекающихся пучках реагируют между собой и рассеиваются от точки пересечения пучков. За образованием продуктов реакции и непрореагировавшими исходными молекулами можно наблюдать по зависимости от угла рассеяния, пользуясь подвижным детектором, которьш находится внутри камеры. Удобство такого метода заключается в том, что селекторы скорости позволяют ограничить пучок молекулами, скорости которых находятся в выбранном небольшом интервале значений. Сведения о зависимости количества образующегося продукта реакции от угла отклонения, или рассеяния, дают намного больше данных о процессе реакции. Проблема ориентации сталкивающихся молекул остается и в исследованиях со скрещенными пучками, но можно представить себе эксперименты, в которых этот фактор также удается контролировать. Если пропустить молекулярные пучки перед точкой пересечения через сильные магнитные или электрические поля, они придадут большинству молекул в каждом пучке одну преобладающую ориентацию в пространстве при условии, что молекулы обладают магнитными или дипольными моментами. [c.356]


    Изучая внутримолекулярную реакцию образования лактонов, в которой наблюдается увеличение скорости на 3—6 порядков по сравнению с бимолекулярной реакцией, Кошланд [65] предложил новое понятие — орбитальное управление. Исходя из проведенных экспериментов, он предположил, что управление реагирующими атомами может вызвать (или объяснить) высокие скорости реакции. Реагирующие группы не только должны быть сближены, но и правильным образом ориентированы. При использовании таких представлений важную роль играют эффекты и сближения, и ориентации. В более жестких молекулах реакция идет с большей скоростью. Согласно представлениям Кошланда, уменьшение поступательной энтропии имеет не столь важное значение, как это предполагал Дженкс. [c.212]

    Химические реакции в поверхностных пленках. Надо полагать, что сам факт нахождения молекул в монослое на поверхности жидкости не изменяет ее химическою активность. Тем не менее экспериментальные данные показывают, что возможность химического взаимодействия молекул пленки с молекулами или ионами подкладки в значительной мере зависит от ориентации и плотности упаковки молекул пленки. Вследствие этого скорость реакции вещества пленки существенно зависит от ее структуры. Течение химических реакций в поверхностных пленках можно проследить, измеряя поверхностное давление или скачок потенциала. Первый из этих способов позволяет обнаружить всякое изменение, сопровождаемое заметной переориентацией молекул, второй—всякую реориентацию диполей или изменение полного дипольного момента молекулы. [c.58]

    Итак, величина А в уравнении (У.9) должна отвечать общему числу соударений молекул I реагирующих веществ в единице объема за единицу времени. Однако значение/г, вычисленное по уравнению (У.9), при подстановке в него величины 2 вместо А обычно во много раз превышает действительное значение константы скорости реакции. Это объясняется тем, что для химического взаимодействия молекулам необходим не только избыток энергии, равный Е , но еще и определенная их взаимная ориентация. Влияние пространственной ориентации молекул на скорость реакции (или на константу скорости) может быть учтено при помощи так называемого стерического (вероятностного) фактора Я  [c.123]

    Две молекулы, попавшие в одну [<летку, находятся там в течение 10 —с. За это время пара частиц может прореагировать (если они имеют энергию Е и если их взаимная ориентация благоприятна для реакции), причем если скорость реакции велика, то концентрация пар в жидкости нарушается, если реакция совершается медленно, то концентрация пар практически не нарушается. Для константы скорости k реакции в жидкостях с учетом колебаний в клетках было предложено уравнение [c.317]


    Определим величину р, характеризующую вероятность химического превращения при столкновении с энергией Г, как долю активных столкновений, заканчивающихся реакцией. Введение ее связано с тем, что молекулы имеют определенную структуру, и их взаимная ориентация в момент столкновения может быть неблагоприятной для осуществления реакции. С учетом сказанного для скорости реакции запишем  [c.729]

    Специфика взаимодействия веществ, т. е. влияние природы реагентов, Б соответствии с уравнением (10.5) проявляется в величинах ДЯ и Влияние величины первой на константу скорости реакции мы рассмотрели. Вторая имеет не менее важное значение. Энтропия активированного ко.мплекса в соответствии с уравнением = (гл. 8) определяется числом возможных его состояний, с по.мощью которых он реализуется. Сюда входят и различные допустимые пространственные конфигурации ядер и электронов в комплексе, и допустимые взаимные ориентации его составных частей (исходных и конечных), и допустимые распределения энергии по различным связям, что особенно важно в случае участия в реакциях больших молекул, в частности ферментов. Чем больше допустимых состояний, тем больше 5 и тем больше (алгебраически) энтропия активации представляю -щая собой разность энтропий активированного комплекса и исходных веществ. Поэтому энтропия активации может быть как положительной, так и отрицательной величиной. В любом случае ее вклад велик (экспоненциальная зависимость) в величину константы скорости. В табл. 10.4 приведены некоторые примеры. [c.217]

    Влияние катализаторов на скорость химических реакций в основном заключается в осуществлении процесса, энергия активации которого ниже, чем энергия активации, соответствующая не-катализируемой реакции. Кроме того, катализаторы увеличивают энтропию активации (см. гл. IV), т. е. способствуют ориентации молекул в пространстве, удобной для химического взаимодействия. [c.139]

    Для того чтобы термодинамически допустимое превращение X -> V могло осуществиться, реагирующая система X (это может быть одно вещество или несколько компонент, словом, все участники процесса), как правило, должна преодолеть некоторый потенциальный барьер. Возникновение этого барьера обусловлено необходимостью для системы пройти переходное состояние, которое более богато энергией, чем исходные или конечные продукты. Энергией, достаточной для преодоления барьера, обладает за счет флуктуаций лишь небольшая часть сталкивающихся молекул, и лишь малая часть столкновений происходит при нужной для реакции взаимной ориентации молекул. Поэтому органические реакции протекают не мгновенно, а с измеримой скоростью, величина которой зависит от высоты барьера (энергии активации). Если барьер мал, то скорость реакции высока, а если очень велик, то скорость реакции почти нулевая. Наличие подходящего канала для реакции или, что тоже, существование подходящего механизма для данного [c.68]

    Какие факторы определяют величину ki в уравнении (6-14) Эта константа скорости характеризует процесс, в ходе которого субстрат и фермент находят друг друга, соответствующим образом ориентируются и связываются с образованием комплекса ES. Если ориентация и связывание происходят достаточно быстро, то скорость реакции будет определяться скоростью сближения молекул за счет диффузии. Из-за частых столкновений с молекулами растворителя расстояния, на которые могут свободно перемещаться в растворе молекулы растворенного вещества, не превышают ничтожных долей их диаметра. Диффундирующие молекулы поворачиваются, вращаются, протискиваются между другими молекулами. Визуально этот процесс проявляется в броуновском движении микроскопических частиц, суспендированных в жидкости. Наблюдая за индивидуальной частицей, можно увидеть, что она случайно блуждает в растворе, двигаясь то в одном, то в другом направлении. Эйнштейн показал, что если измерить расстояние Ах, на которое перемещается частица за интервал времени At, то средний квадрат смещения Ах (lA ) будет пропорционален At  [c.14]

    Необходимость введения множителя Р в уравнение Аррениуса объясняется тем, что соударения даже между активными молекулами приводят к протеканию реакции не всегда, а только при определенной взаимной ориентации молекул. Множитель Р пропорционален отношению числа благоприятных для протекания реакции способов взаимной ориентации молекул к общему числу возможных способов ориентации чем больше это отношение, тем быстрее будет протекать реакция. Обычно стерический фактор Р значительно меньше единицы он особенно сильно сказывается на скорости реакций, протекающих с участием сложных молекул (например, белков), когда общее число различных возможных ориентаций очень велико, а число благоприятных для протекания реакции ориентации весьма ограничено. [c.34]

    Как же влияет изменение концентрации реагирующих веществ на скорость реакции при постоянной температуре Увеличение концентрации не может изменить часть столкновений, имеющих достаточную для реакции энергию, или часть столкновений, имеющих соответствующую ориентацию оно может только увеличить общее число столкновений. Если в каком-то определенном пространстве находится больше молекул, то они будут сталкиваться чаще и реакция будет идти быстрее. Частота столкновений и, следовательно, скорость реакции зависят от концентрации. [c.448]


    Для определения ориентации молекул при катализе твердыми поверхностями требуются другие методы. Такими важными методами являются 1) сравнение химического строения реагирующих молекул и энергий активации и 2) сравнение строения молекул с относительными адсорбционными коэффициентами, находимыми кинетическим методом по понижению скорости реакции вследствие вытеснения молекул реагирующего вещества молекулами прибавленных посторонних веществ или продуктов реакции. [c.65]

    Значительную информацию о бимолекулярных реакциях можно получить, используя метод молекулярных пучков. Простейший вариант применяемых для этой цели приборов схематически изображен на рис. 10.8 А и В — источники молекулярных пучков двух реагируюш,их ве-ш,еств, которые сталкиваются в области С. Столкновения происходят в камере, которая откачивается мош ным насосом, так что столкновения происходят практически только между молекулами из источников А и В. Молекулы продукта реакции и упругорассеянные молекулы исходных веществ регистрируются в В. Влияние изменения угла сближения молекул можно исследовать, передвигая А или В, а влияние изменения величины относительной скорости можно определять, применяя селекторы скорости (рис. 9.5) на выходе пучков из Л и . Имеет значение также ориентация молекул при соударении влияние ориентации на скорость реакции можно обнаружить в опытах с молекулами, обладающими дипольными моментами (разд. 14.13), так как в этом случае молекулы можно ориентировать, используя электрическое поле. Константы скорости газовых реакций представляют собой величины, усредненные по всем направлениям сближения двух молекул и по разным энергиям столкновений. Соударяющиеся молекулы могут также иметь разные количества колебательной и вращательной энергий, и вероятность реакции будет зависеть от внутреннего состояния молекул. В экспериментах с молекулярными пучками влияние этих разнообразных факторов на вероятность реакции можно изучать по отдельности. [c.306]

    Еще более сложное, но не более строгое приближение было сделано Мельвин-Хьюзом [65], который при подсчете энергии ион-дипольйого взаимодействия учел эффект поляризации и силы отталкивания. Чтобы получить величину взаимодействия диполь — растворитель, была использ ована [66] модель Онзагера для диполя, окруженного оболочкой из молекул растворителя. Авторы воспользовались уравнением Пуассона для того, чтобы оценить влияние ионной оболочки на диполь. Полученные в этом случае ч )ормулы слишком сложны и вряд ли могут быть успешно применены для обработки экспериментальных результатов. Влияние ионной силы в реакциях между ионом и диполем может сказываться не только на специфических взаимодействиях. Для положительных ион-дипольных взаимодействий (0 > 90°) ориентация диполя приведет к тому, что поле иона будет уменьшать поля диполя. В результате следует ожидать, что ионная атмосфера оболочка), окружающая как свободный диполь, так и комплекс, образующийся при взаимодействии иона с диполем, будет гораздо сильнее стабилизировать свободный диполь. Это будет приводить к уменьшению скорости с увеличением ионной силы. В случае отрицательного взаимодействия увеличение ионной силы раствора вызывает увеличение скорости реакции. К сожалению, экспериментальных результатов, которые могли бы подтвердить эти выводы, до сих пор нет. Основная трудность здесь заключается в том, что до сих пор не было сделано ни одной попытки сравнить действие ионов и ионных пар в качестве реагентов [68]. Сложность модели сама по себе достаточно велика, и, по всей видимости, любое из соотношений, которое может быть выведено, сможет получить лишь качественное подтверждение. [c.459]

    Из предложенного механизма реакции (XLVI) очевидно, что выражение скорости реакции замещения должно содержать коэффициент, соответствующий стойкости индивидуального я-комплекса. При обсуждении сравнительных скоростей замещения в различные положения молекулы этот коэффициент будет исключен и наблюдаемые ориентации можно непосредственно связать с относительными скоростями замещения в различные положения. Кроме того, из имеющихся данных видно, что этот коэффициент относительно невелик и мало зависит от структуры ароматического соединения. Следовательно, в случае сильно полярных заместителей, которые сильно влияют на стойкость тг-комплекса, этот коэффициент для <т-комплекса становится столь незначительным, что им можно пренебречь  [c.418]

    Наиболее простая модель, представляющая взаимное расположение молекул реагирующих веществ. и катализатора, — ячейка, содержащая один каталитический центр (одну молекулу катализатора) и соответствующее число молекул реагентов. Имеет смысл рассмотреть две ячейки сферическую и цилиндрическую. При сферической форме молекула катализатора, очевидно, находится в центре сферы и реагенты движутся к ней по радиусам. При этом к каталитичёскаму центру будет одновременно подходить несколько молекул реагента, и необходимо предположить высокую скорость реакции и высокую скорость вращательного движения каталитического центра. Если же для каталитического акта необходима определенная взаимная ориентация реагента и катализатора, правильнее рассмотреть ячейку в форме цилиндра, радиус основания которого близок к диаметру молекулы катализатора ( к), а высота /ц определяется объемом реакционной смеси, приходящимся на одну молекулу катализатора. Определим вначале радиус сферической ячейки (Яс). Так как объем, приходящийся а одну ячейку Уя, равен [c.131]

    Величина А в уравнении (111.12) должна отвечать общему числу соударений молекул Z. Но обычно расчет Z дает иные результаты. Это расхождение оказалось тем более значительным, чем сложнее реагирующие молекулы. Спешим оговориться — указанное несоответствие практически не отражается на температурной зависимости скорости реакции и поэтому на величине энергии активации. Удовлетворительно передавая зависимость k от Т, уравнение (111.12) приводит к преувеличенным абсолютным значениям /г, во много раз (в отдельных случаях до стомиллионнократ) превышающим опытные величины. Это объясняется тем, что для взаимодействия необходим не только избыток энергии, но и определенная взаимная ориентация молекул течению процессов способствует столкновение молекул в положениях, когда в соприкосновение приходят их реакционноспособные связи или неподеленные пары электронов. [c.115]

    Влияние концентрации реагирующих веществ на скорость реакции. Скорость реакции непосредственно зависит от числа молекул, обладающих энергией и ориентацией, необходимых для образования активированного комплекса, а следовательно, способных к химическому пренращению. Очевидно, чем больше в системе таких молекул, тем скорость реакции больше. [c.150]

    В сущности, согласно гипотезе Кошланда, повышение скорости реакции образования лактонов во внутримолекулярной реакции вызвано тем, что нути сближения реагирующих групп ограничены некоторыми вполне определенными направлениями в противоположность статистической ориентации, наблюдаемой при бимолекулярной реакции. Кошланд считает, что орбитальное управление способно объяснить, почему ферменты столь эффективны. Вероятно, ферменты выстраивают связывающие орбитали реагирующих молекул и каталитических групп с точностью, невозможной при обычном бимолекулярном столкновении в растворе. Фермент не только сближает субстраты, (эффект сближения Брюса) существует еще фактор ориентации, связанный с формой электронных орбиталей реагпиюнноспособных атомов. Это-то и должно вызывать уникалы, ю каталитическую активность ферментов. Удивительная каталитическая активность ферментов, следовательно, вытекает не только из их способности приблихоть реагирующие атомы, но также и направлять орби- [c.212]

    Гидролиз промежуточного ацилхимотрипсина. Для того чтобы решить вопрос о внутренней реакционной способности ферментного нуклеофила, действующего в ацилферменте, сравним скорость этой псевдо-внутримолекулярной реакции с аналогичной межмолекулярной реакцией. Атакующая группа составного нуклеофила — это молекула воды, эффективная концентрация которой в псевдовнутримолекулярных реакциях вряд ли может превысить, как полагает Дженкс [10], значение 55М, даже если учитывать некоторую степень ориентации молекулы воды при связывании ее в систему с переносом заряда (см. 3 в гл. II). Следовательно, эффективную величину константы скорости второго порядка, которая следует из экспериментальных значений з, можно принять равной к /ЪЪ. [c.164]

    В смеси Н2 и при обычных температурах и давлениях происходит приблизительно 10 ° столкновений в секунду. Если бы каждое столкновение между Н2 и 12 приводило к образованию Ш, реакция закончилась бы намного быстрее, чем за одну секунду. В действительности же при комнатной температуре эта реакция протекает очень медленно. Очевидно, не каждое столкновение между молекулами приводит к реакции. В самом деле, лищь приблизительно одно из каждых 10 столкновений оказывается эффективным. Только небольшая часть столкновений происходит при благоприятной для реакции ориентации молекул и с энергией, достаточной для перехода молекул через энергетический барьер, отделяющий их от продуктов. При повышении температуры возрастает не только общее число столкновений, но и доля столкновений с энергией, достаточной для осуществления реакции. При повышении температуры на каждые 10°С скорость этой реакции утраивается. [c.18]

    В ходе этой реакции разрывается я-связь между атомами С, образованная 2рг-орбиталями, перпендикулярными плоскости молекулы, и образуется а-связь за счет одной из этих 2рг-орбиталей и ls-орбитали атома Н. Ясно, что наиболее благоприятным для такого взаимодействия является движение атома Н по направлению этих орбиталей, т. е. перпендикулярно или под некоторым углом, несильно отличающимся от прямого, к плоскости молекулы этилена. Если же атом Н будет приближаться к молекуле этилена в плоскости молекулы, то условия для образования а-связи будут неблагоприятные, а кроме того, возникнет вандерваальсово отталкивание между свободным атомом Н и атомами Н молекулы этилена (рис. 85). Поэтому, чтобы получить выражение для скорости бимолекулярной реакции, нужно умножить число соударений также на стерический фактор, учитывающий вероятность нужной ориентации частиц в момент соударения. Его обычно обозначают р. Таким образом, число актов химического превращения в единицу времени в единице объема, которое можно рассматривать как скорость реакции у , выраженную Нч через изменение числа частиц (а не через изменение числа молей, как обычно принято), равно  [c.277]

    Учет энтропийного (структурного) фактрра в кинетике реакции имеет важное значение. Впервые была установлена связь константы скорости со строением молекул реагирующих веществ, в частности, с такими геометрическими параметрами, как межъядерные расстояния, взаимная ориентация молекул и т. п. [c.190]

    Факт развертывания макромолекулы в пленке имеет фундаментальное значение. Неполярные части молекулы открываются и становятся объектами для ферментной атаки скорость расщепления белков увеличивается на несколько порядков. Продукты этой реакции, обладающие меньшими величинами Mug, вытесняются из пленки, уступая место новым молекулам белка. Так в поверхностных пленках происходит процесс обмена белков. Далее, ориентация молекул в пленках создает благоприятные условия для синтеза белков. Этот процесс, идущий с уменьшением объема, требует высоких давлений. Существование больших л (в пересчете на трехмерную модель) позволяет считать, что впри-роде синтез белков идет именно в пленках, на границах раздела фаз. Наконец, соприкосновение открытых неполярных групп с неполярной фазой создает благоприятные условия для растворения белков в липидах. Это явление, характерное для биологических объектов, не наблюдается in vitro в объемной фазе, но может быть моделировано при помощи поверхностных пленок. [c.110]

    В результате ступенчатого процесса присоединяются другие молекулы олефина, адсорбированные на поверхности полимеризация протекает в поверхностном слое адсорбированного мономера. Поверхностный слой обеспечивает ориентацию молекул мономера, необходимую для получения полимеров, отличающихся стереорегулярностью строения. Разветвление в результате между-и впутримолекулярных реакций передачи цепи предотвращается наличием поверхности. При дальнейшем росте полимер десорбируется с поверхности и на его месте может адсорбироваться следующая молекула мономера. Скорость распространения цепи зависит от скорости адсорбции мономера на новерх-ности, которая в свою очередь определяется скоростью диффузии полимера от поверхпости. Следовательно, скорость реакции зависит от концентрации присутствующего олефина. [c.300]

    Облучение эфиров коричной кислоты индуцирует транс-цис-изомеризацию, димеризацию и расщепление сложноэфирной связи. В данном случае последнему превращению подвергается менее 5% исходного циннамата. Как и можно было предполагать, повышение начальной концентрации циннамата способствует димеризации и не благоприятствует изомеризации. При транс— г ыс-изомеризации окружающие молекулы растворителя претерпевают лишь небольшие возмущения, поэтому изомеризация протекает практически с одной и той же скоростью в изотропной, смектической и твердой фазах -бутилстеарата. Напротив, региоселективность фотохимической реакции [2-[-2]циклоприсо-единения в очень большой степени зависит от природы фазы. В продуктах обсуждаемой реакции из многих возможных димеров обнаружены только два стереоизомера, изображенные на схеме (5.165). Как оказалось, в смектической и твердой фазах доминирует димеризация по типу голова к хвосту. Этот эффект можно объяснить, допустив, что в мезофазе молекулы циннамата реагируют друг с другом не только за счет эффектов растворителя, но и за счет диполь-дипольных взаимодействий. Последние приводят к парным антипараллельным ассоциатам молекул циннамата, которые располагаются между окружающими их молекулами растворителя. Облучение таких антипараллельных ассоциатов преимущественно приводит к димерам типа голова к хвосту. Резюмируя, можно сказать, что региоселективность фотодимеризации -октадецил-тра с-циннамата контролируется двумя факторами — ориентацией молекул циннамата под влиянием упорядоченной структуры растворителя и диполь-дишль-ными взаимодействиями между молекулами циннамата [731]. [c.381]

    Несмотря на то, что число атакуемых электрофилом атомов углерода уменьшается по мере увеличения числа СНз-групп, т. е. статистический фактор препятствует реакции, скорость Н-обмена возрастает. Причиной этому является сильный рост основности молекулы. У мезитилена ориентация в три атакуемые орто-, иард-положения является согласованной. Дезориентирующих СНз-групп нет. Поэтому основность по сравнению с о-ксилолом возрастает в 140 раз, а скорость замещения водорода в 300 раз. У псевдоку-мола тоже три СНз-групгп.1, однако их электронные воздействия направлены не на одни и те же атомы углерода, а на разные. Основность и скорость реакции по сравнению с мезитиленом уменьшается почти в 100 раз. [c.370]

    Возможно, что протекание реакции на поверхности, а не в объеме содействует не только адсорбция, как таковая, но и упорядочение молекул адсорбата в результате адсорбции, которое характеризуется более выгодным расположением реакционных центров. Ориентация молекул зависит от поверхностно-активных свойств молекул и степени заполнения поверхности адсорбированным веществом. Так, Хевинга [35] установил прямую связь скорости реагирования вещества в монослое с расположением реакционных групп на границе раздела фаз. Кроме того, он отметил, что кажущиеся аномально высокие скорости некоторых реакций на поверхностях раздела обусловлены наличием местных разностей электрического потенциала, которые лгогут влиять на энергию активации этих реакций. Он же приводит пример реакции, которая не происходит [c.384]

    Предиолагается, что содержащийся в ксилоуроииде лигнин тормозит процесс ориентации молекул полисахарида н образование из них агрегатов, что способствует ФГ. Прн сравнении ФГ суспензии ксилана кристаллического и аморфного оказалось, что начальная скорость реакции больше у кристаллического ксилана [82]. [c.229]

    Межмолекулярный эффект в чистом виде можно наблюдать при полимеризации мономеров в виде канальных комплексов (см. с. 178), где возникают организованные агрегаты молекул днена, при этом благоприятная ориентация двойных связей обеспечивает не только образование регулярного полимера, но и приводит к резкому возрастанию скорости реакции по сравнению с обычной радиационной полимеризацией. [c.243]


Смотреть страницы где упоминается термин Ориентация молекул и скорость реакции: [c.92]    [c.351]    [c.378]    [c.18]    [c.397]    [c.358]    [c.237]    [c.182]    [c.269]    [c.421]    [c.142]    [c.182]    [c.334]    [c.193]   
Успехи общей химии (1941) -- [ c.195 ]




ПОИСК





Смотрите так же термины и статьи:

Ориентация молекул

Скорость молекул



© 2025 chem21.info Реклама на сайте