Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Адсорбция влияние на смачивание

    Поверхностные явления. Сюда включено, во-первых, описание молекулярных взаимодействий и поверхностных явлений на границах раздела фаз в однокомпонентных системах, в том числе основы термодинамического подхода и учет влияния кривизны поверхности. Во-вторых, сюда входит подробное изложение учения об адсорбции, с особым вниманием к легкоподвижным границам раздела раствор—воздух, и о свойствах поверхностно-активных веществ и образуемых ими адсорбционных слоев. Далее излагаются особенности поверхностных явлений на границах между конденсированными фазами, включая смачивание, избирательное смачивание и управление ими с помощью адсорбции ПАВ. [c.12]


    Цель работы оценка работы смачивания и работы адгезии изучение влияния адсорбции ПАВ на смачивание твердых поверхностей методом измерения краевых углов. [c.20]

    Вместе с тем надо отметить, что уже в связи с первыми исследованиями адсорбционного понижения прочности (вызванного понижением поверхностной энергии вследствие молекулярного воздействия среды или адсорбции добавок) возникали казавшиеся на первый взгляд достаточно серьезными возражения, касающиеся самого молекулярного механизма явления. Эти возражения сводились к тому, что адсорбция или смачивание окружающей средой — жидкостью — может иметь место только на уже образовавшейся поверхности но в том случае, когда поверхность уже сформировалась, адсорбция на ней не может приводить к каким-либо заметным влияниям на механические (деформационные) свойства. [c.7]

    Более сложны случаи, когда атг > Отж + Ожг. Для анализа влияния адсорбции на смачивание в таких системах удобно воспользоваться коэффициентом растекания 5 = атг — Отж — Ожг [29]. При Отг > (Ттж + Ожг начальный коэффициент растекания 5н > О, поэтому жидкость будет растекаться по твердой поверхности и смоченная площадь будет увеличиваться. Одновременно с растеканием происходит адсорбция молекул жидкости на поверхности твердого тела впереди периметра смачивания. Перенос молекул жидкости может осуществляться различными путями — через газовую фазу и по поверхности твердого тела. Адсорбция приводит к снижению поверхностного натяжения твердого тела на границе с газом до величины а , соответственно, коэффициент растекания 5 уменьшается. При этом в зависимости от особенностей адсорбции могут иметь место три случая [30]  [c.33]

    При оценке влияния растворителя на адсорбцию или десорбцию углеводородов и смол Л. Г. Гурвич руководствовался теплотами смачивания данного адсорбента разными растворителями чем больше теплоты выделяет с ним какая-нибудь жидкость сама па [c.242]

    Большое влияние на адсорбируемость того или иного растворен ного вещества оказывает не только его природа, но и природа ад сорбента и растворителя. Этот вопрос подробно был изучен многи ми учеными, в частности А. А. Титовым, Л. В. Гуревичем, П. А. Ре биндером и др. Рассмотрим более подробно зависимость адсорбции от свойств твердой поверхности и природы растворителя. В этом случае следует особо отметить свойство смачивания. Если на твердую поверхность нанести каплю воды, возможны три случая 1) капля растекается по поверхности 2) капля остается на поверхности в виде шарика 3) капля растекается лишь частично, образуя с поверхностью некоторый так называемый краевой угол (рис. 108). [c.359]


    Влияние среды начинается со смачивания (адсорбции) поверхности активными компонентами среды - это влияние первично и универсально. Далее может развиваться химическое или электрохимическое взаимодействие материала и среды. [c.58]

    Резиновая смесь, полученная смещением каучука с наполнителем, представляет собой твердую дисперсную систему с сильно развитой поверхностью соприкосновения каучука с наполнителем. Если допустить возможность идеального распределения сажи в каучуке и полного смачивания сажи каучуком, то при смешении с каучуком I г сажи образующаяся поверхность раздела фаз дисперсной системы достигает 100 м . Это указывает на большую величину поверхностной энергии такой дисперсной системы и на большое влияние поверхностного натяжения, смачивания и адсорбции, связанных с сильно развитой внутренней поверхностью, на прочность дисперсной системы. [c.169]

    Следующим достаточно общим свойством ПАВ в водных растворах можно считать их смачивающее действие [9]. Как универсальный эффект оно проявляется уже в самой поверхностной активности — в понижении поверхностного натяжения воды на границе с воздухом, что всегда вызывает повышение смачивания. Однако большое значение в изменениях смачивания под влиянием ПАВ имеет характер его адсорбции на смачиваемой водою твердой поверхности и специфические особенности соответствующего адсорбционного слоя. В отличив от границ раздела вода/масло или вода/воздух (пар), для которых ориентация адсорбирующихся молекул ПАВ однозначно определяется гидратацией полярной группы в водной фазе, для границы раздела твердое тело/вода такая нормальная ориентация не оказывается обязательной [10]. Если энергия связи полярной группы на соответствующих атомах (ионах) твердой поверхности [c.12]

    В процессе вытеснения нефти поверхностно-активные вещества оказывают влияние на следующие взаимосвязанные факторы межфазное натяжение на границе нефть — вода и поверхностное натяжение на границах вода — порода и нефть — порода, обусловленное их адсорбцией на этих поверхностях раздела фаз. Кроме того, действие поверхностно-ак-тивных веществ проявляется в изменении избирательного смачивания поверхности породы водой и нефтью, разрыве и отмывании с поверхности пород пленки нефти, стабилизации дисперсии нефти в воде, приросте коэффициентов вытеснения нефти водной фазой при принудительном вытеснении и при капиллярной пропитке, в повышении относительных фазовых проницаемостей пористых сред. [c.67]

    При адсорбции ионов и создании двойного электрического слоя на поверхности коллоидных частиц гидрофиль-ность поверхности возрастает в результате собственной гидратации попов и влияния зарядов поверхности на ориентированную адсорбцию дипольных молекул воды так, например, возрастает смачивание заряженной поверхности ртути. Однако в этом случае гидратные слои полностью зависят от ионных взаимодействий и при наступлении коагуляции коллоидов электролитами не препятствуют процессам слипания частиц. Поэтому в типично лиофобных золях (Аи, Ag, 8, АззЗз и др.) сразу после перехода порога коагуляции наблюдается помутнение раствора, изменение цвета, выпадение осадка и другие проявления коагуляции. [c.145]

    Высоцкий и Шаля (111) высказали предположение, что влияние адсорбированных катионов металлов промывной жидкости на пористую структуру силикагеля не ограничивается облегчением агрегации мицелл и укреплением скелета гидрогеля. Адсорбция катионов влечет за собой, по мнению этих авторов, уменьшение стягивающего действия капиллярных сил, зависящих не только от поверхностного натяжения интермицеллярной жидкости, но также и от интенсивности смачивания ею мицелл. Свое заключение они основывают на обнаруженной ими связи между структурой силикагеля и теплотами гидратации катионов чем меньше теплота гидратации в ряду исследованных ими катионов Н" > Са " > Na" > К" , тем более крупнопористым получается силикагель, тем меньше его поверхность. [c.30]

    Кроме адсорбции воды из раствора при внесении в него кристаллов на эффект повышения концентрации оказывает влияние теплота смачивания. Выделяясь при внесении кристаллов в раствор, теплота смачивания повышает температуру раствора. Благодаря [c.34]

    Вид кривых зависимости дифференциальной теплоты адсорбции от адсорбированного количества зависит в общем от способа приготовления и предварительной обработки адсорбента существенное влияние на эту зависимость оказывают как функция распределения энергии центров (см. стр. 273), так и абсолютные значения энергии различных центров. Особенно это справедливо для активных адсорбентов , как уже указывалось выше (стр. 32). Таким образом, мы приходим к выводу, что теплота смачивания твердого тела определенного химического состава в основном, и часто в значительной степени, зависит от способа получения твердого тела [55, 56]. [c.337]


    Во-вторых, при определении 5 по теплоте смачивания отпадают всякие осложнения и неопределенности, связанные с интерпретацией изотермы адсорбции (см. гл. 2—4). В этом методе сделано лишь единственное допущение, что /г имеет то же самое значение, что для стандартного образца. Следовательно, этот метод применим только к таким системам жидкость—твердое тело, для которых значение Н известно. В то же время метод определения удельной поверхности по адсорбции газов может быть применен для любых твердых тел, которые дают изотерму адсорбции II или IV типа с крутым подъемом при условии, что хемосорбция не происходит, а влияние микропор ничтожно мало или может быть как-то учтено. [c.341]

    Обычно считают, что существенное влияние на результаты измерения адсорбции и теплоты смачивания оказывают условия откачки твердых тел. Откачка заключается в создании вакуума вокруг адсорбента, часто нагреваемого до высоких температур для удаления с поверхности первоначально адсорбированных газов и паров (в частности, пара воды). В опытах по физической адсорбции обычно достаточно давление порядка 10 мм рт. ст. При определении хемосорбции необходимо получить очень чистую поверхность, и для этого требуется создать по возможности очень высокий вакуум. Например, в опытах по хемосорбции сконденсированными пленками нужен ультравысокий вакуум — остаточное давление порядка 10 ° мм рт. ст. В исследованиях по физической адсорбции необходимый вакуум получают с помощью системы ротационного вакуумного насоса и ртутного или масляного диффузионного насоса. Масляный насос используют чаще, чем ртутный, из-за его высокой производительности и [c.347]

    Ориентированная адсорбция молекул (ионов) ПАВ на границе раздела твердое тело — жидкость существенно изменяет условия смачивания твердого тела. В одних случаях в присутствии ПАВ смачивание повышается, в других, напротив, понижается. Характер влияния ПАВ на смачивание зависит от молекулярных свойств смачиваемой поверхности и химической природы ПАВ. Самый распространенный и практически важный случай — смачивание твердых тел водой. Влияние водорастворимых ПАВ на смачивание противоположно по своему характеру для гидрофобных и гидрофильных поверхностей. [c.162]

    При гидрофилизации поверхности под влиянием ПАВ )абота смачивания увеличивается с ростом концентрации 1АВ в растворе. Это указывает на понижение межфазного натяжения на границе Т—Ж из-за адсорбции и на возрастание сродства жидкости к данной поверхности. [c.163]

    Как говорилось, ПАВ характеризуются двойственностью свойств, связанной с асимметрией структуры их молекул, причем влияние этих противоположных асимметрично локализованных в молекуле свойств может проявиться как раздельно, так и одновременно [2]. Так, ПАВ обладают большой способностью к адсорбции, сопровождающейся ориентацией на поверхности водного раствора в результате уменьшения свободной энергии системы. Адсорбция углеводородных цепей на поверхности раздела вода — воздух вызывается большими силами когезии между молекулами воды, на поверхности же раздела углеводород — воздух адсорбция ПАВ отрицательна, за исключением случая фторуглеродных соединений, которые обладают меньшими межмолекулярными силами взаимодействия, чем углеводороды. С этими же свойствами связана способность ПАВ понижать поверхностное и межфазное натяжение растворов и вызывать эффективное эмульгирование, смачивание, диспергирование и пенообразование [2]. [c.13]

    В процессе получения пигментированных материалов под влиянием значительных сдвиговых усилий (например, в бисерном диспергаторе) происходит разрушение пространственных структур обоих типов Вязкость системы сильно снижается и характер течения приближается к ньютоновскому При этом создаются наиболее благоприятные условия для завершения процессов смачивания и адсорбции [c.362]

    Процесс диспергирования характеризуется большой энергоемкостью Осуществляют его в специальных аппаратах-диспергаторах (валковые машины, шаровые мельницы, бисерные диспергаторы и др) В них создаются усилия давления и сдвига, под влиянием которых и протекают описанные выше процессы Однако коэффициент использования энергии при таком механическом диспергировании исключительно мал Подавляющая часть энергии переходит в тепловую и рассеивается в окружающую среду или отводится охлаждающей водой Между тем при рассмотрении элементарных процессов, происходящих на поверхности при взаимодействии пигмента с олигомером (смачивание, адсорбция), бы по установлено, что они протекают с выделением тепла Очевидно, механическая энергия тратится на разрушение коагуляционных и флокуляционных структур пигментов, а также надмолекулярных структур олигомеров (полимеров) Для снижения энергозатрат наиболее эффективно использование микронизированных пигментов с модифицированной поверхностью, которые легко диспергируются в разбавленных растворах олигомеров при энергичном перемешивании Однако промышленностью эти пигменты выпускаются в ограниченном ассортименте [c.365]

    Имеет смысл упомянуть еще некоторые связанные с поверхностными свойствами твердого тела вопросы, которые здесь подробно не рассматриваются, поскольку они обсуждаются в других разделах. Прежде всего речь пойдет об определении поверхностного натяжения на границе раздела твердое тело — жидкость по растворимости (разд. УП-2) и по данным о зародышеобразовании (разд. У1П-3). Изменение, или разность, свободных поверхностных энергий на границе раздела твердое тело — пар можно находить также из данных по адсорбции газов (разд. УП1-3), а соответствующие разности поверхностных энергий — по данным о теплотах смачивания (разд. УП-З). Измерения краевых углов дают разность поверхностных энергий на поверхностях раздела твердое тело —пар (разд. УП-4). В гл. IV количественно оценивается влияние потенциала на свободную энергию поверхности раздела твердое тело — раствор электролита. [c.222]

    С разрушением особой структуры граничных слоев связан также и известный эффект ухудшения смачивания при повышении температуры [562]. На рис. 13.5 приводятся результаты расчетов изотерм расклинивающего давления смачивающих пленок водного 10 М раствора КС1 с добавками ионогенных ПАВ. Для молекулярных сил принята та же константа А для структурных сил — экспонента IIs= sexp(—/i/Я-), где С = = 10 Н/см и А,=0,25 нм. Исходной, без добавок ПАВ, является изотерма, показанная кривой 6. Потенциалы поверхностей кварца (ii)i) и пленки (ij]2) принимали в этом случае равными —100 мВ и —25 мВ, соответственно. Расчеты по уравнению (13.3) приводят к значению 0о = 8° (см. рис. 13.4). Влияние добавок ПАВ сводилось в проведенных расчетах к изменению потенциала вследствие адсорбции ПАВ на поверхности пленка— газ. Адсорбция анионоактивного ПАВ, повышающая отрицательный потенциал ifi2, приводила к улучшению смачивания. Так, при il]2= —35 мВ рассчитанный краевой угол уменьшается до 7°, а при 11)2 = —45 мВ—до 5°. Дальнейший рост i 52 (кривые 1—<3) обеспечивает уже полное смачивание поверхности кварца. Если же на поверхности пленки адсорбируется катионоактивный ПАВ, заряжающий поверхность пленка — газ положительно (г1)2=+Ю0 мВ), в то время как поверхность подложки остается заряженной отрицательно, краевой угол растет до 28° в связи с тем, что электростатические силы вызывают притяжение поверхностей пленки (Пе<0). Полученные результаты находятся в хорошем согласии с результатами прямых измерений краевых углов растворов КС1 с добавками анионоактивного натрийдодецилсульфата и катионоактивного цетилтриметиламмонийбромида [563]. [c.220]

    Описанные данные по влиянию состояния поверхности на адсорбцию паров воды и, следовательно, энергию смачивания представляют большой интерес для понимания природы гидрофобных свойств углеродных материалов в водных растворах. В приведенной выше модели остаются, однако, неясными физические основания, по которым распространение кластеров воды по поверхности предпочтительнее их трехмерного разрастания. [c.55]

    Влияние ПАВ на смачивание зависит от того, иа какой поверх Юстп раздела фаз они адсорбируются. Молекулы ПАВ могут адсорбироваться как на твердой иоверхности, гак и на границе раздела жидкость— газ. Если поверхность твердого тела гидрофобная, то из водных растворов ПАВ адсорбируются и на твердой поверхиости, и на границе раствор — воздух. На межфазной поверхности молекулы ПАВ располагаются в соответствии с правилом уравнивания полярностей ебиндера. В результате значения Стт-ж и а -г уменьшаются и согласно уравнению (I. 13) поверхность твердого тела смачивается лучше. С увеличением адсорбции ПАВ твердая поверхность становится менее гидрофобной, происходит так называемая гидрофилизация пове])Х ьаст[  [c.21]

    Аналогия между адсорбцией и смачиванием. Связь между адсорбцией газов и смачиванием может быть определена на основе изучения кинетики адсорбции дифторкарбена ( Ср2) и гептилни-трена ( N 7Hi5) и влияния ее на краевой угол Исследования смачивания и адсорбции проводились на поверхностях металлов РЬ, Mg, Al, Мо, Zn, u, Fe, Ni и нержавеющей стали. [c.173]

    Следуя [35], рассмотрим влияние адсорбции на смачивание на основе зависимости поверхностного натяжения подложки от площади д = 1/Г, которую занимает в поверхностном слое I моль адсорбированного вещества (рис. 1.10). Изотермы и p = f T) взаимосвязаны, поскольку йр = с1а1Н (/г = ГМ/р, где М — молекулярная масса адсорбата р — плотность жидкости). Если при любых значениях удельной адсорбции Г = [c.36]

    Состояние полимера очень сильно влияет на его механические, химические, термические свойства и проницаемость. По отношению к проницаемости должно быть проведено различие между пористыми и непористыми мембранами, поскольку выбор полимера в этих двух случаях зависит от различных критериев. Выбор полимера не столь важен, если мы рассматриваем пористые мембраны для микро- или ультрафильтрации, но окгьзывает огромное влияние на химическую и термическую стабильность, а также на поверхностные эффекты, такие, как адсорбция и смачивание. Кроме того, выбор моющего агента определяется выбором полимера, так, например, полиамиды сильно взаимодействуют с хлорсодержащими моющими агентами. [c.50]

    Изложенное выше убедительно свидетельствует о том, что моющая способность представляет собой целый комплекс ряда факторов. Если рассмотреть каждый из этих факторов в отдельности, то окажется, что в любом случае благотворное влияние на эффективность данного фактора оказывает мыло. Так, при ознакомлении с процессом смачивания за мылом было признано значение [гревосходного общего смачивающего средства, но не обязательно лучшего, если взять отдельно смачивание волокон ткани и смачивание масел. При обсуждении процесса эмульгирования мыло также получило хорошую оценку как действенный эмульгатор, но опять-таки не как лучший. То же самое относится и к роли мыла в процессе растворения, адсорбции, суспензии и защитного действия. В любом из этих процессов мылу принадлежит одно из ведущих мест. Исходя из этого, можно сказать, что, если рассматривать удаление пятнообразующего вещества как результат одновременного действия всех упомянутых факторов, т, е. как нечто вроде цепной реакции, то мыло окажется той цепью, которая не имеет ни одного слабого звена. Другие вещества, обладаюпхие, по сравнению с мылом, превосходными смачивающими и эмульгирующими качествами, являются в целом менее эффективными моющими средствами. Возможно, что это происходит либо по причине неудовлетворительной дисперсии частиц пятнообразующего вещества, либо вследствие отсутствия условий, требуемых для предотвращения последующей флокуляции. Но какова бы ни была причина, достаточно одного слабого звена в цепи моющей способности, чтобы данное средство отнести к числу не полностью отвечающих своему назначению. [c.87]

    При необходимости исследовать еще более точно изменения поверхностного натяжения под влиянием адсорбции или во времени рекомендуется применять метод (Шелудко и Николов, 1975 г. Ни-колов, 1978—1979 гг.), в котором вместо пластинки используется хорошо смачиваемая сфера. При ее извлечении из жидкости капиллярная сила проходит через максимум. Исходя из этого максимального значения силы и при условии точного измерения (оптическим путем) угла смачивания можно определить изменения поверхностного натяжения с точностью выше 0,01 дин/см. Метод этот сложен и трудоемок его использование оправдано, когда точность метода Вильгельми недостаточна. [c.122]

    Влияние среды на процесс диспергирования. Среда оказывает влияние на механизм и скорость процесса диспергирования, а также на свойства измельченного вещества. В реальных условиях процесс диспергирования осуществляют или в газовой, или в жидкой среде. Поэтому он сопровождается адсорбцией молекул газов окружающей среды на свежеобразовавшихся поверхностях твердого тела или смачиванием и адгезией жидкости к свежим поверхностям твердого тела. В том и другом случае энергия Гиббса площадей раскола твердого тела от значений оо понизится до какого-то значения а. В частности, в воде более чем вдвое понижается поверхностная энергия кварца и аморфного кремнезема по сравнению с вакуумом. Примерно так же действуют ацетон, бензол, спирт. Этот факт имеет важное значение для процессов измельчения твердых тел. [c.255]

    При избирательном смачивании (напомним, что в этом случае угол О отсчитывается в более полярной фазе — воде) для водорастворимых ПАВ закономерности их влияния на os О аналогичны рассмотренным выше для смачивания. В отличие от этого, маслорастворимые ПАВ способны только к олеофилизации поверхности за счет их физической адсорбции или хемосорбции на полярной поверхности (см. рис. III—20, кривая 4). При избирательном смачивании гидрофобной поверхности маслорастворимые ПАВ способны к адсорбции только на поверхности вода — масло в этом случае о и увеличивают краевой угол. При гидрофобизации поверхности величина (д, — о )/о может стать меньше i—1 этому отвечает растека- [c.107]

    На величину предельной адсорбции здесь также оказывает влияние минералогический состав песков. В отличие от статических условий максимум адсорбции ОП-4 наблюдается на песке КС, а не на песке апшеронского яруса с высокой карбонатностью. Это можно объяснить изменением условий адсорбции. В опытах, проведенных в динамических условиях, пески первоначально насыщаются керосином. Смачивание керосином затрудняет в последующем проникновение молекул растворенного вещества в многочисленные микротрещины и щели, что несколько сним ает величину адсорбции. [c.48]

    Приступая к обсуждению влияния концентрации органического компонента иодвнжной фазы на величины удерживания, целесообразно более подробно остановиться на состоянии ал-кнлсиликагеля, находящегося в равновесии с бинарным водноорганическим растворителем. Уже из самых общих представлений ясно, что молекулы органического растворителя обладают больщим сродством к алкильным лигандам, чем вода. Поэтому следует ожидать их преимущественного концентрирования в приповерхностном слое, адсорбции на органических лигандах неподвижной фазы. При этом в зависимости от состава подвижной фазы и строения сорбента, вероятно, возможно образование как мономолекулярного слоя органического растворителя, так и более толстых слоев неподвижной фазы, состоящих из цепей органического лиганда, пропитанных молекулами органического компонента подвижной фазы. С другой стороны, если концентрация органического растворителя в подвижной фазе мала, сорбент ею не смачивается [350]. В этом легко может убедиться каждый, насыпав на поверхность воды щепотку сорбента. Ряд авторов высказали иредиоложение, что в таком случае радикалы органических лигандов плотно прижимаются к поверхности силикагелевой матрицы или даже образуют своего рода переплетения, микроскопические капельки на поверхности силикагеля. При увеличении концентрации органического компонента цепи алкильных лигандов постепенно распрямляются, слой их становится более рыхлым, пока, наконец, не достигается полное смачивание подвижной фазой. [c.90]

    Авторы работы [426] также этерифицировали силикагели спиртами с числом углеродных атомов от 1 до 14 и измеряли изотермы адсорбции Аг, НгО и Н-С7Н15, а также определяли теплоты смачивания в случае двух последних адсорбатов. Изотермы адсорбции воды на этерифицированных группами МеО и EtO силикагелях показали, что поры заполнялись водой, однако при модифицировании высшими спиртами поры не заполнялись водой, так как их поверхность оказывалась гидрофобной. На адсорбцию аргона природа поверхностных групп не оказывала влияния. Наиболее интересным представляется тот факт, что когда использовался метод БЭТ на частично покрытых модифицированных поверхностях, то сумма величин поверхностей, измеренных по Н2О и по гептану, была равна величине поверхности, измеренной по аргону. Другими словами, вода адсорбировалась как монослой только на оставшихся непокрытыми группах S10H, а гептан адсорбировался в виде монослоя только на гидрофобных (этерифицированных) участках поверхности. Кроме того, наблюдалось, что на частично этерифицированных поверхностях более длинные углеводородные цепи покрывали большее число групп SiOH, так как подобные цепи не располагались вертикально к поверхности. Однако, как отмечается в других работах, когда поверхность полностью этерифицировалась спиртами с неразветвленной углеродной цепью, то во всех случаях покрывалась площадь примерно 33 А в расчете на одну молекулу независимо от длины цепи спирта. Такие молекулы [c.971]

    Осложнения возникают, если один или несколько параметров уравнения (10) или (12) систематически изменяются в процессе хроматографического разделения. Часто причиной является перегрузка колонки веществом или изменение набивки и степени смачивания по длине колонки, изменения температуры, расслоение комбинированной жидкой фазы, изменения скорости протекания, неравномерность распределения вещества по сечению и зависимость поглотительной способности неподвижной фазы от концентрации. При тщательном проведении зксперимента и соответствующем выборе условий опыта можно исключить все упомянутые источники ошибок, кроме последнего. Постоянство же козффициентов распределения и адсорбции К ) является идеальным случаем, который часто имеет место (особенно при адсорбции) лишь в области малых и очень малых концентраций. Для большинства веществ сродство к твердой неподвижной фазе уменьшается с ростом концентрации уже задолго до достижения состояния насыщения изотермы адсорбции при этом обычно изогнуты в сторону оси концентрации. В случае распределительных изотерм возможно искривление в сторону как одной, так и другой оси. Это явление объясняется, как правило, процессами ассоциации. Так как константа распределения вещества в хроматографической колонке охватывает все значения между О и некоторым максимумом, искривление изотермы неизбежно. Если, например, ПК уменьшается с ростом концентрацйн, то максимум зоны имеет тенденцию перегонять фронт зоны, в результате чего образуется асимметричное распределение с резким фронтом и более или менее вытянутым хвостом. Последний возникает из-за того, что скорость перемещения в заднем конце зоны уменьшается с уменьшением концентрации в той же мере, что и К. Хвост кончается в том месте, где К становится постоянным. Это, часто обременительное, явление имеет место в принципе только при изменении условий хроматографического разделения. Соответствующий градиент концентрации в подвижной фазе может, например, это все возрастающее влияние усилить до такой степени, что зтот эффект будет в точности компенсировать уменьшение кривизны изотермы. Такая специальная методика носит название градиентного злюирования [32]. [c.101]

    В развитии теории поверхностных слоев значительное место принадлежит работам Л. Н. Фрумкина, исследовавшего влияние различных веществ на форму так называемой электрокапиллярной кривой, характеризующей изменение поверхностного натяжения ртути (в капиллярном электрометре) под влиянием сообщаемого ртути заряда. Фрумкин показал И928), что эти изменения можно приписать ориентации молекул в поверхностном слое. Дальнейшие исследования Фрумкина привели к созданию новой области науки — электрохимии капиллярных явлений. В частности исследования краевых углов смачивания, измеряемых на пузырьках водорода, прилипающих к поверхности ртути в водных растворах, при разных величинах скачка потенциала показали, что смачиваемость и адсорбционная способность металлических поверхностей могут тонко регулироваться их электрической поляризацией и адсорбцией ионов, что привело к теории катодного обезжиривания металлических поверхностей. —Прим. ред. [c.67]

    Измерение работы смачивания твердой поверхности растворами различных ПАВ позволяет сопоставить их способность адсорбироваться (поверхностная активность) на данной твердой поверхности. Гидрофилизация (в общем случае лиофилизация) твердых тел под влиянием ориентированной адсорбции ПАВ на межфазной поверхности имеет большое значение в ряде областей применения ПАВ. Так, стабилизация латексов и дисперсий полимеров поверхностно-активными веществами в большой степени связана с гид-рофилизацией поверхности латексных глобул и снижением межфазного натяжения на границе каучук — водная среда. [c.163]

    Обнаружен ионный обмен между катионами твердой фазы и полиэлектролита, а также анионный обмен между анионами сорбента и полимера. Влияние конформации молекул сорбента на величину адсорбции с переходом глобулярного типа надмолекулярной структуры полимера в фибриллярный выражается в увеличении адсорбции. Адсорбция ПАВ частицами дисперсной фазы из разбавленных растворов, где вероятность столкновения молекул растворенного вещества мала, отличается от адсорбции из концентрированных растворов. В обоих случаях общим служит наличие индукционного периода адсорбции из растворов. Установлено, что чем гидрофильнее сорбент, тем больше этот период. Это обусловлено тем, что адсорбционное взаимодействие в системе твердая фаза — вода — ПАВ начинается после завершения смачивания водой поверхности частиц твердой фазы и формирования гидратного слоя. Таким образом, адсорбционные взаимодействие в данном рассматриваемом случае осуществляется через молекулы воды [19]. По-видимому, этот механизм адсорбции является общим, так как обнаруживается увеличение адсорбции полярных молекул из неполярной среды с ростом количества предсорбированной [c.199]

    Многие авторы для определения удельной поверхности адсорбентов использовали теплоты смачивания. Нэтрик и Гримм сделали попытку определения удельной поверхности силикагеля, допустив, что его поверхность покрыта пленкой конституционной воды, имеющей нормальное значение полной поверхностной энергии обычной жидкой воды, т. е. 118.5 эрг/см . Разделив измеренную в калориметре теплоту смачивания водой сухого силикагеля на эту величину, Пэтрик и Гримм получили удельную поверхность. Очевидно, что сделанное допущение является весьма грубым приближением, пригодным лишь для оценки порядка величины удельной поверхности. Бартелл и Фу пытались учесть влияние природы поверхности твердого тела, введя величины так называемых адхезионных констант. Методы их определения и вычисления по ним удельных поверхностей из теплот смачивания подробно рассмотрены нами в обзорной статье о работе и теплоте адсорбции жидкостей , поэтому здесь мы не будем на этом останавливаться. [c.176]


Смотреть страницы где упоминается термин Адсорбция влияние на смачивание: [c.500]    [c.90]    [c.220]    [c.240]    [c.67]    [c.421]   
Физико-химические основы смачивания и растекания (1976) -- [ c.31 ]




ПОИСК





Смотрите так же термины и статьи:

Смачивание



© 2025 chem21.info Реклама на сайте