Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Водород анализ в органических соединениях

    Качественный анализ позволяет установить, какие элементы входят в состав исследуемого вещества (кроме углерода и водорода в органических соединениях могут содержаться кислород, азот, сера, галогены, фосфор и другие элементы). Принцип качественного анализа заключается в переводе химических элементов в неорганические соединения, которые затем легко определяются общими аналитическими методами. Например, при обнаружении углерода и водорода органическое соединение сжигают, а образовавшиеся окислы углерода (СО2) и водорода (Н2О) определяют по помутнению раствора Са(ОН)д и наличию капель воды на стенках пробирки, в которой проводилось сожжение. Галоген в органическом веществе определяют по методу Бейльштейна. Этот метод заключается в том, что на предварительно прокаленную в пламени горелки медную проволочку наносят каплю определяемого раствора и за- [c.31]


    Органические вещества могут участвовать в протолитических, окислительно-восстановительных реакциях, а также реакциях осаждения и комплексообразования, что обусловлено химическими свойствами их функциональных групп. В связи с этим для количественного титриметрического анализа органических соединений используют в основном те же методы, что и для анализа неорганических соединений. Кроме того, для целей анализа используют реакции конденсации, замещения водорода, введения нитро- или нитрозо-групп, присоединения, свойственные органическим веществам. В некоторых случаях в процессе титрования сочетаются несколько типов взаимодействий, например окисление— восстановление, замещение водорода и присоединение, кислотно-основное взаимодействие и присоединение и т. п. [c.213]

    Функциональный анализ. Одним из необходимых шагов в структурном анализе органических соединений является определение природы и числа функциональных групп. На функциональные группы обращали внимание уже сторонники теории радикалов и теории типов. Поэтому и до появления теории химического строения было известно немало реакций для открытия функциональных групп. Б Введении к полному изучению органической химии Бутлеров упоминает о таких реакциях, например, на гидроксильную группу (в спиртах) с металлическим натрием образование алкоголята с хлорокисью фосфора продукта замещения гидроксильной группы на хлор с кислотами сложных эфиров, особенно характеристический и свойственный собственно алкоголям случай замещения водорода водяного остатка [25, с. 133]. Те же реагенты могут действовать и на гидроксильную группу кислот, однако при этом образуются соли, галогенангидриды кислот, которые в отличие от га-логенпроизводных алкогольных радикалов легко разлагаются водой. Подобный анализ имеет не только качественный, но и количественный характер, так как по числу атомов замещенного водорода в гидроксильных группах или самих этих групп можно судить, например, об атомности и основности оксикислот. К характерным реакциям альдегидов, открытым ранее, относится их легкая способность окисляться до кислот, восстанавливая окись серебра (Либих, 1835), а также способность к прямому соединению с аммиаком (Деберейнер, 1832). Кетоны резко отличаются от альдегидов тем, что не присоединяют кислород, а при действии окисляющих веществ, в отличие от альдегидов, распадаются. Бутлеров упоминает также о бисульфитной реакции на альдегиды и кетоны (Бертаньини, 1853). Были известны также реакции не только на аминогруппы, но и для [c.298]


    На чем основан количественный элементный анализ органических соединений на содержание водорода и углерода  [c.53]

    Определение элементного состава нефтей проводится общепринятыми методами анализа органических соединений, в частности углерод и водород — сожжением, по Либиху, или в калориметрической бомбе, азот, — по Дюма, сера, — по Кариусу, а кислород, — по разности, причем на процент его содержания ложатся все ошибки опыта. [c.76]

    Смесь метана с кислородом или воздухом сильно взрывает при зажигании. Однако температура воспламенения метана очень высока, и поэтому он сгорает гораздо труднее, чем водород и все другие углеводороды. Это обстоятельство может нежелательным образом сказаться на результатах элементарного анализа органических соединений, отщепляющих при нагревании метан, в особенности при определении азота по Дюма если нагревание недостаточно, то метан может выйти из трубки, не успев сгореть. Чрезвычайно трудная сгораемость метана в смеси с воздухом, даже над нагретой платиной, используется в газовом анализе для аналитического определения метана в присутствии других углеводородов. [c.39]

    Как прямая кулонометрия, так и кулонометрическое титрование находят широкое применение в аналитической практике определения неорганических веществ. Подробная сводка возможных объектов анализа приведена в руководстве Агасяна и Николаева. Возможно определение элементов всех групп периодической системы Менделеева. Кулонометрическое титрование используют при анализе органических соединений. Для анализа газов также служит кулонометрия и на ее основе разработаны многочисленные автоматические газоанализаторы па водород, кислород, воду, оксиды углерода, азота и серы, галогены и их производные. [c.252]

    Качественный анализ глюкозы. С методами качественного анализа органических соединений учащийся ознакомился уже на практических занятиях в начале курса органической химии. Не останавливаясь поэтому на описании этих методов, отметим коротко, что в процессе качественного анализа в глюкозе могли быть обнаружены только два элемента углерод и водород. Никаких других элементов в составе глюкозы обнаружено не было. Остался открытым лишь вопрос о содержании в глюкозе кислорода, поскольку он решается обычно в процессе проведения количественного анализа вещества. [c.173]

    В зависимости от поставленной задачи, свойств анализируемого вещества и других условий состав веществ выражается по-разному. Химический состав вещества может быть охарактеризован массовой долей элементов или их оксидов или других соединений, а также содержанием реально присутствующих в пробе индивидуальных химических соедииений или фаз, содержанием изотопов и т. д. Состав сплавов обычно выражают массовой долей (%) составляющих элементов состав горных пород, руд, минералов и т. д. — содержанием элементов в пересчете на какие-либо их соединения, чаще всего оксиды. Наиболее сложен так называемый фазовый или вещественный анализ, целью которого является определение содержания в пробе индивидуальных химических соединений, форм, в виде которых присутствует тот или иной элемент в анализируемом образце. При анализе органических соединений наряду с определением отдельных элементов (углерода, водорода, азота и т. д.) нередко выполняется молекулярный и функциональный анализ (устанавливаются индивидуальные химические соединения, функциональные группировки и т. д.). [c.5]

    Определение углерода и водорода микрометодом. Определение содержания углерода и водорода является самой главной задачей элементарного анализа органических соединений. Для определения содержания углерода и водорода органическое вещество сжигают до СОз и Н2О и затем определяют количество продуктов сгорания. [c.206]

    Детекторы. Самым распространенным и устойчивым детектором является детектор по ионизации пламени (ДИП), обладающий достаточно высокой чувствительностью и универсальностью при анализе органических соединений. Он является основным детектором при анализе ЛС методом ГХ. Недостатком ДИП является сложность работы на нем, поскольку он требует применения трех газов газа-носителя (лучше гелий или ксенон), водорода (или из баллонов, или электролитического, получаемого с помощью генератора водорода—в обоих случаях присутствует пожаровзрывоопасность) и воздуха (из баллонов или из компрессоров). Кроме того, он нечувствителен к молекулам неорганических веществ (вода, фреоны, постоянные газы и т.д.), а также к органическим соединениям, в которых отсутствуют группы С-Н. [c.484]

    Почему при элементном анализе органических соединений непосредственно определяются количества углерода, водорода, азота, но не определяется количество кислорода в составе соединения  [c.462]

    Обычные методы определения подвижных атомов водорода в органических соединениях, как известно основаны на химических реакциях, часто приводящих к образованию газообразных продуктов, которые и подвергаются анализу. Использование радиоактивных изотопов дало возможность разработать методику, основанную на реакции изотопного обмена подвижного водорода в органических соединениях с радиоактивным водородом гидроксильных групп спиртов или воды [223]. Определение подвижного водорода этим методом заключается в растворении анализируемого образца в тритированной воде или спирте, отгонке растворителя [c.119]


    Первая стадия в определении содержания дейтерия в образце состоит в превращении материала в форму, удобную для введения его в масс-спектрометр. Водород в органических соединениях может быть превращен в воду сжиганием вещества в сухом кислороде. Многие исследователи считают воду неудобным материалом для анализа на масс-спектрометре из-за адсорбции и обменных эффектов на стенках вакуумной камеры, что приводит к разбавлению исходного дейтерированного образца и явлению памяти при изучении последующих образцов. Поэтому обычно перед исследованием превращают воду в водород [c.83]

    Этот недостаток может быть устранен, если все анализируемые соединения превращать в какое-либо одно соединение. При работе с катарометром проводят конверсию до двуокиси углерода или водорода. В результате конверсии, во-первых, отпадает необходимость в продолжительных и трудоемких калибровках прибора, при этом содержание комнонентов для соединений одного класса в весовых процентах можно получить непосредственно из площадей пиков образовавшейся двуокиси углерода во-вторых, увеличивается чувствительность детектирования, что является следствием как повышения концентрации измеряемой двуокиси углерода (одна молекула органического соединения обычно дает нри сгорании несколько молекул двуокиси углерода), так и выбора более оптимальных условий измерения (низкая температура ячейки, большая сила тока и т. п.) в-третьих, упрощается конструкция катарометра, появляется возможность использовать низкотемпературный катарометр для детектирования высококипящих соединений (конвертер позволяет термостатировать катарометр, например, при комнатной температуре, несмотря на высокую температуру хроматографической колонки). В случае необходимости дополнительного исследования анализируемых соединений (например, при помощи качественных реакций), можно разделить газовый поток и подвергать конвертированию только его часть. На практике нри анализе органических соединений применяются три основных экспериментальных метода конвертирование до Og, до Hg и до СН4. [c.177]

    Процесс превращения анализируемого вещества в простые, элементарные продукты можно проводить как в стационарных условиях, так и в проточном реакторе. Следует указать также на возможность реализации метода, в котором проведение химических превращений и газохроматографический анализ образующихся продуктов были бы разделены и проводились бы независимо. Этот метод был применен для определения углерода и водорода в органических соединениях, хотя принципиально он может быть применен и для определения других элементов (серы, азота). Окисление проводили в запаянной стеклянной ампуле при 650—700 °С в присутствии оксида меди (окислитель и катализатор) [9]. При таком способе образуется простая смесь газов и исключается образование оксидов азота, так как восстановленная медь сразу же их разрушает. Разрыв ампу- [c.189]

    Определение в органических соединениях. Методы определения общего углерода (и водорода) в органических соединениях прямым сжиганием видоизменяются в зависимости от состава анализируемого материала и его летучести. В случае анализа веществ, содержащих галогены, серу или азот, в трубке для сжигания должны находиться специальные реагенты. Летучие вещества следует взвешивать и сжигать, соблюдая особые предосторожности. [c.851]

    Изотопный состав химических элементов в природе постоянен. Искусственным путем он может быть изменен. Всякое искусственное изменение изотопного состава является меткой, которую можно обнаружить. Если изменение изотопного состава связано с обогащением каким-либо стабильным изотопом, то для анализа используется масс-спектрометрия, а для изотопов водорода в органических соединениях, кроме того, измерение плотности воды, образующейся после сожжения. Если изменение изотопного состава является результатом введения радиоактивного изотопа, то для анализа применяются радиометрические методы. [c.502]

    Так, например, с помощью специальных методов качественного анализа органических соединений углерод переводится в двуокись углерода, водород — в воду, азот — в цианистый натрий, сера —в сернистый натрий и т. д. [c.29]

    Определение углерода и водорода в органических соединениях по стандартно му методу Прегля длится 135—145 мин. в случае повторных анализов. Оно требует от экспериментатора большого опыта и тш,ательного соблюдения методики. [c.224]

    Действие пламенно-ионизационного детектора основано на ионизации определяемых веществ, которая возникает при их сгорании в пламени водорода. При этом возникает ионный ток, вызывающий сигнал детектора. Очень важно поддерживать в этом детекторе определенное соотношение расходов газа-носи-теля, водорода и воздуха. Обычно оно равно 1 1 10. Пламенноионизационный детектор является по сравнению с катарометром более чувствительным, но менее универсальным. Пламенноионизационный детектор применяют для анализа органических соединений. К большинству неорганических газов (азот, кислород, окислы азота, сероводород, двуокись серы и др.) он не чувствителен. [c.46]

    Основным приемом при анализе органических соединений на присутствие металлов и металлоидов, за исключением водорода и кислорода, является разрушение органического скелета исследуемого вещества для получения неорганического соединения, которое может быть обнаружено капельной реакцией. Разложение, при котором углерод в большинстве случаев количественно окисляется до СО2, может быть осуществлено пиролизом, иногда в присутствии неорганических окислителей или мокрым путем под действием окислителей. Выбор способа зависит от того, какие присутствуют металлы или неметаллы. В следующих разделах описаны такие приемы и приведены примеры восстановительной деструкции. [c.103]

    Первые синтезы органических веществ удалось провести немецкому химику Ф. Вёлеру. В 1824 г. он наблюдал образование щавелевой кислоты из дициана, а в 1828 г.— образование мочевины из цианата аммония. Были разработаны методы для элементного анализа органических соединений Ж- Дюма разработал метод количественного определения азота, а Ю. Либих — метод определения углерода и водорода в органических соединениях. В середине XIX в. быстро расцвел органический синтез. В 1845 г. Г. Кольбе синтезировал уксусную кислоту, в 50-е годы М. Бертло из простых неорганических веществ синтезировал муравьиную кислоту, этиловый спирт, ацетилен, бензол, метан, а из глицерина и жирных кислот получил жиры. [c.10]

    НЫЙ анализ органических соединений с газохроматографичоским определепиел продуктов разложения. II. Метод одновременного определения углерода, водорода, азота // Методы анализа органических соединений, нефтей, их смесей и производных.— М. Наука, 1969.— С. 115—120. [c.209]

    Элементарный состав нефти определяют обычными методами анализа органических соединений углерод и водород — сожжением по Либиху или в калориметрической бомбе, азот — по Дюма, серу — по Карриусу, содержание кислорода обычно вычисляют по разности и редко определяют непосредственным анализом. [c.19]

    Принцип количественного определения углерода и водорода был разработан еще Либихом (1831 г.). Точно взвешенное кЬличество анализируемого вещества окисляют, сжигая в токе воздуха или кислорода в присутствии оксида меди (И), после чего взвешиванием (по. разности весов) определяют количество поглощенного натронной известью диоксида углерода и количество абсорбированной хлористым кальцием воды. Наличие в составе анализируемого соединения других элементов приводит к образованию в процессе сжигания дополнительных газообразных продуктов, что, в свою очередь, вносит ошибку в получаемые результаты. В таком случае в трубку для сжигания необходимо вводить различные специальные вещества, поглощающие (связывающие) такие мешающие анализу газообразные соединения. На рис. 1.1.5 схематически показаны два универсальных способа наполнения трубки для сжигания, пригодные для анализа соединений любого элементного состава. На рис. 1.1.6 дана схема прибора для количественного анализа органических соединений. [c.33]

    При иопользавании пламенно-ионизационного детектора в качестве газа-носителя применяют гелий и азот. К этим газам, как и к 0 , Н23, инертным газам, ШГд, СО, СО2, Н2О и некоторым другим (инертным в атмо )ере пламени водорода) пламенно-ионизационный детектор нечувствителен. Этот детектор в основном используют при проведении анализа органических соединений. [c.63]

    Количественный и качественный элементный анализ. Методы анализа органических соединений были созданы в начале XIX в., но их усовершенствование продолжается до иаших дней. В основе методов анализа лежит полное расщепление органического вещества в результате окисления или другим путем и определение химических элементов известными методами. Углерод определяют в виде СО2, водород — в виде Н2О, азот — измерением объема Мп или определением МНз или ЫаСЙ (в зависимости от вида расш.епле-ния), галогены — в виде галогенид-ионов, серу — в виде сульфат-или сульфид-иоиа, фосфор — в виде фосфат-пона и т. д. [c.19]

    Фогель и Куаттрон [297 ] использовали метод газовой хроматографии для определения углерода и водорода в органических соединениях. Пробы массой 8—11 мг окисляли кислородом в латунной бомбе. Диоксид углерода и воду разделяли при 104 °С на колонке с додецилфталатом, нанесенным на диатомитовую землю. Результаты анализа пяти проб дали среднее значение относительного стандартного отклонения 0,005. [c.320]

    Определение углерода, водорода, азота в органических соединениях с применением газо-хроматографического метода. Доманина О,Н,, Непряхина А,В., Чудакова И. К., Константинов А. А., Крашенинников С, К,, Новикова Г, А,, Радикова Г, Г, Физические и физико-химические методы анализа органических соединений. (Проблемы аналитической химии, т,), М,, Наука , 1970, стр, 24—29. [c.338]

    Комиссия по микрохимическим методам и определению микроксчпонентов ранее основное внимание уделяла анализу органических соединений. И.<учалась проблема точности и правильности определения азота в органических соединениях, определения углерода и водорода в органических соединениях, содержащих гетероэлементы, рассматривались вопросы разложения органических веществ. [c.224]

    Так, например, для непрерывного элементного анализа органических соединений на углерод и водород в работе [13] была предложена схема, согласно которой отдельные фракции после разделений па колонке поступали в реактор, заполненньп окисью меди и железом. Продукты конверсии затем разделялись на колонке с ацетонил- [c.50]

    В работе М. Вечержа [16] по автоматическому микро-определению углерода и водорода в органических соединениях общая схема анализа не отличается от хроматографической. Однако автор вместо хроматографической колонки для разделения продуктов использовал химические поглотители, что позволило проводить детектирование только по одному продукту. Исходную пробу (1,0—1,6 мг) анализируемого вещества, смешанного с 30— 40 мг окиси-закиси кобальта, быстро сжигали в кварцевой трубке и соответствующим катализатором. [c.141]

    В работе Вечержи [13] по автоматическому микроопределению углерода и водорода в органических соединениях общая схема анализа не отличается от хроматографической. Однако автор вместо хроматографической колонки для разделения продуктов использовал химические поглотители, что позволило проводить детектирование только по одному продукту. [c.192]

    Элементный анализ органических соединений с газохроматографическим определением продуктов разложения П. Метод одновременного определения углерода, водорода и азота. Непряхина А. В., Чудакова И. К., Доманина О. H., Новикова Г. А., Радикова Г. Г. Методы анализа органических соединений нефти, их смесей и производных , сб. 2. М., Наука , 1969, стр. И5—120. [c.210]

    В книге детально описаны основные методы микроэлемен-тарного и функционального анализа органических соединений, приведены методы определения углерода, водорода, азота, серы, галогенов, кремния, фосфора, германия, активного водорода, карбонильной группы, аминного азота, азота нитропарафинов, алкоксильной группы и воды. Описан способ взвешивания даны рекомендации по организации лабораторий микроанализа органических соединений. [c.688]

    Определение элементарного состава нефти производится общими методами анализа органических соединений, а именно углерод и водород определяются сожжением по Либиху, или в калориметрической бомбе азот определяется по Дюма, сера — по Кариусу, либо иными методами, которые будут рассмотрены в гл. VIII и IX, стр. 235 и 251, наконец, кислород определяется обыкновенно по остатку, редко —- методом непосредственного определения в виде воды. [c.15]

    Газовесовой метод. Этот способ можно применять для любого газа, который количественно реагирует с твердым абсорбентом, образуя устойчивую систему с низкой упругостью пара. Техника весового способа особенно выгодна для определения углекислого газа и водяного пара. Например, в элементарном анализе органических соединений взвешенный образец полностью сжигают в токе кислорода в печи для сжигания (рис. 279). При этом весь водород в образце превращается в водяной пар, а углерод — в углекислый газ. Выходящие из печи газы проходят через две взвешенные склянки, в одной из которых содержится твердый [c.356]

    Анализ соединения — это наиболее важный критерий чистоты и индивидуальности. Обычно анализ органических соединений на углерод и водород проводят путем сжигания образца. Небольшой, точно взвешенный образец вещества нагревают в токе чистого кислорода в электрической печи, а образующиеся газы пропускают через предварительно взвешенные трубки, наполненные специальными адсорбентами для двуокиси углерода и воды. Процентное содержание углерода и водорода в молекуле можно вычислить по весу образовавшихся воды и углекислого газа. Остальные элементы определяют стандартными методами количественного микроанализа. Органическое соединение считают удовлетворительно чистым, а его состав удовлетворительно сов-падающихм с предполагаемым, если найденное процентное содержание элементов отличается от вычисленного не более чем на 0,3%. После того как с помощью анализа показана чистота и найден элементный состав соединения, необходимо найти молекулярный вес, что можно сделать такими методами, как измерение плотности газа (гл. 6) или коллигативных свойств (гл. 34). После этого можно определить формулу молекулы. [c.167]

    При анализе органических соединений, содержащих ртуть, сначала разрушают органическое вещество нагреванием пробы с серной кислотой и сульфатом калня в колбе с обратным холодильником Для этой же цели при-ме)1яюг серную кислоту с перекисью водорода последние авторы исследовали методы определения ртути в различных фармацевтических препаратах. [c.423]

    Следует отметить, что все указанные выше методы анализа органических соединений, содержащих фтор, предложенные в различное время, предназначались, видимо, для анализа твердых и высококипящих веществ, иначе сожжение навески в лодочке было бы невозможно. Новый способ одновременного определения углерода, водорода и фтора во фторорганических соединениях разработали Н. Э. Гельман и М. О. Коршун . Принцип метода состоит в том, что вещество сжигают в токе кислорода в кварцевой пробирке, наполненной окисью магния и помещенной в трубку для сожжения. Углерод и водород определяют, как обычно, а фтор в момент разложения павески исследуемого соединения реагирует с окисью магния, с образованием тугоплавкого фторида магния MgF2. Взвешивая кварцевую пробирку до и после анализа, авторам удалось разрешить задачу одновременного определения углерода, водорода и фтора, чего не смогли добиться предыдущие исследователи, за исключением Николаева и Мазора, хотя их работы и имели ряд недостатков. [c.275]

    Потенциометрический метод применяется в анализе органических соединений для определения содержания веществ в исследуемом растворе при титровании кислот и оснований, при окислительно-восстановительных реакциях и реакциях осаждения. Кроме того, его часто используют для определения кислотности среды, в особенности в тех случаях, когда имеются сильно окрашенные или неводные растворы, в которых определение pH посредством индикаторов затруднено или даже невозможно. ь. Многие анализы, применяющиеся в анилинокрасочной промышленности, основаны на реакции диазотирования (см. стр. 142). Для определения первичных аминов с помощью азотистой кислоты можно пользоваться потенциометрическим методом. Этот метод удобен для титрования сильно окрашенных растворов, при нанесении которых на иодкрахмальную бумагу трудно наблюдать конец реакции. Например, определение содержания аминоазобензо-ла потенциометрическим титрованием (методика приводится ниже) белее точно, чем определение обычным титрованием с иодкрахмальной бумагой. При анализе кубовых красителей, содержащих галоид, часто бывает необходимо определять содержание хлора и брома. При анализе кубовъ х красителей, а также при определении содержания поваренной соли в красителях и промежуточных продуктах, потенциометрический метод имеет преимущества перед химическими методами, так как он проще, надежнее и при этом затрачивается меньше времени. Достоинством этого метода титрования кислот и оснований является также возможность определять концентрацию ионов водорода в любой момент титрования. [c.376]


Библиография для Водород анализ в органических соединениях: [c.352]   
Смотреть страницы где упоминается термин Водород анализ в органических соединениях: [c.92]    [c.109]    [c.51]    [c.133]    [c.101]   
Газовая хроматография в биохимии (1964) -- [ c.570 ]




ПОИСК





Смотрите так же термины и статьи:

Водород соединения

Органические соединения анализ

Органический водород



© 2025 chem21.info Реклама на сайте