Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Углеводороды, получение соединения

    Для получения соединений, в молекулы которых кроме гидрофобных входят функциональные группы с гидрофильными свойствами, можно применять реакции введения гидрофильной группы в молекулу углеводорода (например, окисление, сульфирование илп присоединение органических или неорганических кислот) или введения гидрофобной группы в молекулы некоторых функциональных соединений (например, алкилирование и ацилирование фенолов или аминов). [c.340]


    Значимость четырех вышеприведенных критериев неодинакова. Наиболее важным является первый критерий, и почти все системы определения взаимозаменяемости включают тот или ной способ измерения потока тепловой энергии. Однако более подробно эта тема будет обсуждаться ниже. Второй критерий, определяющий размер и форму факела при сжигании предварительно смешанного газа, зависит от скорости распространения пламени, причем эта скорость совершенно одинакова для разных парафиновых углеводородных газов, метана, этана и т. д., но имеет различные значения для углеводородов и водородсодержащих газов. И, наконец, критерии образования промежуточных продуктов реакций горения и сажи имеют смысл, когда топливные газы содержат ненасыщенные промежуточные соединения критерий сажеобразования важен и тогда, когда в газовом топливе имеются ненасыщенные и высококипящие углеводороды или соединения ароматического ряда. Во всех остальных случаях углистые отложения и загрязняющие вещества не превышают норм, допустимых для природного газа и используемого топочного оборудования. Вследствие этого учет двух последних критериев взаимозаменяемости ограничен районами, пользовавшимися в прошлом синтетическим или полученным из угля газовым топливом. [c.44]

    Основными промышленными процессами, в которых используется синтез-газ как исходное сырье, являются производства метанола, высших углеводородов, аммиака и высших спиртов методом оксосинтеза. В настоящее время в проектах стремятся предусматривать на одном предприятии комплексную переработку синтез-газа с получением не только жидкого топлива, но и сжиженного газа, непредельных углеводородов, кислородсодержащих соединений и твердых парафинов. Направление синтеза и выход желаемых продуктов определяются экономическими факторами, подбором катализаторов, составом синтез-газа и выбором рабочих условий. [c.106]

    Какой углеводород образуется, если 4,4-диметил-2-пентен бромировать и полученное соединение обработать спиртовым раствором щелочи  [c.68]

    Работ по природе аморфных парафинов (церезинов) в нефти имеется очень мало [20—25]. Скорей всего этот продукт, полученный из высококипящих и остаточных масел, состоит в значительной степени из нормальных и изопарафинов, пластифицированных твердыми или полужидкими циклическими углеводородами или соединениями с циклическими ядрами. Последние имеют углеводородные цепи, близкие по составу с большинством жидких углеводородов в смазочных маслах [26]. Относительные количества различных типов соединений меняются для разных нефтей, окончательного ответа мы не получим, пока исследователь не сможет проанализировать все 100% взятого вещества. [c.515]


    Некоторый интерес представляет заполнение с помощью синтеза пустых пространств в таблице парафиновых углеводородов, нормальных и изостроения. Хотя, без сомнения, все уже полученные соединения и многие другие существуют в природных смесях, доказать это трудно. [c.515]

    К углеводороду, полученному при нагревании бутилового спирта с серной кислотой, присоединили воду (в присутствии кислоты). Каково строение полученного соединения  [c.61]

    Полимеризация есть слияние двух или нескольких молекул в одну более крупную и сложную с получением соединения того же химического состава, но более высокого молекулярного веса, так называемых полимеров. Явление это присуще главным образом ненасыщенным углеводородам, из которых некоторые полимеризуются с необыкновенной легкостью, тогда как другие, наоборот, крайне медленно, при подогреве или в присутствии катализатора. [c.92]

    В дальнейшем в качестве исходного сырья для получения соединений такого типа были использованы алкилароматические углеводороды  [c.109]

    В монографии обобщаются современные сведения о моторных топливах в аспекте энергетической проблемы. Уделяется внимание источникам и методам получения моторных топлив из нефтяного и ненефтяного сырья, их физико-химическим характеристикам. Значительное место отводится составу топлив углеводородам, гетероатомным соединениям (сернистым, азотистым, кислородным), а также загрязнениям, отрицательно влияющим на эксплуатационные свойства. Излагаются основы термохимических превращений топлив. [c.231]

    Из приведенных в табл. 103 данных, кроме неоднородности (в отношении числа циклов) углеводородов, полученных из олеиновой кислоты, следует также обратить внимание на высокую степень цикличности этих же соединений. [c.373]

    Более низкие (приблизительно в два раза) молекулярные веса углеводородов, полученных при гидрировании смолы в мягких условиях, свидетельствуют о значительной роли гетероатомов (О, 8) в образовании молекул смол путем соединения двух или большего числа основных структурных углеводородных единиц. [c.126]

    Парафино-циклопарафиновые углеводороды, полученные при гидрировании асфальтенов, близки по составу и свойствам к группе высокомолекулярных углеводородов, выделенных непосредственно из нефти. Основное отличие их заключается в более высокой цикличности (2,1 кольца на молекулу против 1,2) ив небольшом содержании серы (0,23%), соответствующем наличию примеси сернистых соединений (2,3%). Полное обессеривание этой группы углеводородов еще больше увеличит подобие их с аналогичной группой углеводородов, содержащихся в нефти. [c.131]

    Растворитель извлекает ароматические углеводороды. Полученный экстракт при нагреве очищают глиной для удаления следов непредельных углеводородов и сернистых соединений. Затем ароматические углеводороды отгоняют от растворителей. Бензол, выделенный таким путем, обладает высокой чистотой и пригоден как сырье для нефтехимического производства. [c.325]

    Амины получаются также аминолизом алкилхлоридов. При взаимодействии алкилхлоридов с сульфатами образуются водорастворимые сульфонаты. На основе алкилхлорида получают соединения Гриньяра, из которых при взаимодействии с оксидом углерода (IV) образуются карбоновые кислоты. При взаимодействии с безводным карбонатом натрия алкилхлориды превращаются в сложные эфиры, с сульфгидратами щелочей—в тиоспирты. В реакции Фриделя— Крафтса алкилхлориды взаимодействуют с аренами. Они дехлорируются с образованием алкенов. Алкилхлориды используют для введения в молекулы высокомолекулярных алкильных групп при производстве инсектицидов и ядохимикатов, для повышения растворимости полученных соединений в смеси углеводородов (нефтепродуктов), а также во многих других производствах. Термическим хлорированием технического пентана получают амилхлориды, которые гидролизуют затем щелочью в амиловые спирты, используемые непосредственно или в виде их амилацетатов в качестве растворителей и важного вспомогательного материала в лакокрасочной промышленности [18]. [c.325]

    Напишите схемы реакций получения из соответствующих углеводородов следующих соединений  [c.93]

    Исходными материалами для получения полимерных углеводородов, рассматриваемых в настоящей главе, служат непредельные углеводороды этилен, пропилен, н-бутилены, изобутилен, стирол и др. Полимерные углеводороды, полученные полимеризацией указанных соединений, которые также называют полиолефинами, являются насыщенными соединениями, так как содержащиеся в цепях двойные связи приходятся па очень большое число атомов углерода (порядка нескольких тысяч). Этим определяются такие свойства полимерных углеводородов, как химическая инертность и влагостойкость. [c.92]


    Какой углеводород образуется, если метилацетилен обработать металлическим натрием, а полученное соединение алкилировать бромистым изобутилом  [c.69]

    Полученная величина в дальнейших расчетах уточняется после определения количества водорода, вошедшего в состав дизельного топлива при гидрогенолнзе сернистых соединений и гидрировании непредельных углеводородов. Полученные значения выхода газа, бензина и дизельного топлива далее будут использованы при составлении материального баланса установки и реактора гидроочистки. [c.144]

    Получение углеводородов. Магнийорганические соединения бурно реагируют с веществами, содержащими активный атом водорода, образуя углеводороды  [c.641]

    Для введения аминогруппы наиболее широко используют водный раствор аммиака определенной концентрации и соли аммония (карбонат, сульфат, хлорид, ацетат, формиат и др.). В практике ами-нирования производных ароматических углеводородов используют соединения аммиака с хлоридом кальция и цинка, получаемые насыщением газообразным аммиаком растворов соответствующих солей. Для получения вторичных и третичных аминов используют соответствующие моноалкил-(арил-) и диалкил (арил)амины. В ароматическом ряду применяют также гидроксиламин и амиды металлов. [c.226]

    Замещение хлора, брома или иода фтором представляет главный метод получения алифатических фтористых соединений. Этот метод уже много лет применяется в промышленности для получения фреонов , состоящих в первую очередь из хлорфторметапов и этапов [10]. Однако этот метод, вообще говоря, неудобен для получения соединений, содержащих один лишь фтор, особенно сполна фторированных углеводородов, поскольку при обычных условиях реакции могут быть замещены только наиболее реакционноспособные атомы галоида. [c.74]

    Этим путем удалось выделить и охарактеризовать несколько индивидуальных алифатических и циклических сульфидов (тиофанов). Этим же путем показано наличие производных тиофана общей формулы С На 8 [4] в бензиновом дистилляте иранской нефти. Методом сульфирования для выделения и общей характеристики сернистых соединений пользовались и в исследовательских работах [5—7]. Из бензино-керосинового дистиллята кокай-тинской нефти Узбекской ССР был получен и охарактеризован а-метилтиофан [8]. Методом сульфирования керосинового дистиллята иранской нефти (140—250° С) 0,4 объемн. % 98%-ной серной кислоты выделено и идентифицировано 27 индивидуальных сернистых соединений [9]. Этот метод чрезвычайно сложен, о чем свидетельствует схема, приведенная на рис. 7. Индивидуальные сернистые соединения выделяли в виде комплексов с ацетатом ртути, которые затем разлагали. Строение сернистых соединений устанавливали по физическим свойствам и химической характеристике с помощью инфракрасных спектров. Спек-трометрировали углеводороды, полученные гидрогено-лизом сернистых соединений на никеле Ренея. Таким сложным путем идентифицированы моно- и бициклические сульфиды, диалкилсульфиды и тиофены. [c.97]

    При описании синтеза 2,2-диметилпентана приведен общий метод получения парафиновых углеводородов с разветвленной цепью, содержащих на один атом углерода меньше, чем исходные соединения [778]. В этом же разделе описан другой общий метод получения соединений с разветвленной цепью [352]. [c.271]

    Установлено, что нет такого микроорганизма, который бы окислял все углеводороды или их производные. На практике редко встречается организм, который действовал бы на подложку из одного углеводорода. Обычно организм использует несколько родственных соединений, отличающихся такими характеристиками, как например, длина цепи. Существует различие в типах углеводородов, разрушаемых определенным организмом. С другой стороны, имеется множество различных организмов, которые могут окислять углеводороды или материал, аналогичный углеводородам. Полученные данные указывают на то, что углеводородов, стойких -к действию микроорганизмов, вероятно, не существует. Зобелл [35], подробно изучавший разрушение углеводородов бактериями, пришел к выводу, что существуют предельные значения окислительной способности различных организмов по отношению к различным углеводородам. [c.189]

    Они составляли только 21% первоначального образца, более того, при сравнении их свойств со свойствами синтетических углеводородов, полученных Крафтом, эти соединения нельзя признать индивидуальными, как это сделал Мэбери. Список Мэбери простирается до jgH,2, плавящегося при 76—77° С, обнаруженного при исследовании твердого штангового парафина, скопившегося в перекачивающем оборудовании па месторождении пенсильванской нефти. [c.512]

    Ароматические углеводороды, полученные из нефти путем ее пиролиза, составляют главную малсу легкого масла из смолы. В отличие от соответствующей фракции каменноугольной, в ней нет феБКЬ лов и вообще кислородных соединений, а также сернистых и адоти-стых. 1 После ароматических углеводородов главную роль играют в легком масле, уже очищенном серной кислотой, углеводороды ряда [c.407]

    Ароматические углеводороды, полученные по методу Эделеану, часто дополнительно рафинируются серной кислотой и содой с целью удаления из них ненасыщенных соединений (олефинов и диолефи-иов). Таким образом получаются ароматические соединения высокой чистоты [83]. Из ароматических углеводородов, полученных путем каталитического крекинга (пиролиза) нефти, выделяются бензол, толуол и ксилолы 75, 92]. [c.402]

    Бициклоароматические углеводороды, полученные при гидрировании асфальтенов, значительно отличаются по составу и свойствам от высокомолекулярных бициклоароматических углеводородов, выделенных непосредственно из ромашкинской нефти. Они характеризуются более высоким молекулярным весом (440 против 374) и большей цикличностью общая цикличность 5,3 против 3,9, в том числе ароматических колец 3,0 против 2,3 и цикло-нарафиновых колец 2,3 против 1,6. Эти отличительные особенности бициклоароматических углеводородов определили и все остальные их свойства. Среди углеводородов, полученных при гидрировании асфальтенов, полициклоароматические соединения, содержащие в среднем 3,6 бензольных колец на молекулу, составляли 42%, тогда как из высокомолекулярной части нефти соединений такого типа выделить не удалось. Среди этих соединений на долю углеводородов приходится 71%, а остальные 29% — сернистые соединения, если принять, что в молекуле последних содержится один атом серы. [c.131]

    Общий вывод о строении углеводородов, полученных из нефтяных кислот, состоит в том, что высшие нефтяные кислоты являются карбоновыми кислотами, карбоксильная группа которых соединена с углеводородными радикалами аналогичными (по составу и строению) углеводородам тех нефтей, из которых эти кислоты были выделены. В молекулах этих кислот содержатся предельные (циклопарафиновые) моноароматические, диароматические и серусодержащие углеводородные радикалы. Среди моноароматических соединений, насколько позволяют судить об этом данные анализа по ультрафиолетовым спектрам, присутствуют структуры, которые можно выразить следующей общей формулой  [c.322]

    Непредельные газообразные углеводороды, полученные при высокотемпературном крекинге нефти с водяным паром и предназначенные для синтезов, содержат высококонденсированные ароматические и высоконенасыщенные соединения. Большая часть этого остатка выкипает в пределах, характерных для моторного топлива, и имеет очень хорошие антидетонационные свойства. Однако ненасыщенные углеводороды полимеризуются при хранении, переноске и использовании, причем образующиеся полимеры отлагаются в контейнерах и нефтепроводах. Такие ненасьш1енные остатки необходимо гидрировать селективно, не затрагивая ароматических углеводородов и не изменяя антидетонационных свойств. Ненасьпценными веществами являются циклопентадиен и его димеры, стирол, инден и т.п. [c.208]

    М.-ОДИН РП O H. способов получения металлоорганических соединений. О М. углеводородов натрийорг. соединениями см. Шорыгина реакция. [c.41]

    В качестве промывного агента предложено применять целый ряд соединений. Л. М. Розенберг с сотр. [25] рекомендует применять для промывки комплекса при количественном выделении и-парафинов изооктан, и-пентап либо их смесь. Предложены также изооктановая фракция [151], метилэтилкетон [53], депарафини-роваппая фракция 90—120° С [59] и другие бецзиновые фракции [46]. Рекомендовано также [148, 152] промывать комплекс насыщенным раствором карбамида, что позволяет достичь удовлетворительного удаления окклюдированных частиц и добиться значительного снижения температуры застывания депарафинируемого продукта. Предложено также [153] промывать комплекс жидким продуктом с высоким содержанием нормальных алифатических углеводородов, полученным от предыдущих циклов разрушения комплекса. В. В. Усачев и П. П. Дмитриев с сотр. [81] установили, что при разрушении комплекса, полученного из и-парафинов дизельного топлива, водой и насыщенным этанольным раствором карбамида при 80° С применение в качестве промывного агента бензола, серного эфира и легкого бензина с к. к. = 120° С (при промывке в интервале температур от +10 до —20° С) дает весьма близкие результаты, однако наиболее высокоплавкие -парафины получены при разрушении водо11 комплекса, предварительно промытого легким бензином при —20° С (табл. 20). [c.85]

    Как указывалось выше, содержащиеся в мягком парафине примеси (ароматические и нафтеновые углеводороды, сернистые соединения) затрудняют его химическую переработку без предварительной очистки. При переработке же отдельных фракций парафина можно не очищать весь мягкий парафин, поскольку в зависимости от принятых способов использования может быть рекомендован наиболее рациональный способ очистки каждой фракции. В случае использования мягкого парафина, например, для сульфохлорирования и крекинга нужно очищать только головную фракцию. Необходимо отметить еще одно обстоятельство. При разделении мягкого парафина-сырца хотя бы на две фракции (например, н. к. — 270° С и 270° С — к. к.) обычной перегонкой происходит, как установила О. Б. Волкова с сотр. [295], обогащение головных фракций ароматическими, изо парафиновыми и нафтеновыми углеводородами, присутствовавшими в мягком парафине в виде примесей. Отсутствие подобного явления при получении фракции н-парафинов методами карбамидной депарафинизации является одним из достоинств этого метода. [c.199]

    Соединения включения особенно важны для получения 6 оптически активных формах тех веществ, которые не имеют Подходящих для образования диастереомеров функциональных групп поэтому помимо галогенпроизводных этот метод йерспективен также для получения оптически активных углеводородов. Через соединения включения с мочевиной получены оптически активные 3-метилоктан и 3-метилнонан [67]. [c.108]

    Так как радикалы сохраняются при химических реакциях, характерных для данной функциональной группы (образование алкоголя-тов, эфиров и т. д.), то все полученные соединения можно классифицировать, положив в основу те радикглы или остатки молекул углеводородов, которые сохранились в составе молекулы данного органического соединения. Поэтому, например, спирты или алкоголи могут быть распределены по тем же гомологическим рядам, к которым относятся связанные с группой ОН pa ,икaлы. [c.463]

    Твердые углероды битума битумные парафины содержат наряду с насыщенными парафиновыми углеводородами ряд соединении, родственных основным компонентам битума [146]. Киотнерус [199] провел исследование структурно-группового состава битумных парафинов, получил их распределение по молекулярным весам с помощью молекулярной дистилляции и по химическим соединениям — с помощью хроматографии и ИК спектроскопии. Показано, что битумные парафины состоят из насыщенных компонентов, ароматических компонентов (в которые входят сернистые соединения) и смолистых компонентов. Эти данные о сложном составе битумных парафинов подтверждаются рядом других работ. Показано, что структурно-групповой состав парафинов весьма различен и зависит от химической природы битума, из которого получен парафин [201]. [c.139]

    Углеводородами называются соединения, состоящие из углерода и водорода. Различают алифатические предельные и непредельные углеводороды, циклические (нафтены) н ароматические. Наиболее важным источником получения предельных углеводородов состава С Н2 -2 является нефть. При перегонке последней отбирают фракцию т. кип. 150—170° —бензин, нз которой дробной перегонкой получают легкий бензин уд. в. 0,64 -0,66, т. кип. 40 -75°, известный под названием петролейный эфир. Выше кипящая фракция —средний бензин, т. кип. 70—120 , уд. в. 0,70—носит название авиационного бензина, его применяют для приготовления йод-бензнна (раствора йода в бензине, используемого иногда для дезинфекции) и особенно широко в технике для двигателей с зажиганием и в качестве растворителя. Фракцию г. кип. 150 —300° — керосин используют в качестве горючего также для двигателей внутреннего сгорания и иногда в быту, а также для освещения. Фракции, перегоняющиеся без разложения при температурах Кипения, более высоких, чем керосин, называют соляровыми маслами их используют в качестве дизельного топлива, смазочных масел или путем Крекирования превращают в более легкие углеводороды. Перегонкой с водяным паром фракций, кипящих выше 300", получаюг вазелин, который представляет собой густую смесь жидких и твердых углеводородов. Из нефти выделяют, кроме того, смесь твердых углеводородов, называемую парафином, Предельные углеводороды получают и синтетическим путем восстановлением галогенопроизводных, спиртов, альдегидов, кетонов, непредельных соединений, декарбоисилированием кислот, электролизом солеи жирных кислот н др. [c.105]

    Например, для определения теплоты образования циклогексана с помощью сжигания в калориметре необходимо определить разность между теплотой сгорания циклогексана и теплотой сгорания шести атомов углерода и шести молекул водорода. Это значит, что для определения теплоты образования (—123 кДж/моль) необходимо определить теплоту реакции (—3920 кДж/моль). Для того чтобы ошибка определения теплоты образования составила 1 кДж/моль или около 1%, теплота сгорания должна быть определена с точностью 1 кДж/моль или около 0,026%. Проблема становится все более острой по мере возрастания молекулярной массы углеводорода для определения АЯ с точностью 1% для алкана С20Н42 необходимо определить теплоту сгорания с точностью до 0,007%. Особую важность приобретают такие факторы, как чистота образца. Так, при сжигании алкана с примесью 0,01% воды точность определения теплоты сгорания составляет 1,5 кДж/моль. Для получения надежных результатов важно правильно установить тип реакции сгорания путем тщательного анализа исходных состояний и продуктов. Еще одна проблема возникает в связи с жидким или твердым состоянием углеводородов. Если соединение является жидким или твердым при 25 С, стандартная теплота образования АЯ° (которую относят к 298,15 К) включает энергию межмолекулярного взаимодействия конденсированного состояния (которая не имеет отношения к обсуждению энергии связи) или соотношения структура — энергия. Для такого обсуждения необходимо знать теплоту образования соединения в гипотетическом состоянии идеального газа. Эту величину можно получить из экспериментального значения АЯ , введя поправку на теплоту испарения (сублимации) до состояния идеального газа при 25 °С. Энергия межмолекулярного взаимодействия может значительно изменяться даже в ряду близко родственных соединений, что маскирует истинную величину термохимической устойчивости. [c.97]

    К с-важный источник сырья для хим пром-сти и др отраслей народного хозяйства (цветной металлургии, с х-ва, железнодорожного транспорта, дорожного стр-ва) На базе использования продуктов переработки Кси сырого бензола в конце прошлого века возникла одна из ведущих отраслей пром-сти - осноеной органический синтез Кси сейчас сохраняет свое значение как сырье для произ-ва нафталина, крезолов и антрацена, пека и искового кокса, масел для пропитки древесины, получения техн углерода, пестицидов и т п Более 50 индивидуальных в-в К с (ароматич углеводороды, гетероциклич соединения и др ) используют для тонкого органического синтеза [c.301]

    Мы учитывали возможность присутствия в выделенных твердых парафиновых углеводородах соединений различной структуры, как это показано в работе [73]. Поэтому для выяснения наличия н-парафиновых углеводородов полученный концентрат (из легкой нефти скв. № 33) был подвергнут разделению на молекулярных ситах (цеолит, кальциевая форма, размер пор 5 А) по методике [74]. Из концентрата было вьщелено из расчета на нефть — 0,08% н-парафиновых и 0,26% изопарафиновых углеродов. Таким образом, до 75% всех вьщеленных из легкой нафталанской нефти твердых парафиновых углеводородов приходится на изоструктуры. Количественное определение изопарафиновых углеводородов методом масс-спектрометрии приведено в разделе 3.2. [c.67]

    Значение пластмасс и некоторых продуктов органического синтеза существенно возрастет в будущем, хотя основным источником сырья для их получения пока является нефть с очень высоким ИИР (13,17о). Положение может быть изменено к лучшему, если удастся сократить расходы нефтепродуктов для топливных целей. В настоящее время на неф ехимические синтезы расходуется 5—6% всей нефти, но к-2000 г. эта доля возрастет до 15%. Следует отметить, что разведанные запасы нефти сейчас оцени- ваются величиной 120 млрд. т. Но предполагается, что к 2000 г. эти запасы будут расширены до 270 млрд. т. В современном нефтехимическом синтезе в основном используются низшие ненасыщенные ациклические и ароматические углеводороды. Эти соединения получают пиролизом газообразных парафинов, легких нефтяных фракций, а в последнее время тяжелых фракций и даже самой нефти. Современные установки для пиролиза укрупнены настолько, что могут производить от 500 до 700 тыс. т в год ненасыщенных углеводородов. В результате переработки нефти получают много продуктов, среди которых важнейшими являются низшие олефины и диолефины (этилен, пропилен, бутадиен и изопрен), ароматические соединения (бензол, толуол, ксилол) и газовая смесь оксида углерода (И) с водородом. Эти вещества — исходное сырье для многих тысяч промежуточных и конечных продуктов, некоторые из них указаны на рисунке 8. Переработка алифатических, алициклических и ароматических углеводородов осуществляется с помощью таких процессов, как дегидрогенизация, окисление, хлорирование, сульфирование и т. д. [c.71]

    Прямогонные бензины получают фракционированием нефти при атмосферном давлении (<кии=35- 200°С) бензины-рафинаты — фракция углеводородов, полученная при риформинге прямогонных бензинов, очищенная от ароматических соединений методом экстракции ( кип= 180-ь200°С). [c.53]


Смотреть страницы где упоминается термин Углеводороды, получение соединения: [c.42]    [c.173]    [c.440]   
Препаративная органическая химия Издание 2 (1964) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

АРОМАТИЧЕСКИЕ СОЕДИНЕНИЯ Ароматические углеводороды Получение бензола

Ароматические соединения с конденсированными кольцами. Номенклатура, получение, свойства Г, Функциональные производные углеводородов

Бензол.— Конденсированные ароматические углеводоро—Источники получения ароматических углеводородов Соединения ароматического ряда

Кислородсодержащие органические соединения Общие методы получения кислородсодержащих органических соединений из углеводородов

Получение ациклических а,а-бифункциональных соединений на . основе непредельных циклических углеводородов

Получение диацетиленовых углеводородов из диацетиленовых соединений

Получение парафиновых углеводородов из алифатических соединений с одинаковым числом углеродных атомов в молекуле

Получение парафиновых углеводородов из алифатических соединений с увеличенным числом углеродных атомов в молекуле

Получение пз соединений

Температура также Нагревание влияние при получении привитых сополимеров радиолизе алифатических соединений углеводородов

Углеводороды жирного ряда получение через магнийорганические соединения

Углеводороды насыщенные, получение из карбонильных соединений

Углеводороды, получение алициклические Алициклические соединения



© 2025 chem21.info Реклама на сайте