Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

АРОМАТИЧЕСКИЕ СОЕДИНЕНИЯ Ароматические углеводороды Получение бензола

    Растворитель извлекает ароматические углеводороды. Полученный экстракт при нагреве очищают глиной для удаления следов непредельных углеводородов и сернистых соединений. Затем ароматические углеводороды отгоняют от растворителей. Бензол, выделенный таким путем, обладает высокой чистотой и пригоден как сырье для нефтехимического производства. [c.325]


    Раньше к ароматическим соединениям относили вещества, полученные из ароматических бальзамов, эфирных масел и т. д. Они имели приятный запах. Однако изучение свойств и строения этих веществ показало, что в молекуле каждого из них содержится бензольное кольцо. Поэтому в настоящее время бензол и его производные стали называться ароматическими углеводородами, хотя многие из них без запаха, а некоторые имеют неприятный запах. Все они в своих молекулах содержат особую группировку из шести атомов углерода [c.318]

    Для получения химических продуктов пироконденсат должен подвергаться гидрогенизационному облагораживанию под давлением 40 ат с целью гидрирования непредельных и сернистых соединений. Из гидрогенизата выделяют две фракции с т. кип. до 75° С, выход которой составляет 25%, и фракцию 75—150° С с выходом 55% остальное — остаток. Фракция 75—150°С содержит около 54% ароматических углеводородов, которые экстрагируются диэтиленгликолем. Выделенные ароматические углеводороды разгоняются с получением бензола, толуола и ксилолов, выход которых, соответственно, составляет 8, 10 и 9% в расчете на пироконденсат. [c.132]

    При нитровании веществ, не содержащих соединений типа бензола, например нефтяных фракций, содержащих углеводороды от до i,, получаются продукты, которые в смеси со спиртом и бензолом. могут при.меняться в качестве растворителей для нитроклетчатки a . Прибавление к нефтяным фракциям нитросоединений понижает их те.мпературу воспламенения и вспышки, и для этой цели часто применяют соединения, полученные при нитровании ароматических углеводородов, например бензола и толуола, или при нитровании фракций, полученных при разгонке керосина . [c.1137]

    Еще в 1877 г. русский технолог А. А. Летний обнаружил, что мазут пропусканием через раскаленную железную трубку может быть превращен в смесь ароматических углеводородов (от бензола до антрацена). Выход ароматических соединений увеличивался при заполнении трубки платинированным углем. Вскоре после этого в России было организовано производство ароматических углеводородов из нефти, послужившее базой для организации производства анилина. Советскими учеными внесены коренные улучшения в методы получения ароматических углеводородов из нефти. Н. Д. Зелинским разработан метод каталитической дегидрогенизации нафтенов, Б. Л. Молдавским и Б, А. Казанским открыта неожиданная и весьма интересная реакция каталитической ароматизации углеводородов жирного ряда. Эти две реакции позволяют превратить углеводороды всех классов, содержащиеся в нефти, в ароматические углеводороды и уже нашли большое практическое применение .  [c.22]

    На Енакиевском коксохимическом заводе разработана и внедрена в производство схема получения чистых ароматических углеводородов из фракции смолы пиролиза Сумгаитского завода СК, выкипающей в пределах 79—135° (61% на смолу), путем ее сернокислотной очистки с последующей ректификацией. Потери при промывке кислотной фракции 79—135° составляют 24,6%. Получаемый бензол характеризуется высокой степенью очистки от непредельных и сернистых соединений и удовлетворяет условиям, предъявляемым к бензолу для синтеза. [c.145]


    Исследование жидких продуктов высокоскоростного пиролиза сернистого мазута показало, что они являются ценным сырьем для получения ароматических соединений, в первую очередь бензола, выход которого составлял до 4—5% от мазута выход толуола и ароматических углеводородов С 2,4 и 0,8% соответственно. [c.43]

    Колонны обеспечивают получение бензола и толуола чистотой 99,9 %, содержание толуола в смеси ксилолов не превышает 1,5%. Фракция суммы ароматических углеводородов выкипает в пределах 138,1—141,2°С, что указывает на низкое содержание в ней высокомолекулярных ароматических соединений. Колонны оборудованы клапанными тарелками в бензольной 44, толуольной 34 и ксилольной 30. Давления в колоннах 200 гПа, остальные технологические параметры приведены ниже  [c.249]

    Одним из наиболее обычных методов синтеза гомологов бензола является реакция Фриделя-Крафтса. Однако лишь для отдельных случаев эта реакция может быть признана наилучшим методом синтеза. В работах Американского нефтяного института по Проекту 45 этот метод часто применялся для синтеза индивидуальных ароматических соединений. Он использовался для получения достаточных количеств углеводородов только в шести случаях, но может быть применен для синтеза и некоторых других углеводородов, папример толуола, этилбензола, кумола и 1,3-диэтилбензола, которые, однако, доступны и в виде продажных продуктов. [c.480]

    Колонки с адсорбентом и растворами термостатируют, растворители при этом испаряются. Таким образом, в первой колонке оказывается проба мальтенов, а во второй — битума. Далее растворителями одинакового набора (например, изооктаном, бензолом и смесью бензола и этанола в соотношении 1 1) вымывают соответствующие этим растворителям группы соединений из пробы мальтенов и пробы битума. Поскольку раствор в парафиновом углеводороде в отличие от раствора в ароматическом углеводороде не содержит растворенных асфальтенов, общая площадь пиков, получаемых при разделении мальтенов, меньше общей площади пиков, получаемых при разделении битума, на величину, соответствующую содержанию асфальтенов в анализируемом битуме. При этом нужно учитывать возможное неравенство количеств мальтенов н битума, взятых на хроматографирование. Это может быть сделано сравнением пиков, полученных при элюировании изооктаном [Ъ, 6]. Таким образом, на анализ группового химического состава битумов затрачивается не более 2 ч. Определение проводят, хроматографическим методом, но принцип использования экстрагирования при выделении асфальтенов не нарушается. [c.10]

    Способы получения. Кроме способов получения ароматических углеводородов из соединений жирного ряда (стр. 203) и гидроаро-магических соединений (стр. 57 и 222), существуют способы их получения из различных веществ ароматического ряда. Многие из этих способов аналогичны способам получения парафиновых углеводородов из соедн 1ений жирного ряда, хотя здесь для проведения реакции часто требуются иные условия в отношении температуры, времени, применяемого реагента (например, восстановителя) и пр. Особенно большое значение имеют две синтетические реакции получения гомологов бензола—реакция Вюрца—Фиттига и реакци Ц Фриделя—Крафтса. [c.211]

    Ароматические углеводороды, полученные по методу Эделеану, часто дополнительно рафинируются серной кислотой и содой с целью удаления из них ненасыщенных соединений (олефинов и диолефи-иов). Таким образом получаются ароматические соединения высокой чистоты [83]. Из ароматических углеводородов, полученных путем каталитического крекинга (пиролиза) нефти, выделяются бензол, толуол и ксилолы 75, 92]. [c.402]

    В книге- рассмотрены современное состояние и тенденцнн производства и потребления основных ароматических углеводородов. Описаны методы анализа и оценки их товарных свойств и обоснованы требования к качеству выпускаемых промышленностью продуктов. Дано описание технологических процессов производства бензола, ксилолов, полиметилбензо-лов, нафталина, антрацена, фенантрена и некоторых других многоядерных ароматических углеводородов, получаемых из каменноугольного и нефтяного сырья. Подробно изложена технология получения специальных сортов бензола и нафталина, используемых для процессов органического синтеза. Освещены научные основы и промышленные способы переработки важнейших ароматических углеводородов. Дана токсикологическая оценка названных соединений и рассмотрены меры по снижению их вредного воздействия на природу и человека. [c.2]

    Для извлечения ароматических углеводородов из гидрированных бензинов пиролиза, так же как из катализатов риформинга, наиболее часто применяется экстракция. Широкое распространение получила экстракция смесью Н-метилпирролидона с этиленгликолем (процесс Аросольван ) [102], обеспечивающая в сочетании с последующей ректификацией получение высококачественных товарных ароматических углеводородов. В качестве экстрагентов применяются также гликоли, сульфолан, диметилсульфоксид и другие растворители [124]. При переработке узких гидроочищенных фракций пиролиза, содержащих более 75% одного какого-либо ароматического углеводорода (чаще бензола) применяется экстрактивная ректификация с Ы-метилпирролидоном (процесс Дистапекс ) [125], диметилформамидом [126] или другим растворителем. Двухстадийное гидрирование узкой фракции бензина пиролиза (Сб—Се) с последующей экстракцией гидрогенизата осуществляется и в процессах других фирм. Так, в одном из процессов на первой ступени гидрируются диолефины и стирол на катализаторе из благородного металла (давление 2,7—6,2 МПа, температура 65—218°С), а на второй ступени на алюмокобальтмолибденовом катализаторе гидрируются олефины и удаляются сернистые соединения [127]. [c.186]


    На выход ароматических продуктов пиролиза строение исходного углеводорода влияет следующим образом больше всего бензола образуется из нафтенового сырья. Алканы изостроения дают более высокие выходы ароматических углеводородов, чем н-алканы, и эта зависимость заметнее при большем разветвлении исходного сырья. Это объясняется повышенной концентр ащ1ей в составе продуктов разложения изомеров аллильного и диенильного радикалов, при взаимодействии которых образуются бензол, толуол и ксилолы. Занисимости состава продуктов пиролиза от строения углеводородов закономерны для широкого диапазона параметров процесса пиролиза. При неизменной качественной картине наблюдается различие в количественных соотношениях продуктов пиролиза. Выход ароматических соединений зависит также от содержания ароматических углеводородов в исходном сырье, которые в процессе пиролиза в значительной части ( 70—80%) либо сохраняются, либо деалкилируются с образованием преимущественно бензола. Показано [141], что с увеличением содержания ароматических углеводородов в сырье от О до 12% в пи-рогазе несколько уменьшается концентрация этана, пропилена,, бутена и бутадиена-1,3, незначительно повышается содержание этилена, метана и более заметно — водорода при этом имеет место пропорциональное уменьшение газообразования. Зависимость выхода алкенов и газообразования от добавки ароматических углеводородов к бензину носит линейный характер. Это дает основание предположить, что ароматические соединения в основном не принимают участия в реакциях разложения, приводящих к получению газообразных углеводородов [141]. [c.48]

    Алкилирование изопарафиновых углеводородов и бензола низшими олефинами является одним из наиболее важных способов получения высокооктановых компонентов легкого моторного топлива. Советскими учеными проведено большое количество работ по изучению этой реакции в присутствии различных катализаторов. Ю. Г. Мамедалиев с сотрудниками очень подробно исследовал алкилирование изопарафиновых и ароматических углеводородов пропиленом, бутиленами, амиленами и другими олефинами в присутствии серной кислоты при температурах от О до 25° С. Этот процесс в значительных масштабах применяется промышленностью. Алкилирование бензола пропиленом в присутствии фосфорной кислоты при 180—200° С и давлении 15—20 ат изучали Ю. Л. Хмельницкий, А. И. Даладугин и А. И. Скобло. Алкилирование изопарафиновых и ароматических углеводородов олефинами в присутствии комплексных соединений фтористого бора с фосфорными кислотами и серной кислотой, а также в присутствии моногидрата фтористого бора подробно изучено в работах А. В. Топчиева с сотрудниками. Алкилирование бензола олефинами в присутствии твердых катализаторов (гумбрин, активированная глина, синтетический алюмосиликат, пирофосфат меди на угле и т. д.) при температурах от 180 до 450° С и давлении от 15 до 60 ат изучали Ю. Г. Мамедалиев, Ю. Л. Хмельницкий, А. И. Даладугин и другие исследователи. [c.24]

    В 1901 г. Сабатье [3] выполнил первые работы, относящиеся к гидрогенизации ароматических соединений. Эти работы — крупнейшая победа гетерогенного органического катализа. Прежние способы гидрогенизации бейзола и его гЬмологов нельзя даже сравнивать с новым методом Сабатье. Как известно, восстановление бензола йодистым водородом, по Вредену , сопровождалось изомеризацией циклогексана в метилциклопентан гомологи бензола хотя и гидрировались до гексагидроароматиче-скйх углеводородов, но давали крайне незначительные выходы. В то же время способы синтетического получения углеводородов циклогексанового ряда были очень сложны они сводились преимущественно к циклизации двухосновных кислот, образованию циклогексанонов и последующему восстановлению их. Гидрогенизация же ароматических углеводородов над никелем по Сабатье происходит очень гладко она начинается при 70°С, но лучше идет при повышении температуры  [c.28]

    Гаттерману не удалось ввести альдегидную группу в ароматические углеводороды в тех условиях, в которых он проводил свои реакции. Исключение представлял тетралин, поскольку из него с 33%-ным выходохм был получен 3,4-тетраметиленбензаль-дегид. Как известно, Гаттерман часто применял в этой реакции бензол и другие углеводороды в качестве растворителей. Позднее, однако, было установлено, что можно ввести альдегидную группу в бензол, если изменить условия так, чтобы в реакционной среде находился свободный хлористый алюминий [8]. При 40° в бензоле комплексное соединение хлористого алюминия с хлорметйленформамидино.м не диссоциирует и реакция не идет. Если же температуру повысить до 80° или более, то, по-виднмому, в известной мере произойдет диссоциация комплекса с образованием свободного хлористого алюминия и реакция будет протекать. Если прибавить избыток хлористого алюминия, то выход бензальдегида возрастет с 14 до 75% [8]. В том случае, когда ароматическое соединение не подвержено в сильной степени полимеризации, целесообразно применять хлористый алюминий и цианистый водород в молярном соотношении 1 1 можно также уменьшить количество хлористого алюминия и увеличить продолжительность реакции. Выходы альдегидов, по данным Хинкеля и его сотрудников, определяются количеством взятого цианистого водорода, а не ароматического соединения, как это указано в работах Гаттермана. Если основываться на предположении о том, что на каждый моль ароматического соединения, превраш ающегося в альдегид, требуются два. моля цианистого водорода, то выходы (составляющие при расчете на ароматическое соединение только 50%) будут отвечать приблизительно 100% при молярном соотношении реагентов 1 1. Однако очевидно, что для введения альдегидной группы в фенолы и простые эфиры фенолов при всех условиях не требуется двух молей цианистого водорода. [c.55]

    Выделение бензола и его гомологов. Сырой бензол, получаемый при коксовании, содержит мало насыщенных углеводородов. Поэтому после очистки от непредельных углеводородов обычной ректификацией можно получить достаточно концентрированные фракции бензола, толуола и ксилолов ( 99,9% основного вещества). Такие же фракции, выделенные из легкого масла пиролиза, очищенного от непредельных, содержат до 4—5% несульфирующихся соединений (парафинов и нафтенов). В процессах дальнейшей переработки, связанных с рециркуляцией непрореагировавших ароматических углеводородов, эти примеси могут накапливаться в системе и ухудшать условия протекания целевых реакций. Катали-заты риформинга на 40—70% состоят из парафинов и нафтенов, имеющих очень бли3iкиe температуры кипения с соответствующими ароматическими углеводородами. В этом случае для выделения ароматических концентратов требуются специальные методы, которые в равной степени применимы для различных фракций смолы пиролиза. При выделении ароматических углеводородов из ката-лизатов платформинга наибольшее применение нашел метод селективной экстракции, основанный на хорошей растворимости ароматических углеводородов в некоторых полярных жидкостях. Раньше использовали жидкий сернистый ангидрид, а в настоящее время — диэтиленгликоль с добавкой 8—10% воды. Метод применим для широких фракций и извлечения из них любых ароматических углеводородов. Экстракцию осуществляют в противоточных колоннах, роторно-дисковых и других экстракторах. Из полученного раствора ароматические углеводороды отгоняют в ректификационной колонне, после чего растворитель охлаждают и возвращают на экстракцию. Смесь ароматических углеводородов далее подвергают перегонке с целью выделения индивидуальных веществ. [c.95]

    Каменноугольная смола представляет собой вязкую жидкость удельного веса 1,05—1,3, черного цвета из-за диспергированного в ней угля. 2 Жидкость эта содержит сотни веществ кроме того, большое количество соединений образуется в процессе дестилляции смолы. Несколько сот из этих соединений были идентифицированы, а свыше трехсот были выделены в чистом виде и охарактеризованы (см. схемы 1 и 2 и табл. 1). Ароматические углеводороды, входящие в состав смолы, очень разнообразны и варьируют от бензола до хризена ( 18H12) и пицена (С22Н14). В смоле присутствуют также фенолы, кислоты, азотсодержащие (пиридин, хинолин) и серусодержащие соединения (тиофен). Для производства красителей наиболее важными соединениями являются бензол, толуол, ксилолы, нафталин, антрацен, аценафтен, пирен, пиридин, карбазол, фенол и крезолы. Другие приведенные в схеме 2 соединения играют меньшую роль. В табл. II представлен состав двух смол, полученных в типовых установках в США, причем приведенные количества являются технически воспроизводимыми. [c.42]

    В 1931 г. Дэвис [70] сообщил о своем способе получения добавок к смазочным маслам путем реакции хлорированного парафина с ароматическими углеводородами в присутствии хлористого алюминия при 60 — 150° до соединения, содержащего от 10 до 12% хлора затем 1 часть этого вещества вводится в реакцию с 0,1—0,5 части ароматического углеводорода, а именно бензола, нафталина, антрацена или газойля с большим содержанием ароматики. К смеси углеводородов при 60—71° прибавляется равный вес хлористого алюминия в присутствии растворителя—керосина, после 24 час. температура поднимается до 93°. Реакционной смеси дают отстояться, масло охлаждают и неизмененный парафин удаляется холодным фильтрованием или отгонкой в вакууме. [c.843]

    Итак, в настоящей работе авторы, используя такие типичные я-электрон-ные гомологические ряды, как многоядерные ароматические углеводороды, монозамещенные бензолы и алкилбензолы, провели сравнение гетерогенного и гомогенного изотопного обмена, катализируемого металлами. Полученные результаты объяснены образованием промежуточных соединений типа я-комплексов. Для обеих систем рассмотрена возможность общего механизма. [c.62]

    При действии азотной кислоты на углеводороды в соответствующих условиях образуются нитросоединения. Эта важная реакция впервые была обнаружена по отношению к ароматическим углеводородам. В 1834 г. Е. Митчерлих впервые получил нитробензол (мирбановое масло), обрабатывая бензол дымящей азотной кислотой. В промышленных условиях нитробензол получен в 1847 г. (г. Мансфильд, Англия). Но вскоре оказалось, что такие нитросоединения восстанавливаются в амины (зинин), которые обладают высокой реакционной способностью. Это сделало их важными промежуточными продуктами для ф армацевтической и красочной промышленности. Так, реакция нитрования наравне с сульфированием стала основным процессом препаративной химии ароматических соединений и с течением времени развилась и получила очень большое техническое значение. [c.265]

    Целью других технологических процессов экстракции является получение экстракта с высоким содержанием ароматических соединений. В этих процессах продукт крекинга или риформинга нефти обычно экстрагируется растворителем для получеш1Я бензола, толуола, ксилолов, их смесей или высокомолекулярных ароматических углеводородов, применяемых в качестве растворителей, пластификаторов, компонентов авиационного бензина и исходных продуктов для сульфирования и производства воднорастворимых детергентов. [c.192]

    Опыты П. Сабатье и его сотрудника Сандэрана возбуждают заслуженное внимание и представляют наиболее интересный пример неорганического синтеза нефти. Смесь непредельного углеводорода, с водородом подвергается (в присутствии катализатора — никеля) нагреванию нри температуре не свыше 180°. Происходит процесс гидрогенизации ненасыщенных углеводородов. В результате получается светло-желтая жидкость удельного веса 0,790, состоящая из предельных углеводородов и напоминающая по своим свойствам пенсильванскую нефть. При несколько измененных условиях опыта получаются и другие результаты так, если пропускать ацетилен без водорода над никелем при температуре 200°С, получается вещество, богатое ароматическими углеводородами. При вторичном пропускании этого последнего над никелем получается смесь нафтенов, т. е. нефть типа бакинской. Здесь, очевидно, мы имеем процесс полимеризации и образования под влиянием катализаторов циклических соединений. Вертело доказал, что полимеризация ацетилена (С2Н2) дает бензол (СаНе) при температуре размягчения стекла. Далее в литературе встречаются указания, что углеводороды могут получаться и при других реакциях. Например, еще в 1863 г. была известна возможность непосредственного получения ацетилена при пропускании водорода между угольными концами вольтовой дуги, но тогда на это не обратили должного внимания. Еще Вертело указал, что щелочные металлы, реагируя с СО2, образуют карбиды, или ацетиды и кислород, который потом уходит из сферы реа- [c.302]

    Парофазные процессы используют для получения бессернистых бензинов и облагораживания сырья каталитического риформинга получения чистой нафты — сырья для пиролиза и газификации, а также чистых технических растворителей , очистки ароматических углеводородов от сернистых соединений, в первую, очередь для очистки бензола от тиофена очистки и стабилизации бензина пиролиза и бензинов вторичного происхождения на нефтепере]рабаты-вающих заводах . В двух последних группах процессов трудной и еще не решенной до конца задачей является селективная очистка бензинов от сернистых соединений с сохранением ценных олефиновых углеводородов. [c.93]

    Газ пиролиза вместе с парами более легких продуктов и водяным паром выходит с верхней части колонны 8, имея температуру ПО С. Это тепло используют в скруббере II для подогрева циркулирующего водного конденсата, за счет чего происходит конденсация водяного пара и легкой смолы пиролиза, а газ охлаждается до 30—35°С и направляется на сжатие и дальнейшее разде-лен1(е (он еще содержит значительное количество летучих иаров, но их улавливание эффективнее осуществлять под давлением). Смесь горячей воды и легкого масла из скруббера И поступает в сс паратор 12, где углеводороды отделяются в виде верхнего СЛ05 и отводятся на дальнейшую переработку — для выделения ароматических соединений (бензол, толуол, ксилолы). Горячий водный конденсат циркуляционным насосом /3 частично подают на заьалку продуктов пиролиза, а остальное его количество циркулирует через систему утилизации тепла 15, дополнительно охлаждается в холодильнике 14 и возвращается на охлаждение про-дук 0в пиролиза в скруббер 11. Часть циркуляционной во ы направляют на очистку от смолистых примесей, после чего ее возвращают в систему водооборота или исиользуют для получения пара, необходимого для пиролиза. [c.44]

    Другим источником получения ароматических соединений яв-ляется каменноугольная смола, выделяющаяся при высокотем- в пературной переработке угля. В ней содержатся бензол, толуоЛ, нафталин и другие полиароматические углеводороды. Учитывая объем перерабатываемого угля в настоящее время и планируемое развитие его переработки рядом других методов, уголь можно оценивать как перспективный источник получения ароматиче-4 ских углеводородов. —  [c.9]

    Высказано мнение, что алкилирование ароматических углеводородов может протекать не в результате промежуточного образования ионов карбония [53, с. 98], а эфиров кислоты, дающих при низких температурах с ароматическими ядрами соединения типа я-комплексов. С повышением температуры, как предполагают авторы, происходит дегидратация спиртов и последующее алкилирование бензола олефинами. В статье [.176] хотя и не оспаривается специфичность действия различных катализаторов и других факторов, авторы считают, что полученных в работе [53, с. 198] данных недостаточно для отказа от общепринятых положений, связанных с, образованием карбока-тиоиов. [c.102]


Смотреть страницы где упоминается термин АРОМАТИЧЕСКИЕ СОЕДИНЕНИЯ Ароматические углеводороды Получение бензола: [c.69]    [c.23]    [c.78]    [c.285]    [c.230]    [c.222]    [c.58]    [c.128]    [c.510]    [c.211]    [c.23]    [c.60]    [c.184]    [c.647]    [c.465]    [c.430]    [c.138]    [c.382]    [c.143]   
Смотреть главы в:

Лекционные опыты и демонстрационные материалы по органической химии -> АРОМАТИЧЕСКИЕ СОЕДИНЕНИЯ Ароматические углеводороды Получение бензола




ПОИСК





Смотрите так же термины и статьи:

Бензол.— Конденсированные ароматические углеводоро—Источники получения ароматических углеводородов Соединения ароматического ряда

Получение пз соединений

Углеводороды, получение ароматические Ароматические

Углеводороды, получение соединения

ароматических соединений бензола

бензола углеводородов



© 2025 chem21.info Реклама на сайте