Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коэффициент распределения теория

    Сложность теории растворимости высокомолекулярных веществ, до сих пор недостаточно разработанной, заключается между прочим в том, что для каждой фракции полимера с молекулярным весом имеется свой коэффициент распределения между двумя жидкими слоями. [c.258]

    Влияние диффузионных и кинетических факторов на процесс разделения бывает настолько сильным, что разделение вообще не произойдет даже при значительной разнице коэффициентов распределения. Явление размывания полос в реальной хроматографической колонке очень сложное и как всякое сложное явление может быть изучено лишь по частям и лишь приближенно на основе теорий, устанавливающих зависимость между некоторой мерой размывания и указанными факторами. Важное значение имеет также опре деление относительной роли каждого из этих факторов в данном Явлении, [c.46]


    В отношении скорости потока следует пойти на компромисс, так как увеличение скорости хотя и уменьшает влияние диффузии (происходящей по длине разделительного слоя сорбента), но затрудняет установление равновесия между фазами. Уменьшение размеров частиц сорбента, обусловленное членом А, должно также иметь границы, так как в противном случае слишком большим станет сопротивление потоку в колонне, т. е. скорость движения потока недопустимо уменьшится. Величина члена С зависит от значения коэффициента распределения. Его определяют как отношение количества вещества в стационарной фазе к количеству вещества, находящегося а подвижной фазе. Он связан с соотношением стационарной и подвижной фазы на участке разделения. Более подробное рассмотрение вопросов теории хроматографии можно найти в специальной литературе [19, 28]. [c.348]

    Единой стройной теории, описывающей количественно весь хроматографический процесс, до настоящего времени нет. Установление теоретической зависимости между химическим строением вещества и его коэффициентом распределения между фазами, знание которого позволяет предсказать хроматографическое поведение вещества, является задачей, которая еще ждет своего решения. [c.19]

    В настоящее время выбор фаз требует большого искусства, поскольку из-за отсутствия достаточно развитой теории растворов наши знания о коэффициентах распределения в основном носят эмпирический характер. [c.65]

    Коэффициент распределения зависит от различных факторов природы вещества, природы растворителя, температуры и техники проведения эксперимента. Однако и такие носители, как бумага, крахмал, силикагель и др., считавшиеся ранее инертными, не являются абсолютно инертными, поэтому в распределительной хроматографии сочетаются такие процессы, как распределение, сорбция и ионный обмен. Теория распределительной хроматографии не учитывает эти побочные факторы, т. е. рассматривает идеальный случай распределения веществ [1, И]. [c.75]

    Теория и опыт подтверждают, что часто коэффициент распределения есть функция от концентрации распределяемого вещества и линейная зависимость нарушена. Условие равновесного распределения вещества — равенство его активностей в каждой фазе  [c.84]

    На практике количество дозированного вещества часто бывает большим, чем позволяет теория. В случае смеси веществ отдельные компоненты распределяются соответственно их коэффициентам распределения на неодинаковом числе теоретических тарелок, так что слишком большое вначале количество вещества в процессе разделения становится вполне допустимым. [c.288]


    Газовая хроматография применялась не только для специальных аналитических целей, но и с успехом использовалась для определения физикохимических констант (коэффициентов распределения и активности, величин поверхности, теплот испарения и адсорбции, коэффициентов диффузии, энтальпии, энтропии и свободной энергии равновесных процессов растворения), а также для исследования равновесий и скоростей химических реакций, которые протекают непосредственно в хроматографических колонках. Физикохимическое приложение газовой хроматографии возникло непосредственно на основе теории газовой хроматографии, и развитие его еще пи в коем случае нельзя считать завершенным. [c.445]

    До сих пор при рассмотрении теории распределительной хроматографии пользовались зависимостями, характеризующими противоточное распределение и равновесное состояние двухфазной системы. Существует много доводов в пользу такой аналогии. Так, например, зная коэффициент распределения, можно рассчитать распределение вещества как при противоточном распределении, так и при распределительной хроматографии. В последнем случае зависимость между величиной 1 и коэффициентом распределения вещества на колонке с порошкообразным носителем может быть выражена уравнением [102] [c.447]

    Эти энергии можно оценить, во-первых, по коэффициенту распределения вещества между двумя жидкими фазами и, во-вторых, по критической температуре взаимного растворения двух фаз. Отношение числа соседей в клетке и к числу молей растворителя 5 (в моль/л) обычно близко к единице. Согласно теории столкновений константа скорости бимолекулярной реакции к го, где го - фактор частоты бимолекулярных столкновений. В жидкости молекула окружена л молекулами - соседями, колеблется в такой клетке с частотой V, с каждым соседом [c.206]

    В заключение остается обсудить методы количественной оценки коэффициентов распределения yi = ехр Фг, входящих в качестве параметра в уравнение (Х.37). Для бинарных смесей неполярных жидкостей значения Ф могут быть найдены на основании макроскопической теории дисперсионных сил [28—30]. Например, для модели щелевых пор средние значения yi рассчитываются с помощью уравнения (Х.29)  [c.304]

    Детальное термодинамическое и кинетическое описание хроматографического процесса можно найти в различных работах, и нет смысла повторять его в этой книге [39—47]. Следует подчеркнуть два момента во-первых, коэффициент разделения а выводится из теории равновесия и представляет собой отношение двух массовых коэффициентов распределения/)т2/ тг(рис. 1.4), измеренных при идентичных условиях для данной пары компонентов во-вторых, достаточно просто определить а из измерений статического равновесия или из хроматографических экспериментов. Таким образом, коэффициент массового распределения От равен [c.20]

    Правильный подбор летучей улавливающей жидкости— решающее условие успешного проведения анализа методом равновесного концентрирования. Основным критерием, которым следует руководствоваться при выборе растворителя, является значение коэффициента распределения в нем определяемых веществ. Для повышения чувствительности анализа наиболее приемлемые значения К находятся в пределах 10 —101 Кроме того, растворитель должен удовлетворять некоторым требованиям, вытекающим из рассмотренной выше теории равновесного концентрирования в летучих жидкостях. Согласно этим требованиям возможность достижения практически постоянной концентрации примеси в растворе определяется постоянством коэффициента распределения в изучаемом интервале концентраций и условием FK < 0,5. Желательно также выбирать растворитель, пик которого не регистрируется на хроматограмме. [c.194]

    Теория равновесного концентрирования, рассмотренная в предыдущем разделе, предусматривает постоянство величин К, Р и fs при продувании жидкости исследуемым газом. Это условие не выполняется, если анализируемый газ содержит сопутствующие примеси, влияющие на коэффициенты распределения определяемых компонентов. Пропускание газа, содержащего наряду с определяемой хорошо растворимую сопутствующую примесь в большой концентрации, приводит к постепенному изменению состава поглощающей жидкости и соответствующему изменению коэффициента распределения определяемого вещества между жидкой и газовой фазами. Вид кривых концентрирования будет определяться зависимостью функции —РК) от [c.206]

    Общая теория равновесного концентрирования при переменных коэффициентах распределения еще не разработана. Единственным примером является изученный [c.207]

    Уравнение (2.27) — одно из основных уравнений тарелочной теории. Оно представляет зависимость между коэффициентом распределения и числом объемов колонки, пропущенных до того момента, когда концентрация компонента М в элюате достигает максимального значения. [c.53]


    Физико-математическое рассмотрение этих процессов приводит в зависимости от подхода к различным общим теориям хроматографии, которые, хотя имеют различную форму, родственны друг другу и в своей основе применимы к любому хроматографическому методу, следовательно, и к хроматографии в тонких слоях. В разделе I мы даем краткое изложение способа рассмотрения, основанного на наглядной модели хроматографического процесса. Несмотря на наглядность в нем отсутствуют априорные положения (например, теоретические тарелки) этот способ в той мере, в какой адсорбционные и распределительные явления не зависят от концентрации, нашел безупречное математическое выражение. Мы увидим ниже, какое распределение вещества имеет место в движущейся зоне, каким образом скорость движения или значения Rf зависят от коэффициентов распределения или адсорбции и почему происходит деформация зоны. [c.82]

    Несмотря на широкое использование экстракционных методов многие вопросы теории экстракции остаются еще не выясненными вследствие сложности физико-химических процессов в многокомпонентной двухфазной системе и ограниченности наших знаний в области теории растворов. Каждое новое исследование механизма экстракции, а также изучение влияния различных факторов на коэффициент распределения комплексных соединений приближают нас к установлению общих закономерностей, позволяющих управлять процессом экстракционного разделения и отделения элементов. [c.3]

    Теорию экстрактивной реакции можно распространить и на концентрированные растворы, когда коэффициенты распределения извлекаемого компонента А между фазами непостоянны и наблюдается значительное изменение объемов фаз. Методы расчета применимы к простым и сложным реакциям. Используется графическое решение при помощи треугольной диаграммы. [c.167]

    Основной задачей теории распределительной хроматографии (хроматографического экстрагирования) является определение количества переносов W и числа элементарных слоев колонки или ступеней (ячеек) п, которые обеспечивают необходимую степень разделения двух или нескольких веществ, характеризующихся известными (но разными) коэффициентами распределения. [c.103]

    Наиболее весомым аргументом, свидетельствующим в пользу того, что полимеризация протекает в объеме частиц, является прямое измерение степени набухания заранее полученных частиц полимера, диспергированных в содержащих мономер алифатических углеводородах, при условиях, соответствующих реальным условиям дисперсионной полимеризации [89] (табл. IV.10). Такие исследования показывают, что метилметакрилат при низких и средних концентрациях распределяется между частицами поли-, метилметакрилата и алифатическими углеводородными разбавителями в приблизительно одинаковых концентрациях. Близкие к единице значения для коэффициента распределения получены также из кинетических данных [1]. Сходные результаты установлены при исследованиях родственных систем [60]. Для винилацетата распределение сдвигается в сторону фазы полимера (приблизительно в отношении 2 1). Схожие результаты установлены и для других мономеров, включая акрилонитрил. Согласно экспериментальным данным, распределение мономера не зависит от размера частиц, как это и предсказывается теорией растворов полимеров (стр. 147). Близкие значения для исследуемых величин установлены в измерениях с использованием полимера в блоке, если время наблюдения было достаточным для достижения равновесного состояния. Степень поглощения мономера частицами в этих системах (—10%), когда мономер растворен в непрерывной фазе, много меньше таковой при водноэмульсионной полимеризации. В последнем случае концентрация мономера в частицах полимера может достигать 60—70%, если водная фаза насыщена мономером, мало растворимым в воде [28]. [c.199]

    Если концентрация одного из ионов очень мала, а другого — очень велика, то для микрокомпонента коэффициент распределения будет постоянным и независящим от заряда иона 128-120 Это означает, что концентрация микрокомпонента в смоле пропорциональна его концентрации в растворе. Таким образом, к элюентным процессам, в которых концентрация элюента сравнительно высока, будет приложима теория колоночного процесса, выражаемого линейной изотермой. [c.567]

    Теоретические аспекты ионообменной хроматографии никоим образом не противоречат общей теории, рассмотренной в гл. 16. Концентрационные коэффициенты распределения, выведенные выше, могут быть использованы для определения удерживаемого объема, как уже отмечалось. Поскольку подвижной фазой является жидкость, ее оптимальные скорости движения очень низки. Диффузионные процессы, определяющие кинетику ионного обмена, происходят на расстоянии, равном приблизительно диаметру одного зерна смолы, а переменная р в выражении приведенной высоты тарелки здесь представляет диаметр зерна смолы. В колонке с наиболее высокой разрешающей способностью высота тарелки соответствует приблизительно пяти диаметрам зерен. [c.593]

    Значительное место занимают работы по экстракции неорганических соединений. Изучено взаимное влияние металлов при их экстракционном выделении, особенно важное при извлечении больших количеств одного металла на фоне микроколичеств других. Практическое значение этой работы весьма велико даны рекомендации по выбору растворителя и условий для эффективного концентрирования микроэлементов путем удаления элемента-матрицы. Показана возможность разделения даже очень близких по свойствам элементов, например железа(П1) и галлия в случае экстракции их из солянокислых растворов кислородсодержащими растворителями. Хотя оба элемента экстрагируются в обычных условиях с высокими коэффициентами распределения, можно подобрать условия (и теория указывает, как это сделать), когда один элемент будет количественно экстрагироваться, а второй полностью оставаться в водной фазе. [c.7]

    Исследования сорбционных процессов, проводимые в институте, развиваются в направлении совершенствования теории метода применительно к решению крупных аналитических и технологических задач. Детальным исследованием конкретных систем раствор—ионит выявляются особенности равновесия и кинетики (физическая модель), определяются характеристические величины (коэффициент распределения, константа обмена, коэффициент внешней или внутренней диффузии), записывается соответствующая [c.8]

    Теория Снайдера основывается на следующих положениях. Хроматографический коэффициент распределения Kd связан с термодинамическим фактором емкости К соотношением [c.75]

    Из теории ГПХ известно, что коэффициент распределения гибкоцепных макромолекул определяется изменением их свободной энергии AF при попадании в поры сорбента  [c.192]

    Попытки объяснить концентрационную зависимость коэффициентов распределения образованием ассоциатов но своей физической сущности близки к теориям неидеальности раствора Долецалика и Пойнтинга. [c.84]

    В конечном счете идеи Розотти приводят к закону распределенпя Шилова. Трактовка распределенпя с точки зрения образования ассоциатов или сольватов распределяемого вещества и растворптеля вообще характерна для многих исследователей. Коренман [35] использовал представления сольватной теории распределения для объяснения взаимосвязи коэффициентов распределения органических веществ с коэффициентами распределения их производных [c.94]

    Одна из главных задач теории неравновесной хроматографии — изучение причин размывания хроматографических полос. Это явление может быть обусловлено диффузионными и кинетическими факторами. Их влияние на процесс разделения может быть настолько велико, что даже при значительной разнице коэффициентов распределения вещества могут не разделиться. Явление размывания полос в реальной хроматографической колонке очень сложно и может быть описано лишь приближенно на основе теорий, устанавливающих зависимость между мерой размывания и указанными факторами. Для описания неравновесной ГХ чаще всего используются теория теоретических тарелок и теория эффективной диффузии. Обе теории основаны на допущении о том, что хроматографический процесс протекает в линейной области изотермы распределения (п ГЖХ) или изотермы адсорбции (в ГАХ), Количественной мерой размывания в первом случае является высота теоретической тарелки Н, во втором — эффективный коэффициент диффузии Дэфф. [c.334]

    Мы уже познакомились с коэффициентом селективности (ур. 5.1-11) для определения селективности разделения двух компонентов в хроматографии. Однако коэффициент селективности как отношение коэффициентов распределения или коэффициентов емкости отражает только селективность истюльзуемой фазовой системы. Из теории хроматографии мы знаем, что эффективность колонки также определяется числом тарелок N и величиной коэффициента емкости. [c.241]

    Коэффициент распределения Стьюдента для различных уровней значимости (доверительных вероятностей) можно взять из книги В Е Гмурман Руководство к решению задач по теории вероятностей и математической статистике , приложение 6, с. 393 Следует учесть, что число степеней свободы к = I — 2 После ввода программы в ячейку О — число измерений, в ячейку 9 — [c.488]

    Можно также дать более строгую физико-химическую характеристику для вводившихся в ранних теориях параметров,таких,например, как коэффициент отражения ст и коэффициент проницаемости раст-ввренного вещества Р . Из (Х.37) следует, что как ст = 1 — (1/7), так и / 3= ВтИу оказываются функциями коэффициента распределения у, имеющего простой физический смысл. [c.302]

    Представления о механизме удерживания на неспецифических адсорбентах описаны в работах К. Хорвата и др. Это так называемый сольвофобный или гидрофобный механизм удерживания. Рассматривается обратимое взаимодействие между адсорбируемым веществом и привитым углеводородным модификатором поверхности. Коэффициент емкости колонки связывается со свойствами углеводородных цепей и составом элюента. Сольвофобная теория разработана для низких коэффициентов распределения веществ в растворителях. Процесс растворения в этом случае — двухступенчатый. Первая ступень — образование полости в растворителе (элюенте) по форме и размерам входящей молекулы растворенного вещества. Изменение свободной энергии А(АО), требуемой для этого процесса, есть произведение площади поверхности полости и поверхностного натяжения растворителя (элюента). Вторая ступень — размещение молекул в полости. Энергия этого процесса определяется ван-дер-ваальсовым и электростатическим взаимодействиями. Окончательное выражение принимает в расчет различие свободного объема между конденсированной и газовой фазами. [c.302]

    Мартир и Боэм [82] недавно разработали единую теорию удерживания, которая предсказывает изменение кажущейся константы равновесия между подвижной и неподвижной фазами во флюид-жидкостной хроматографии. Основная особенность этой теории заключается в том, чтобы считать подвижнук> фазу смесью слабого и сильного растворителей, как в жидкостной хроматографии. При низкой плотности подвижной фазы слабым растворителем является пустое пространство. Эта модель приводит к обычным уравнениям (11) и (26), когда плотность газовой фазы низка. Она дает возможность предсказания изменения кажущегося коэффициента распределения с повышением среднего давления газа-носителя вплоть до критического состояния газовой фазы и за его пределами. Это обеспечивает переход к известному выражению удерживания в сверл ри-тической флюидной хроматографии [82]. [c.88]

    В ней дан краткий обзор теорий, описываюи их диэлектрические свойства веществ, и анализ методов расчета основных дисперсионных параметров (времени релаксации, коэффициента распределения времен релаксации, термодинамических функций и т. д.). [c.2]

    В методах второй категории сложности, когда одноступенчатое разделение оказывается недостаточно селективным или неколичественным, первую фазу повторно контактируют со свежей порцией второй фазы. Такая повторная обработка применяется в тех случаях, когда один из разделяемых компонентов количественно остается в одной фазе, в то время как другой компонент распределяется между обеими фазами. Так, при реакции осаждения степень соосаждения обычно можно умень-щить путем растворения осадка в чистом растворителе и повторения процесса. Аналогичным образом если при экстракционном разделении один из компонентов количественно остается в одной из фаз, например водной, а второй распределяется между обеими фазами, то целесообразно повторение экстракционного процесса. Обычным примером тому является хорошо известный экстрактор Сокслета. Другой иллюстрацией того же принципа может служить использование в качестве катода свежей порции ртути при электролитическом разделении металлов при контролируемом потенциале и использование ионообменной колонки для количественного извлечения ионов из раствора. В разделе 25-2 при описании исчерпывающей экстракции изла-гается теория многоступенчатой экстракции с конечным числом порций свежего растворителя. Та же самая концепция применима и к другим примерам разделения этого типа, если предположить, что на каждой ступени устанавливается равновесие с постоянным значением коэффициента распределения. [c.515]

    Теория метода была развита Дрейком и Фрейлингом . Фрейлннг исходил из равновесной ступенчатой модели Майера— Томкинса (см. стр. 567), предполагая, что число теоретических тарелок постоянно, что ограничивает применимость теории. Мы рассмотрим лишь в общем виде результаты, полученные Дрейком. Дрейк показал, что обострение элюентных зон всегда должно сопровождаться относительным вытеснением зон, что не может гарантировать улучшения разделения. Степень разделения зависит от способа осуществления градиентного процесса (изменение концентрации с изменением объема элюента), с -орости перемещения градиента по колонке, изменения коэффициента распределения с концентрацией элюента и от вида изотермы адсорбции. [c.560]

    Андерсон и Нейпиер [4 ] рассмотрели три метода определения величины У . Первый метод заключается в измерении разности между общим объемом колонки (определяется путем взвехнивания количества ртути, необходимого для полного заполнения пустой колонки) и объемом жидкой и твердой фаз (определяется по плотностям этих материалов при температуре колонки). Второй метод основывается на теории газового потока, проходящего сквозь пористые материалы. Третий метод основывается на скорости потока газа-носителя и удерживаемом объеме низкокипящего неорганического газа, например гелия или водорода, имеющего очень низкий коэффициент распределения и проходящего поэтому через колонку почти без задерживания жидкой фазой. Портер и другие [32] успешно применяли первый метод, Андерсон и Нейпиер считают, что третий метод дает более надежные результаты, так как измерение объема твердой фазы, требуемое первым методом определения У , представляет значительные трудности. [c.383]


Смотреть страницы где упоминается термин Коэффициент распределения теория: [c.400]    [c.429]    [c.304]    [c.176]    [c.126]    [c.55]    [c.461]    [c.333]   
Химия несовершенных кристаллов (1969) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Коэффициент распределения

ТЕОРИЯ РАСПРЕДЕЛЕНИЯ



© 2025 chem21.info Реклама на сайте