Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Серебро каталитические свойства

    ВЗЯТЫ рутений, родий, осмий, иридий и рений, т. е. элементы, существенно отличающиеся от серебра по свойствам и электронному строению атомов (см. табл.). Вполне правомерно было ожидать, что специфика свойств систем из платиноидов и рения отразится на качественном изменении характера каталитической активности [11]. Такое предположение (см. рис. 1—9) оправдалось. Активность при катализе перекиси водорода рассчитывали по уравнению первого порядка (К, мин ). Графический метод расчета давал практически совпадающие результаты. [c.63]


    Активацией называют процесс, в результате выполнения которого обрабатываемая поверхность диэлектрика приобретает каталитические свойства, обеспечивающие инициирование реакции химического восстановления металла. Активация может быть осуществлена физическими и химическими способами (рис. 13). Практическое значение имеют последние. Суть их состоит в том, что на поверхность диэлектрика наносят активатор, из которого образуются каталитически активные частицы. В качестве активатора может быть использован раствор одного из благородных металлов (палладия, серебра, золота, платины и др.). Возможно использование растворов меди, железа, никеля, кобальта, но практического применения они не получили. [c.42]

    Такое разнообразие поверхностных соединений при взаимодействии этилена с покрытой кислородом поверхностью серебра, вероятно, и обусловливает исключительные каталитические свойства этого металла при окислении этилена в окись этилена. [c.49]

    Серебро является пока единственным практически применяемым катализатором для окисления этилена в окись этилена. Однако каталитические свойства серебряного катализатора (активность и селективность) определяются не только его химическим составом, но и особым состоянием поверхности, т. е. зависят от метода его приготовления. [c.280]

    Окисление -аскорбиновой кислоты помимо меди катализируют ионы магния [40], серебра. Следует отметить, что кальций, марганец, железо, никель и кобальт почти не обладают каталитическими свойствами в реакциях окисления аскорбиновой кислоты кислородом воздуха [26], а в безводном спиртовом растворе или других певодных растворах йод и другие галогены не реагируют с -аскорбиновой кислотой. Влияние pH на кинетику окисления -аскорбиновой кислоты подвергалось подробному исследованию [41 ]. В отсутствие катализаторов окисление кислородом воздуха не идет и растворы -аскорбиновой кислоты обладают стойкостью к умеренному нагреванию. Двуокись углерода и сернистый ангидрид предохраняют -аскорбиновую кислоту от окисления они применяются для ее стабилизации. [c.23]

    В последнее время удалось до некоторой степени выяснить, почему в ряду благородных металлов серебро обладает исключительными каталитическими свойствами при окислении этилена. В соответствии с перекисной теорией система металл — катализатор может образовывать супероксид, а при окислении этилена в окись этилена необходимо образование промежуточной перекиси этилена, что требует разрушения этого супероксида. Если предположить, что такие благородные металлы, как платина, золото и палладий, действуют в качестве катализаторов окисления этилена по одинаковому механизму, то их относительная каталитическая активность должна определяться прочностью связи металл — молекулярный кислород. [c.293]


    Анализ данных доказывает электронный механизм модифицирования серебра акцепторными добавками. Отсутствие опытного материала по влиянию щелочных и щелочноземельных примесей на электрические и каталитические свойства серебра заставило исследователей изучить влияние этих примесей на свойства серебряного катализатора. [c.209]

    В то время как медноникелевые сплавы исследовались довольно подробно, работ, в которых бы описывались каталитические свойства сплавов никеля с серебром или золотом, чрезвычайно мало. В работе [295] наряду с медноникелевыми сплавами изучались также золото-никелевые катализаторы, которые готовились напылением металлов, полученных в результате соосаждения и последующего восстановления водородом. При добавлении даже малых количеств золота (порядка 10— [c.100]

    Приготовленный путем разложения нитрата никеля с последующим восстановлением водородом при 350° С, он не проявил, однако, заметной активности, по-видимому, из-за окисления активной поверхности. Добавки меди, серебра и висмута не привели к получению активного катализатора [15]. Введение в катализатор окиси тория и нанесение его на кизельгур значительно повысили каталитические свойства контакта в отношении синтеза углеводородов. [c.130]

    Из элементов этой подгруппы в состав катализаторов окисления СО входят медь и серебро. Медь применяется, главным образом, б виде окисла, а серебро — в виде металла. Данные о каталитических свойствах золота или его окиси отсутствуют. й [c.229]

    Природа примеси и ее количество сильно влияют на каталитические свойства металлов. Мы изучили [18] влияние галоидов (Р, С1, Вг, Л) на удельную активность и селективность серебра в реакции окисления этилена, предварительно отмытого раствором аммиака от примесей. Поверхность этого серебра составляла 0,44 0,05 м 1г. Примеси галоидных солей вводили в количествах от 10 до 10 ат. % веса серебра, что соответствовало доле покрытия поверхности в, равной 10 — 10 . Бы-ло найдено, что добавление фтора значительно снижает актив-22 ность серебра лишь при 0, большей 0,1. Введение небольших количеств хлора, брома и йода сложным образом сказывается на изменении каталитической активности серебра. Она вначале падает, а затем растет и проходит через максимум, зависящий от природы примеси (явление модифицирования). Максимум активности при покрытии поверхности серебра хлором приходится на 0, равную 0,09 при покрытии бромом — на 0=0,05 йодом — на 0 = 0,005. При 0, больших 0,1, сильно проявляется отравляющее действие галоидов, ведущее к резкому понижению каталитической активности. По степени отравления контакта они располагаются в ряд  [c.17]

    Исключительная роль кристаллов галогенидов серебра в качестве светочувствительного субстрата обусловлена совокупностью их физических свойств, в частности возможностью предотвращать рекомбинацию фотоэлектронов и дырок путем внесения примесей в кристалл, высокой ионной и фотопроводимостью, относительно высокой стабильностью и способностью к длительному хранению скрытого изображения, каталитическими свойствами серебра скрытого изображения при проявлении. [c.56]

    Однако промежуточные продукты разложения полимеров не успевают окислиться до СОг и НгО при сжигании в пустой трубке. Поэтому для анализа полимеров используют сжигание навески образца в трубке с каталитическим наполнением (например, последовательные слои оксида кобальта (II) и (III), серебра, осажденного на АЬОз, и серебряной проволоки [179]), которое способствует более полному протеканию процессов окисления. Если полимеры содержат значительное количество галогенов, то наполнение трубки не только должно обладать каталитическими свойствами, но и поглощать образующиеся при разложении галогенводороды, мешающие определению С и Н [180]. При определении С и Н в полимерах температура и время разложения образца, скорость подачи кислорода влияют на результаты анализа в большей степени, чем при анализе [c.143]

    Каталитические свойства металлических катализаторов также изменяются при действии добавок. Особенно сильное действие оказывает введение металлоидных добавок. Кислород, захваченный массивной платиной, по данным Крылова [100], изменяет ее каталитическую активность при окислении водорода. Максимум активностп соответствует примерно количеству кислорода, необходимого для образования одного монослоя. При окислении газов на серебре кислород ие только участник окислительной реакции, но и активатор серебра. Исследуя сорбцию кислорода на пористом серебре, Темкин и Ку.лькова [75] показали, что через 185 час. серебро поглотило пять монослоев кпслорода, изменивших электронные свойства серебра и его каталитическую активность. Хориути, Танабе п др. [295] установили сильное изменение каталитических свойств платины, никеля и других металлов, наблюдаемое при введении галоидов. По данным Кемброна и Александера [108], а также по материалам различных патентов введение галоидов сильно изменяет активность серебряного катализатора. Добавки 0,001—0,05% Те и Se увеличивают избирательность серебра по отношению к реакции иолучения окиси этилена. [c.199]


    Среди металлов наиболее характерными каталитическими свойствами обладают переходные элементы (особенно, элементы триад). Железо, например, является классическим катализатором синтеза аммиака. Кобальт, никель и металлы платиновой группы проявляют высокую активность в процессах гидрирования и дегидрирования. Металлы платиновой группы являются катализаторами и ряда окислительных процессов (окисление аммиака, окисление сернистого газа и др.). Кобальт и платиновые металлы активно разлагают перекись водорода последние также ведут катализ гремучего газа и окисление окиси углерода. Каталитической активностью обладает медь (окисление аммиака, метанола, метана, окиси углерода дегидрогенизация спиртов, синтез метанола под давлением и др.), вольфрам (гидрогенизация минеральных масел под давлением), отчасти серебро и золото есть указания на активность металлического цинка при синтезе метанола из окиси углерода и водорода и при его разложении. [c.480]

    Причины выбора именно этой системы могут быть лучше всего поняты в связи с проведенными ранее в нашей лаборатории исследованиями с монокристаллами металлов. Первое исследование каталитических свойств различных граней монокристалла металла состояло в изучении реакции водорода с кислородом на меди [1—4]. Было найдено, что скорость реакции меняется при переходе от одной грани к другой и что в ходе реакции поверхность перестраивается, т. е. развиваются грани, параллельные определенным кристаллическим плоскостям. Кристаллографическая ориентация граней различна. В продолжение реакции происходит рост дендритов порошка меди, причем скорость образования порошка также различна на разных гранях. Полученные недавно результаты показывают, что образование этого порошка связано с наличием тонких окисных пленок варьирование содержания кислорода в газовой фазе может приводить к накоплению порошка на поверхности или к его удалению обратно в решетку. Присутствие нескольких ато.м-ных слоев таких посторонних металлов, как цинк или серебро, сильно влияет как на развитие граней, так и на образование [c.36]

    Подготовленная таким образом поверхность готова для осаждения основного металла, так как серебро и золото для меди, палладий для никеля обладают каталитическими свойствами в реакции восстановления. [c.61]

    Для процессов электроокнсления и электросинтеза, особенно при высоких анодных потенциалах, перспективными оказываются различные оксидные системы, в основном оксиды переходных металлов и их композиции оксиды никеля, кобальта, серебра, меди, оксидные рутениево-титановые аноды (ОРТА). Использование оксидов объясняется тем фактом, что при высоких анодных потенциалах они устойчивы и обладают достаточно высокими электро-каталитическими свойствами. [c.301]

    Химическое восстановление никеля является автокаталити-ческой реакцией, так как металл, образовавшийся в результате химического восстановления из раствора, катализирует дальнейшую реакцию восстановления этого же металла Но для начального периода восстановления метапла необходимо, чтобы покрываемая поверхность имела каталитические свойства, которые создаются в результате выполнения операции называемой активированием Активирование заключается в том что на обрабатываемую поверхность химическим путем наносят чрезвычайно малые количества металлов, являющихся катализаторами реакции химического восстановления никеля Такими катализаторами являются коллоидные частицы или малорастворимые соединения палладия, платины золота серебра Самое широкое распростране[[ие получил палладий обладающий высокой каталитической активностью Образование каталитического слоя в виде металла, находя щегося в коллоидном состоянии, осуществляется в две стадии [c.38]

    Реакционная среда также влияет на каталитические свойства катализатора, модифицируя его поверхность (объем). Так, исследования образцов серебра, нанесенного на оксид алюминия, показали, что в присутствии смеси этилена с кислородом при 250 °С наблюдается движение атомов и частиц серебра на поверхности носителя. Размеры частиц изменяются мелкие превращаются в более крупные конгломераты на носителе, а из атомов серебра образуются металлические кластеры. В случае реакции окислительного аммонализа метана на платино-родиевом катализаторе при 1100 °С, наоборот, происходит разрушение структуры металлов. [c.642]

    Вопросы влияния носителя на каталитические свойства металлического катализатора обсуждаются в литературе в течение многих лет, в особенности в работах Шваба с сотр. [26—28]. Эти авторы считают, что промотирование изменяет заполненность электронных оболочек на поверхности окисленного носителя и соответственно отражается на каталитических свойствах. Хотя эффект указанных изменений был слишком мал, чтобы существенно изменить активность катализатора, отмечено влияние промотора на энергию активации дегидрирования муравьиной кислоты на никеле, меди и серебре [27. Эффект хорошо заметен на тонких металлических пленках. Аналогичное наблюдение сделано ранее Селвудом с сотр. [29, 30], которые обнаружили, что соединения, отлагающиеся на подложках в тонких слоях, влияют на их структуру. В некоторых случаях структура нанесенного слоя (сверхслоя) приобретает характер структуры подложки и проявляет свойства, которые не соответствуют ожидаемому стабильному состоянию данного оксида. [c.36]

    Не только магнитные, но и каталитические свойства разбавленных атомизированных слоев металлических катализаторов на дисперсных носителях Существенно определяются электронной структурой атома — его местом в периодической системе Менделеева и наличием холостых электронов. Роль электронного строения атомов в разведенных слоях особенно отчетливо проявляется при катализе смешанными слоями и в явлении спинового отравления , найденного Зубовичем [53]. При этом адсорбционные катализаторы, содержащие весьма каталитически активные атомы с неспаренными электронами, например атомы серебра, начинают сильно снижать (иногда почти до нуля) каталитическую способность других также весьма активных атомов с неспаренными электронами, например Р1. Этот вид взаимного отравления в результате спаривания электронов контрастно проявляется в смешанных слоях серебра с платиной и палладием при распаде перекиси водорода. Также действуют атомы меди, обладающие одним неспаренным электроном, но ионы меди, лишенные этого электрона, почти не оказывают токсического действия. Резкий провал парамагнитизма слоя в области отравления и его рост в области активации экапериментально демонстрирует определяющую роль спин-валентности в катализе. [c.27]

    Калиш и Бурштейн [74] установили, что при адсорбции кислорода на платине в приповерхностном слое растворяется до 100 ионо-слоев кислорода. Темкин и Кулькова [75] заметили аналогичное явление при адсорбции кислорода на серебре. Так же как и на платине, в приповерхностном слое растворялось до пяти монослоев кислорода. По данным японских исследователей [76], даже при длительном восстановлении серебра в водороде прп 275° атомы кислорода не удаляются из металла. В случае достаточно толстого слоя окисла (порядка десятков атомных слоев) химические и электронные характеристики поверхности катализатора определяются свойствами окисной пленки, и металл не будет оказывать значительного влияния на каталитические свойства. В случае же тонкого слоя (порядка нескольких атомных слоев) свойства поверхности катализатора определяются металлической подложкой. [c.21]

    Взаимоотношения между гомогенным и гетерогенным катализом изучены лишь слабо главным образом потому, что элементы, способные дать начало обоим видам катализа, пе исследованы по всему интервалу переменных (например, pH и концентрации), определяюнгих состояние катализатора. В качестве катализатора, нри котором можно наблюдать переход от гомогенного механизма к гетерогенному, можно назвать железо. В кислом растворе реакция чисто гомогенная. Однако если увеличивать pH, начинает появляться коллоидное вещество и одновременно происходит изменение скорости (см. рис. 76 на стр. 440). При еще более высоких pH может наблюдаться образование макроскопического осадка, а также и другие кинетические изменения. На скорость катализа могут влиять и изменения физической формы (наличие носителя для катализатора, спекание катализатора или изменение кристаллической структуры). Хотя еще не вполне точно определен pH, при котором начинает появляться коллоидное вещество, не подлежит никакому сомнению факт перехода от гомогенного разложения к гетерогенному при повышении pH. Однако существуют еще значительные неясности по вопросу природы изменения механизма. В некоторых случаях оба вида разложения могут быть качественно объяснены одним и тем же механизмом, например циклическим окислением и восстановлением. В то же время образование комплекса или осаждение катализатора в коллоидном или твердом состоянии может определить т -долю от общего количества имеющегося катализатора, которая способна фактически участвовать в реакции и таким образом влиять на наблюдаемую скорость разложения. Такого рода случай комплексообразования встречается при катализе полимеризации действием перекисей [79]. При чисто гетерогенном катализе наблюдаемая скорость зависит от степени дисперсности твердого катализатора, так как эта дисперсность определяет размер поверхности, находящейся в контакте со средой. Наоборот, вполне возможно, что при переходе от гомогенной системы к гетерогенной коренным образом изменяется и характер реакции, которой подвергается перекись водорода, например ионный механизм может перейти в радикальный. Возможно, что при изменении условий имеется сравнительно тонкая градация в переходе от одного механизма к другому. При выяснении различий гомогенного и гетерогенного катализа нужно всегда учитывать возможное влияние адсорбции из раствора на гомогенный катализ. Так, одновалентное серебро, не обладающее каталитическими свойствами нри гомогенном диспергировании, легко адсорбируется стеклом [80]. В адсорбированном состоянии оно может нриобрести каталитические свойства в результате либо истинного восстаровления до металла, либо только поляризации [81]. Последующее использование поверхности стекла в контакте с более щелочным раствором также может активировать адсорбированное серебро. Это особенно заметно в случае поверхности стеклянного электрода. [c.393]

    Ц Ию Дф И селективности мягкого окисления этилена, не известно, является лн яаряжение гтовершости определяющим фактором в регулировании селективности мягкого окисления олефинов на металлах. Поэгому для выяснения механизма действия добавок на каталитические свойства серебра были применены методы термо-де<юрбции, ЭСХА и др. [c.164]

    Изучение (совместно с Евдокимовым, Зубовичем и Мальцевым [49]) магнитных и каталитических свойств слоев серебра, нанесенных на угле, Са304, ВаСОз, привело к обнаружению парамагнитной формы серебра в разведенных слоях, являющихся одновременно и слоями каталитически активньши. Эта парамагнитная форма может принадлежать только атомарному серебру, так как его остальные формы — кристаллическая и ионная — диамагнитны. Можно думать, что парамагнетизм свойствен единичному атому серебра, имеющему неспаренный электрон в 5 5 положении. [c.26]

    Пытаясь использовать для объяснения адсорбционных или каталитических свойств поверхности сплавов теорию ансамблей, необходимо сочетать данные о концентрации ансамблей (пропорциональной вероятности появления ансамбля) и о хемосорб-ционных свойствах различных типов ансамблей. Последнее, однако, известно лишь в общих чертах. Дауден [35] пытается объяснить зависимость теплот адсорбции водорода для сплавов палладий—серебро, принимая, что энергия связи атомов водорода в различных ансамблях определяется критерием, связанным с заполнением -зон. В итоге это приводит в лучшем случае к грубому полуколичественному описанию основных экспериментальных данных. [c.30]

    Изоморфизм сульфатов серебра и натрия, солей двухвалентной меди с железом, кобальтом и никелем может объяснить их одинаковые каталитические свойства в некоторых реакциях. Следует также обратить внимание на то, что свойства золота аналогичны свойствам металлов платиновой группы, а свойства серебра аналогичны св0 1ствам метал/лов группы ртути. [c.4]

    Характерно, что ни Вальтер [202], ни Вильштеттер [203] не заметили каталитических свойств серебра в отношении этой реакции. Американские химики Рейерсон и Суиринжен [204], также применившие серебро при окислении этилена, в 1928 г. сделали даже специальное указание на то, что на серебряном катализаторе этилен окисляется полностью до углекислого газа и воды без образования каких бы то ни было промежуточных продуктш. [c.347]

    Известно,что нанесенные металлические катализаторы находят широкое применение в осуществления различных химических реакций.Однако вопросы,связанные о формированием и устойчивостью микрокрис-таллитов металла в зависямости от химического состава подложки,с влиянием структуры и размера микрокристаллитов на их адсорбцио -ные и каталитические свойства,до сих пор являются малоизученными прямыми физическими методами исследования поверхности.В настоящей работе бшш исследованы термическая устойчивость и адсорбционные свойства микрокриоталлитов серебра и золота на чистой и окисленной поверхности вольфрама,что позволило охарактеризовать взаимодействие нанесенного металла с подложкой. [c.199]

    Несмотря на то что процессу каталитического распада газообразного озона посвящено немало работ, в большинстве случаев полученные результаты носят качественный характер. В ранней работе Маншо [30] отмечается, что разложение озона ускоряют такие металлы, как Р1, Рс1, Ри, Си, / и др. Каталитическое действие металлов на разложение озона (0,5—1,5%) при 100° изучали Каштанов с сотрудниками [31], отметившие высокую активность серебра и сравнительно слабую активность Си, Рс1, 8п. К числу наиболее полных работ по катализу озона нужно отнести работу Шваба [32], который провел исследование каталитических свойств окислов и гидроокисей металлов I—IV групп по отношению к озону. Основной вывод, который делается Швабом, [c.156]

    Уже давно были исследованы каталитические свойства металлов, которые позволяли проводить реакцию гидрогенолиза сернистых соединений. К таким металлам относятся скандий, титан, ванадий, хром, марганец, железо, кобальт, никель, медь, цинк, иттрий, цирконий, молибден, рутений, родий, палладий, серебро, кадмий, лантан, гафний, тантал, вольфрам, рений, осьмий, иридий, платина, золото, ртуть, актиний, торий, уран. Наиболее часто в промышленных процессах гидроочистки щ)имвняются соединения металлов групп У1А и железа, сочетание окислов и сульфидов кобальта и молибдена, сульфидов никеля и вольфрама. [c.2]

    Свойства простых веществ и соединений. Все металлы VIН группы имеют небольшой объем атомов, плотную упаковку кристаллической решетки п, как следствие этого, прочность металлической связи и высокие температуры плавления. Важной особенностью железа, кобальта и никеля является способность этих металлов к намагничиванию. Переменная степень окисления членов подгруппы VIIIB обусловливает отчасти и их разнообразнейшие каталитические свойства. Способность образовывать кислородные соединения в каждом ряду VIII группы быстро уменьшается с возрастанием порядкового номера. Железо окисляется легко, никель —с тру дом (а палладий и платина в этом отношении сходны с серебром и золотом). Гидроксиды элементов амфотерны с преобладанием основных свойств. Существуют соединения железа, например ферраты (К.2ре04), где атом Ре входит в состав аниона. Подобно хромитам и перманганатам, эти соединения — сильные окислители. Металлы легко образуют сплавы и интерметаллические соединения. Характерная черта, особенно порошкообразных металлов — способность поглощать огромное количество водорода. Поглощенный водород частично, видимо, диссоциирует на атомы и проявляет повышенную химическую активность. Это используется при проведении химических процессов. с участием. водорода. [c.373]

    Активирование поверхности платы, не обладающей каталитическими свойствами, погружением в растворы хлористого олова и азотнокислого серебра совершспно необходимо. Адсорбированные на иоверхности ионы двухвалентного олова восстанавливают ионы серебра, в результате поверхность покрывается пленкой серебра, являющегося катализатором реакции восстановления меди. Перед загрузкой в ванну химического меднения с поверхности плат необходимо тщательно удалить ионы серебра (лучше всего промыванием с последующей сушкой ), чтобы они не вызывали восстановления меди в растворе. Таким образом, в основе процесса химического меднения лежит каталитическая реакция восстановления меди из комплексов (чаще всего форма.яьдепг-дом). [c.40]

    Исследования каталитических свойств металлических пленок, полученных испарением, имели целью главным образом решить вопрос, какие из плоскостей поверхности кристаллов ответственны за катализ. Этот же вопрос ставился и в некоторых других исследованиях. Так, Ринекер [8], изучая активность тонкодисперсного серебра, полученного восстановлением гидразином и подвергнутого затем высокотемпературной обработке, пришел к выводу, что в реакции разложения муравьиной кислоты этот катализатор ведет себя так, как если бы для катализа были необходимы развитые грани кристаллов. Некоторые предварительные данные Туркевича о каталитическом разложении перекиси водорода на Р1-частицах с высокой степенью однородности, выращенных до определенных размеров, также свидетельствуют о том, что для проявления максимальной активности катализатора необходимо, чтобы его частицы выросли до некоторых определенных размеров. [c.15]

    Из металлов наиболее характерными каталитическими свойствами обладают элементы VIH группы периодической и тeмы элементов Д. И. Менделеева. Для ряда процессов катализаторами являются железо (синтез аммиака), кобальт, никель, иридий, пла-тинз, палладий (гидрирование и для последних — окисление двуокиси серы). Кроме того, металлы VIH группы являются катализаторами и других процессов разложения перекиси водорода, получения гремучего газа, окисления аммиака, метанола, метана, окиси углерода, дегидрирования спиртов и т. д. Каталитической активностью обладают и соседние (в периодической системе) элементы медь, серебро, отчасти золото, возможно, цинк и кадмий. [c.341]


Смотреть страницы где упоминается термин Серебро каталитические свойства: [c.326]    [c.329]    [c.334]    [c.326]    [c.329]    [c.334]    [c.24]    [c.169]    [c.17]    [c.395]    [c.403]    [c.757]    [c.410]   
Гетерогенный катализ в органической химии (1962) -- [ c.216 ]




ПОИСК





Смотрите так же термины и статьи:

Серебро каталитическое

Серебро, свойства



© 2025 chem21.info Реклама на сайте