Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ацетон обмен водорода

    ОБМЕН ВОДОРОДА НА ДЕЙТЕРИЙ В АЦЕТОНЕ  [c.21]

    Обмен водорода на дейтерий в ацетоне.— ЖФХ, 11 278. (Совместно с М. М. Слуцкой.) [c.506]

    Водородный уголь так же катализирует своими Н протолитические реакции, как добавки кислот. Например, обмен водорода между ацетоном и ОаО довольно быстро идет в присутствии угля, насыщенного водородом [1013]. [c.405]

    Силы отталкивания способствуют обмену кинетической и потенциальной энергий между молекулами, установлению термодинамического равновесия. Межмолекулярные химические связи возникают в результате перераспределения электронной плотности в пространстве между молекулами, частичного переноса заряда от молекулы донора к молекуле акцептора. Такой перенос электронного заряда понижает энергию системы и приводит к образованию молекулярных ассоциатов в чистых жидкостях и комплексных соединений в растворах. Разновидностью межмолекулярных химических взаимодействий является водородная связь, осуществляемая с участием водорода. Атом водорода, ковалентно связанный с атомом фтора, кислорода, азота, хлора, серы, фосфора, углерода, может образовать вторую связь с одним из таких же атомов другой молекулы. В воде, спиртах и кислотах энергия водородной связи составляет 20,9 —33,4 кДж/моль в бензоле, растворе ацетон — вода — около 4,2 кДж/моль. [c.247]


    Этан-Нб был получен гидрированием ацетилена-Нг водородом-Нг над медным катализатором [1, 2] и над никелевым катализатором, нанесенным на асбест [3]. Масс-спектрометрический анализ показал, что полученная над никелевым катализатором этановая фракция состоит более чем на 99% из СоНе. причем наряду с этаном образуется 3% дейтерированных пропана и бутана. Этан-Не был получен дейтерированием этилена при 0° над никелевым катализатором с последующим многократным обменом ири 138° [4], а также фотолизом ацетона-Не [5]. [c.226]

    Изотопный обмен дейтерия с водородом ацетона [15,46] Изотопный обмен дейтерия с водородом аммиака [15,47] [c.178]

    Как было показано Г. М. Панченковым и В. И. Горшковым, обмен ионов водорода на катионы Li+, Na+ и К" " в ряду смесей спирта с водой линейно зависит ог / ). Эго является следствием того, что в этих смесях основность растворителя практически остается неизменной Обмен иона водорода на катион в этом случае, как следует из уравнения (8,96), становится подобным обмену двух катионов (уравнение 8,93). Следует заметить, что в смесях ацетона с водой эти авторы уже не наблюдали линейной зависимости. Это находится в согласии с влиянием смесей ацетона с водой на растворимые кислоты и связано с дифференцирующими свойствами ацетона. [c.689]

    Обмен ионов водорода на катионы Li ", Na n К в ряду смесей спирта с водой линейно зависит от 1/е. Это является следствием постоянства основности растворителя. Обмен иона водорода на катион в этом случае, как следует из уравнения (VUI, 96), становится подобным обмену двух катионов (уравнение VHI, 93). В смесях ацетона с водой уже не наблюдается линейной зависимости. Это связано с дифференцирующими свойствами ацетона. [c.416]

    Обмен ионов на ионообменных смолах в неводных растворах протекает в условиях, отличных от обмена ионов в водных растворах [15—19]. Константы обмена в неводных системах обычно приближаются к единице. Экспериментальные исследования показали, что константа обмена ионов окситетрациклина с ионами водорода на смоле СБС-3 в метиловом спирте падает до 10, а обратная ей константа обмена возрастает до 0.1. В соответствии с этим десорбция окси- и хлортетрациклина раствором НС1 в метаноле приводит к вытеснению всего антибиотика с довольно высокой концентрацией (рис. 63, б 64), так как в процессе десорбции размывание границы зон ионов протекает не очень сильно. Однако обострения границы зон ионов не происходит, вследствие чего невозможно достичь равновесных концентраций антибиотиков в элюате (равных нормальности ионов вытеснителей в элюирующем растворе). Кроме того, сорбционный процесс необходимо проводить в колонках ограниченной высоты, так как размывание границы зон ионов может привести к снижению концентрации антибиотиков в элюате. На колонках высотой до 1 м при элюции хлор-или. окситетрациклина 1 н. раствором соляной кислоты в метиловом спирте при скорости протекания раствора 25 мл/см час средняя концентрация антибиотиков в элюате близка к 10 ООО ед./мл. Мало отличается от описанного процесс десорбции замещенных тетрациклинов с сульфосмол растворами хлористого водорода в других спиртах или в ацетоне (рис. 65). Однако для последующей очистки антибиотиков использование этих растворителей менее желательно. [c.147]


    Ионизационный механизм (7) надо считать типичным для медленного обмена с основными донорами. Ему благоприятствуют факторы, облегчающие первую ступень ионизации — основность среды или присутствие основных катализаторов — и заместители, уменьшающие электронную плотность на атоме углерода в обменивающейся связи С—Н. Влияние заместителей, как известно, проявляется сложным образом и далеко не всегда может быть однозначно предсказано. Однако можно привести ряд примеров, где оно находится в простых соотношениях со способностью к обмену [2, 31. Метан, этан и бензол не обменивают водорода с водой, но в нитрометане, нитроэтане и 1, 3, 5-тринитробензоле обмен идет и катализируется щелочами. Первые способны перегруппировываться в ациформы с отрывом протона от связи С —Н. В присутствии щелочей обмен также идет в ацетамиде и ацетонитриле. В этих примерах проявляется притяжение электронов отрицательными группами N02, N и СО. Увеличение способности к ионизации связи С—Н около тройной связи С С обнаруживается в легком обмене ацетилена с водой в присутствии щелочей. В обмене по ионизационному механизму весьма большую роль играет о — я-сопряжение, значение которого для разных реакций органической химии было показано А. Н. Несмеяновым [19]. Зависимость обмена а-водорода от сопряжения в цепи Н—С—С=0 была подтверждена [20], в циклических кетонах, ацетилацетона-тах и Дибензоилметане, а затем [23] в углеводородах. Обмен в метиленовой группе ацетилацетона и ацетоуксусного эфира идет значительно быстрее, чем в ацетоне, из-за участия в сопряжении двух групп С=0, присоединенных к а-углероду. По той же причине обмен сравнительно легко идет в метиленовой группе малоновых эфиров и цианоуксусного эфира, что можно сопоставить с известной способностью их к конденсации с карбонильными со- [c.59]

    Как правило, электроотрицательные заместители в молекулах органических веществ активируют изотопный обмен водорода в СН-связях с основаниями (стр. 129). Поэтому в нитромета-ше, ацетоне и ацетонитриле даже в водном растворе идет со значительной скоростью обмен, катализируемый щелочью. В скобках указана константа скорости (сек ) обменной реакции при 25° в 1 УУ растворе щелочи [49] [c.61]

    Наряду с синтетическими методами приготовления тритированных органических соединений, значительное распространение получили методы изотопного обмена водорода. Как известно, с атомом трития в Т2О легко обмениваются атомы водорода, связанные в органических соединениях с атомами кислорода, азота или серы, тогда как атомы водорода, связанные с атомами углерода, обмениваются крайне медленно или вообще не обмениваются. Исключение составляют катализируемый щелочами обмен водорода в связях С—Н, прилегающих к группам СО, НОг, СН, СОННг, и обмен в ацетиленовых углеводородах. Благодаря этому тритированный ацетон удобно получать путем изотопного обмена обычного ацетона в щелочном растворе с Т2О. Точно так же готовится тритиймалоновая кислота. [c.695]

    Дейтерообмен катализируется как кислотами, так и основаниями, и скорости его должны достигать максимума в той области кислотностей, в которой концентрации катиона и диена равны. Относительно медленно обмениваются в 03804 и кетоны. Установлено, что в 92%-ной 0г804 при 25° за две недели не происходит обиаружимого обмена водород — дейтерий при а-углеродном атоме камфоры. В тех же условиях для ацетона обмен происходит медленно, а для 2,4-диметилпентанона-З— полностью за несколько минут [135]. [c.420]

    Ряд исследований показал, что водород разных соединений легко обменивается на дейтерий в воде, обогащенной тяжелой водой. Впервые такую обменную реакцию между обоими изотопами водорода наблюдал Льюис [1] на растворенном аммиаке. Бонгоффер и Броун [2] также изучали ее на хлористом аммонии и тростниковом сахаре. Они нашли, что в первом случае обмениваются все водороды аммония, а во втором— лишь половина водородов, связанных с гидроксилами. В обоих случаях водород и дейтерий равномерно распределяются между водой и растворенным в ней веш еством. Аналогичные реакции обмена наблюдали в ацетоне [3], формальдегиде, ацетилацетоне и ацетальдегиде [4], в овоальбумине и клетчатке [5], ацетилене [6], этиленгликоле [7] и пр. Во всех случаях обмена равновесие наступает довольно быстро в отсутствие катализаторов, но в обмене не участвуют водороды радикала за исключением тех случаев, когда условия благоприятствуют энолизации или ионизации, например в ацетоне или ацетилене в щелочной среде. Обмен водорода радикала удалось осуществить впервые лишь недавно Гориути и Поляньи [8] при взаимодействии этилена или паров бензола с парами тяжелой воды в присутствии катализаторов , Как показал ряд работ, обмен газообразного тяжелого водорода с обычной водой также не происходит в отсутствие катализаторов, В этом случае равновесному состоянию отвечает одинаковая пропорция обоих изотопов в водороде и в воде. [c.7]

    В ряде работ было показано, что изотопный обмен водорода по связи С — П в газовой фазе без участия катализатора наблюдается только в тех случаях, когда образуются свободные радикалы. Почти все имеющиеся в литературе сведения об обмене углеводородных радикало получены ири изучении реакций различных веществ с атомами дейтерия [4—12]. В этих работах было установлено, что продукты реакции сильно обогащены дейтерием. Например, мотан, который образуется при взаимодействии атомов дейтерия с этаном [4, 8], пропаном [4,9], бутаном [4], ацетоном [10], диметиловым эфиром [11] и другими веществами, содержит 65—99% Г). Дейтеризация оставишхся исходных веществ составляла [c.40]


    Во время этого обратимого превращения, если оно идет в тяжелой воде, происходит в радикале обмен водорода на дейтерий как в эноле, так и в самом кетоне. Например, в ацетоне СНз-СО-СНз обмениваются все шесть а-атомов водорода, а в ацетоуксусном эфире СНз-СО-СНг-СООСгНа — пять а-атомов, ближайших к карбонильной группе. Этот обмен идет в присутствии кислот или оснований, которые также катализируют энолизацию. Было найдено [978, 771], что обмен, энолизация, галоидирование и рацемизация кетонов имеют не только сходную кинетику, но и приблизительно одинаковую скорость. Это указывает на то, что перечисленные реакции имеют одну общую медленную ступень с участием растворителя, без которого не мог бы происходить изотопный обмен. Изучение кислотно-основного катализа при обмене и энолизации, влияния на их кинетику замены НгО на ОгО в качестве растворителя и другие данные несомненно указывают на ионизационный механизм этих процессов. Они совершаются путем Переноса протонов (или дейтеронов) между реагирующим веществом и средой с образованием, в зависимости от кислотности среды, промежуточного оксониевого катиона или карбаниона. [c.393]

    Восстановленная форма НАД, как и многие дигидропи-ридины, является энергичным восстановителем. Для восстановления никотинамидного кольца в модельных системах отсутствует необходимость во всей остальной части молекулы НАД. Так, описан нестереоспецифический обмен водорода в системе ]-пропилникотинамид < 1-пропил-1,4-дигидроникотинамид [9] и восстановление гексахлор-ацетона под действием 1-бензил-1,4-дигидроникотинами-да [10]. [c.15]

    Иногда обмен галогена на водород лучше всего протекает под действием безводного хлорида хрома (II). Б случае некоторых бромкетостероидов восстановление цинковой пылью в уксусной кислоте дает неудовлетворительные результаты, Между тем при длительном взаимодействии галогеиида с раствором хлорида хрома (II) в ацетоне в атмосфере двуокиси углерода и 25—30° С продукты дегалогенирования получаются большей частью с хорошим выходом [359]. а-Бромкетоны тоже могут быть восстановлены по втой методике [360]. [c.71]

    В работе авторов синтеза имеются указания относительно получения йодистого 3,4,5-триметоксибензила (т. пл. 57—58°, разл. ) хлорированием 3,4,5-триметоксибензилового спирта безводным хлористым водородом с последующим обменом галоида обработкой йодистым натрием в ацетоне. [c.601]

    Пpoпaнoл-2-[2-H ] получали [5] восстановлением ацетона алю-МОГИДРИДОМ-Н4 лития при помощи методики, аналогичной описанной, а также обменом между гидроксильным водородом-Н пропанола-2РР-[2-Н2] и водой. [c.135]

    Какихана и Секигучи исследовали влияние концентрации ацетона в его смесях с водой на обмен между ионами натрия и водорода на катионитах дауэкс-50, с [c.84]

    Этилен (I), СО (11). НзО Реакции с Олефины пентен-1, гексен-1, гексен-2 гептен-1, гептен-3, октен-2, децен-1, Di Циклогексен, Dj Пентадиен-1,3, Dj Октандион-3,6 (П1), диэтилкетон (IV), пропионовая кислота (V) участием молек Продукты обмена Внутрикомплексное соединение Ru с ацетил-ацетоном в эвакуированном автоклаве, 1000 бар (поддерживается постоянным), 190° С, 1 11 = = 1 1. Выход III — 49 ч., IV — 15 ч., V — 3 ч. [116] улярного водорода (дейтерия) Ru I[H][P( eHj)3]3. Обмен протекает легко [117] [c.271]

    Открытие и выделение тяжелого изотопа водорода сделало возможным Определение происходящих в молекуле изменений положения протонов, Рейтц ] 409] изучил бромирование ацетона, происходящее под каталитическим действием ионов Н+ в легкой и тяжелой воде и в смесях HgO —DgO при 25°, он измерял изменения раствора, в котором происходила реакция, селеновым фотоэлементом. Для этих опытов был использован легкий и тяжелый ацетон, а также равновесный ацетон, т. е. ацетон, в котором обменное равновеснее содержащей DaO водой устанавливается после нагревания реакционного раствора в течение 10 час. до 80°. Найдено, что 1) энолизация происходит в 2,1 раза быстрее в DgO в присутствии D3O+ионов, чем в воде в присутствии НдО+ это, повидимому, указывает, что концентрация комплекса, образованного присоединением водородных ионов к кислороду кетона и находящегося в равновесии с ацетоном, больше в случае DjO, чем HgO 2) ускоряющий эффект в DjO одинаков для легкого и для тяжелого ацетона, однако последний при равных условиях (равное содержание DaO в растворителе) всегда энолизируется в 7,7 раза медленнее, чем легкий ацетон, другими словами, отделение свободного дейтерона от углерода происходит так же трудно, как и отделение протона 3) в смеси HjO — DgO скорость энолизации увеличивается не линейно с ростом концентрации DgO в воде изменение происходит медленнее при низком содержании DgO  [c.218]

    Карбораны Вз—Ве отличаются высокой химической стойкостью и при комнатной температуре не взаимодействуют с водой, воздухом, ацетоном, триэтиламином, окисью углерода. В карборане ВзСгНи к обмену с дейтеродибораном способны только атомы водорода, связанные с бором. [c.361]

    Следует особо остановиться на количественном органическом анализе посредством ЯМР-спектроскопии. Пропорциональность, между площадями пиков и числом ядер, резонирующих при данной частоте, открывает путь к использованию ЯМР для количественного элементарного и функционального анализа. При использовании хорошо откалиброванного интегратора и калиброванных ампул количественный анализ можно проводить, сравнивая интегральные площади пиков в исследуемом и эталонном образцах раздельно, при той же настройке спектрометра. Другой путь состоит в сравнении площадей отдельных сигналов и площади пика эталонного вещества, добавленного в определенном количестве непосредственно к исследуемому образцу. Следует отметить, что количественное определение фтора посредством ЯМР в соединениях с трифторме-тильпой группой — едва ли не единственный способ анализа таких веществ. Для количественного определения функциональных групп ЯМР-спектры часто применяются в комбинации с обычными химическими методами. Так, для определения активного водорода растворяют вещество в тяжелой воде (для лучшей растворимости добавляют полярные растворители — ацетон, пиридин и т. п.) и после обмена определяют площадь сигнала Н2О (ПВО). При этом пет необходимости, чтобы обмен прошел полностью, так как сигналы групп с подвижным водородом (гидроксильной, карбоксильной, аминогруппы) сливаются с сигналом воды. При более длительном обмене и использовании катализаторов таким путем можно определять и группы с менее подвижным водородом, например ацетиленовый водород, метиленовые протоны в малоновом эфире, протоны метильных групп в ацетоне и др. [c.48]

    Соответствие между кинетикой изотопного обмена и механизмом конденсации свойственно и аналогичной реакции альдольной конденсации ацетона. Эта реакция, как хорошо установлено, имеет второй порядок по концентрации ацетона. Она специфически катализируется гидроксил-ионами в интервале всех изученных концентраций [SH], что согласуется с условием 2[5Н] й 1. Изотопный обмен в такой системе должен протекать весьма быстро. И в самом деле, при исследовании реакции в щелочном растворе D2O, содержащем ацетон в концентрации 1 М, было показано [143], что скорость замещения водорода ацетона на дейтерий примерно в 1000 раз больше скорости конденсации. [c.215]

    Дейтерий тяжелой воды легко вступает в обмен с водородом разных со- единений. Он например замещает от одного до всех трех атомов водорода в аммиаке (Льюис), водород при гидроксилах сахара и клетчатки (Б о н г е ф- ф е р), водород гидроксилов в гидрохиноне и карбоксилов в янтарной кислоте (О. К. Скарре и автор), водород в гидроокиси натрия и в серной кислоте (Ж. М. Шершевер и М. М. Слуцкая) и т. д. Замещается также водород и в ацетоне, ацетилене и других соединениях, особенно в склонных к энолизации в щелочных растворах (Б о н ге ф ф е р, Клар и др.). Наоборот, водород радикала удчлось заместить до сих пор лишь в двух случаях бензола и этилена при нагревании в присутствии катализаторов (П о л я н ь и). [c.48]

    Дальнейшим подтверждением этому служит новая работа Мюнцберга 81, который, изучая кинетику замещения в ди- и триоксибензоле, нашел, что для водорода гидроксилов а = 1, в то время как для водородов радикала, где обмен связан с енолвзацией, а > 1 (а в среднем 1,15, близкая величина к найденной нами для ацетона). [c.28]

    За исключением нескольких работ, где изучался каталитический обмен алкильных радикалов на твердых контактах, обмен водородных атомов в свободных радикалах не исследовался. Можно было ожидать, что сравнительно стойкий в растворе свободный трифенилметил легко будет обменивать атомы водорода в орто-и пара-положениях с водой, так как резонанс между нормальной структурой с непарным электроном около центрального углеродного атома и девятью структурами с этим электроном около о-и р-углеродов ядер создает повышенную электронную плотность у этих положений, что должно способствовать обмену по электрофильному механизму (3), как известно, не наблюдаемому в нормальном бензольном ядре с такой слабой кислотой, как вода. Однако А. С. Фоменко и Е. А. Садовникова 12] не обнаружили никакого обмена между водой и 20%-ным раствором гексафенил этана в бензоле или в ацетоне даже за 6 дней при 100° С, хотя содержание свободного радикала в таких растворах равно около 10% от количества растворенного гексафенил этана. [c.34]

    Растворитель участвует в прототропных процессах только в тех случаях, когда его молекулы имеют атомы водорода, способные диссоциировать, или если сам растворитель может образовывать водородные связи, например уксусная кислота, пиридин, метиловый спирт. Это относится к простым случаям. Тем не менее существуют и некоторые другие, хотя и не особенно многочисленные растворители, в которых в реакции нейтрализации участвуют ионы ацетилия или хлорид-ионы (гл. 1, разд. 5 и гл. 2, разд. 20,д). Однако не способные к прототропному обмену растворители, обладающие низким или нулевым дипольным моментом и не способные образовывать комплексы, едва ли оказывают непосредственное воздействие на процесс нейтрализации, тем более что он всецело зависит от реагентов, принимающих участие в реакции. К таким апротонным инертным растворителям принадлежат к-гексан, циклогексан, бензол и четыреххлористый углерод. В бензоле бензойная кислота по отношению к дифенилгуанидину является более сильной, чем по отношению к триэтиламину (гл. 2, разд. 15,д). Некоторые растворители относятся к промежуточной группе они в определенной степени влияют на реакцию нейтрализации вследствие их способности образовывать водородные связи, наличия дипольных моментов, комплексообразующих и нуклеофильных или электрофильных свойств. Примерами таких растворителей являются хлороформ, хлорбензол, ацетон, ацетонитрил, нитрометан, метил-изобутилкетон и т. д. [c.104]

    Для обоснования этого предположения необходимо провести со всей строгостью опыты с окислительными ферментами (фенолазой, тирозиназой, пероксидазой) в настоящее время более подробно изученными и легко изолируемыми. Виланд установил интересный факт, что уксуснокислые бактерии, как живые, так и убитые ацетоном и эфиром, окисляют снирт с образованием уксусной кислоты (при полном отсутствии кислорода) в присутствии метиленовой сипи в качестве акцептора водорода. Он считает, что ему таким образом удалось вызвать действие алкогольоксидазы без участия свободного кислорода. Однако здесь мы имеем дело не с изолированной оксидазой (до сих пор алкогольоксидаза еще не изолирована), а со всем органическим веществом бактерий, со всеми содержащимися в них ферментами. Хорошо известно в биологии, что в низших организмах возможен обмен веществ и в отсутствии кислорода. В аэробных условиях действуют оксидазы, катализирующие окисление за счет свободного кислорода, а в анаэробных — окислительные процессы происходят за счет воды, причем помимо акцептора водорода (в данном случае метиленовой сш1и) в процессах участвуют и восстановительные ферменты. Из факта существования последнего способа окисления еще не вытекает, что не существует первого. [c.114]


Смотреть страницы где упоминается термин Ацетон обмен водорода: [c.822]    [c.239]    [c.21]    [c.394]    [c.282]    [c.76]    [c.136]    [c.26]    [c.854]    [c.7]    [c.593]    [c.170]    [c.56]    [c.23]    [c.225]    [c.158]   
Изотопы в органической химии (1961) -- [ c.234 , c.235 ]




ПОИСК





Смотрите так же термины и статьи:

Обмен водорода на дейтерий в ацетоне



© 2025 chem21.info Реклама на сайте