Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Титан, методы определения колориметрический

    Общие замечания. Колориметрический метод определения титана основан на сравнении интенсивности окраски, появляющейся при добавлении перекиси водорода к разбавленному сернокислому раствору анализируемой пробы, с интенсивностью окраски стандартного раствора сульфата титана, в который также введена перекись водорода. При анализе горных пород это определение обычно проводят после определения железа в сернокислом растворе, полученном после сплавления прокаленного и взвешенного осадка от аммиаках пиросульфатом калия и растворения плава в разбавленной серной кислоте (см. гл. ЬП1, стр. 955). Испытание на титан, естественно, можно провести идо этой операции. При применении колориметрического метода необходимо соблюдать следующие условия. [c.655]


    Когда титан и цирконий не сопровождаются другими элементами, осаждаемыми аммиаком, лучше всего осадить их этим реактивом. С другой стороны, нри благоприятных условиях колориметрический метод определения титана (стр. 655) дает результаты, не уступающие результатам, получаемым лучшими из весовых методов, и при этом в значительно более короткое время, особенно нри определении тех малых количеств титана, какие обычно встречаются в горных породах, глинах и почвах (менее 1% и лишь изредка до 2—3% и более). Ошибка при применении этого метода не должна превышать 2 % в широких пределах концентраций [c.965]

    Титан. После определения железа титрованием раствор обрабатывают так, как описано на стр. 960, и определяют титан колориметрическим методом (стр. 966). [c.1055]

    Титан в почве определяют колориметрическими методами, из которых общепринятым является пероксидный метод. Определение можно проводить в аликвотной части фильтрата от кремневой кислоты или в прокаленном осадке полуторных окислов после плавления с пиросульфатом калия или кислым сернокислым калием. [c.214]

    Как правило, колориметрическому определению бора мешают присутствие окислителей (нитраты, хроматы, перекись водорода), разрушающих красители, фтор-ион, образующий комплексное соединение с бором [91], а также некоторые элементы, такие, как железо, никель, марганец, мель, хром, кобальт, алюминий, ванадий, титан, молибден, цирконий, олово, мышьяк. Влияние окислителей устраняют восстановлением их гидразином, фтор-ион связывают добавлением двуокиси кремния. В литературе имеется обзор методов определения бора с применением дистилляции, ионного обмена, электролиза с ртутным катодом и определения в видимой и УФ-обла-сти спектра с применением флуорометрии, спектроскопии, полярографии и амперометрического титрования в урановых материалах, полупроводниках, сталях и цвет ных сплавах [107, 108]. Подробно методы отделения ме- тающих примесей изложены в п. 2 гл. I. [c.49]

    Другим распространенным методом определения кислорода в титане и его сплавах является способ хлорирования [25]. В этом случае сухой хлор пропускают над образцом при 400° и отгоняют титан в виде тетрахлорида, а кислород остается в виде двуокиси титана. Кислород рассчитывают в остатке по титану, определенному колориметрическим методом. [c.252]

    Особого внимания заслуживают работы по разделению ниобия и тантала и отделению их от посторонних элементов экстрагированием органическими растворителями непосредственно из растворов, без использования хроматографии . Этот процесс изучался главным образом применительно к разделению ниобия и тантала, однако он может быть весьма интересен и для отделения ниобия и тантала от титана, особенно при применении колориметрического метода определения тантала с пирогаллолом (стр. 631). Этот метод приобрел большое практическое значение. В условиях колориметрического определения тантала чувствительность реакции пирогаллола с титаном почти в 5 раз выше, чем с танталом. В связи с этим погрешность анализа в значительной мере зависит от степени очистки окислов ниобия и тантала от титана, а между тем, как уже было указано, при применении обычно принятых методов эта операция, помимо ее продолжительности, связана с известными потерями ниобия и тантала. [c.626]


    Титан, вследствие значительной распространенности, почти всегда определяют при анализе минералов, но так как содержание его в минералах обычно мало, то определение производят не весовым методом, а колориметрическим (стр. 487). [c.139]

    Титан может быть определен колориметрическим методом (стр. 487). [c.189]

    Разработана также методика определения в природных водах галлия (Ge Ве и некоторых других редких элементов) путем соосаждения с А1(0Н)з, основанная на аналогии свойств их гидроокисей, образующихся в аммиачной среде [350]. В качестве коллектора может быть использована гидроокись железа [383] Осадок растворяют в НС1, Fe восстанавливают до Fe - треххлористым титаном, экстрагируют галлий диизопропиловым эфиром и определяют (колориметрически с родамином В. Определение галлия в природных водах спектральным методом см. также в работах 81, 696, 697, 1219, 1220, 1325]. [c.191]

    Определение по реакции с фенилфлуороном . Германий реагирует с фенилфлуороном в кислой среде с образованием комплексного соединения розового цвета. Благодаря желтой окраске самого реагента раствор в присутствии германия приобретает оранжевый цвет. С течением времени германий выпадает в осадок, поэтому для стабилизации раствора необходимо вводить защитный коллоид. Определению германия препятствуют галлий, титан, олово, мышьяк (1И) и (V), висмут, молибден (IV), железо (II) и сурьма (III). Установлено, что влияние мышьяка весьма незначительно, а таллия, олова, сурьмы и молибдена наиболее ощутимо. Сильные окислители, такие, как бихромат и перманганат, также мешают определению, так как они разлагают реагент. По утверждению автора, этот метод почти в 4 раза чувствительнее, чем метод колориметрирования но молибденовой сини. Для отделения германия от мешающих элементов используется дистилляция. Колориметрическое определение проводится непосредственно в дистилляте. [c.354]

    Полученный плав обрабатывают водой при кипячении, фильтруют и промывают нерастворимый в воде остаток 1 %-ным раствором карбоната натрия. В остатке можно определить железо, титан и цирконий ранее описанными методами . В фильтрате можно определить колориметрически хром, если он присутствует в количестве достаточном, чтобы придать раствору заметную окраску (см. ниже, стр. 978). После этого, или тотчас же, если не проводили колориметрического определения хрома, прибавляют достаточное количество нитрата аммония, чтобы весь карбонат йог вступить с ним в реакцию, и нагревают на водяной бане, пока не будет удалена ббльшая часть карбоната аммония. При этом осаждается весь или почти весь алюминий вместе с фосфором и частью присутствующего ванадия. Осадок промывают разбавленным раствором нитрата аммония, пока желтый цвет хромата не исчезнет совершенно из промывных вод, после чего растворяют осадок в азотной кислоте и осаждают фосфор раствором молибдата аммония. Фильтрат от алюминия и фосфора, содержащий хром в виде хромата и большее или меньшее количество ванадия, может быть обработан, как описано ниже. j [c.977]

    Следует подчеркнуть, что методы с комплексоном можно различным образом комбинировать в зависимости от характера анализа. Так, например, в аликвотной части раствора можно определить без какого-либо разделения кальций, в другой части—титан, в третьей части—фосфат-ионы и т. д. К этим методам можно присоединить различные комплексометрические титрования, колориметрические определения и т. д. Полное представление об этом читатель, вероятно получит по прочтении всей книги. [c.108]

    Наиболее широко для колориметрического определения вольфрама применяется метод, основанный на образовании комплекса вольфрама (V) с роданидом [1, 7]. В качестве восстановителей в этом методе применяют, главным образом, хлористое олово или трехвалентный титан. Мы применяли хлористое олово, как более доступный реактив. В качестве контрольного был выбран раствор, в 50 мл которого содержится 1,4 мг вольфрама [8]. В этом интервале соблюдается закон Бера, и значения О находятся в оптимальной области шкалы прибора. [c.266]

    Колориметрический метод дает возможность определять титан в количестве от сотых долей процента до нескольких процентов. Если для определения пользуются отдельной навеской, то его можно выполнить за 1—1,5 часа. [c.146]

    В силикатах определение ванадия производят из части раствора после выделения кремневой кислоты. В тех случаях, когда присутствуют большие количества железа или других посторонних веществ, определение их производят аналогично тому, как описано в п. б . Если же присутствует титан, а также железо до 20% по отношению к навеске испытуемого вещества, то определение ведут методом колориметрического титрования в цилиндрах. В этом случае в оба цилиндра (с испытуемым и стандартным растворами) вводят фтористоводородную кислоту, чтобы связать железо и титан. Для этого к полученному раствору прибавляют 2%-ную плавиковую кислоту или насыщенный раствор фторида натрия по каплям при перемешивании раствора до полного его обесцвечивания (устранение окраски солей железа) и сверх того [c.237]


    V а) Остаток от выщелачивания содового сплава водой (или осадок окислов ВгОз) сплавляют с пиросульфатом калия. Сплав растворяют в 2%-ной (по объему) серной кислоте, восстанавливают железо сероводородом (т. I, стр. 79) или в В1 — редукторе (стр. 31) и титруют 0,1 н. раствором бихромата или перманганата калия. Раствор после определения железа выпаривают соответственно до меньшего объема, переводят в мерную колбу на 100—200 мл и определяют титан колориметрическим методом. [c.16]

    Возможно также определение железа и титана последовательно из всего объема раствора. Железо восстанавливают сероводородом и титруют 0,1 н. раствором перманганата калия (см. т. I, стр. 79). После определения железа в это.м же растворе определяют титан колориметрическим методом с перекисью водорода. [c.302]

    Из колориметрических методов определения бериллия наи-больщей известностью пользуется колориметрическое определение с применением бериллона ( бериллон II ИРЕА ), дающего синее окрашивание раствора в присутствии бериллия. Перед определением рекомендуется осадить бериллий фосфатом в присутствии трилона (если бериллия мало, то применяют титан в качестве коллектора). Определение проводят в щелочной среде [1198]. Этот метод фактически вытеснил из практики производственных лабораторий ранее применявшийся хинализариновый метод, который обладал целым рядом недостатков. [c.451]

    Методы определения кальция и магния практически совпадают с приведенными в предыдущих параграфах. Отдельные варианты различаются главным образом способами разложения анализируемых проб в зависимости от их химического состава. Различные отклонения в методах, имеющиеся при отделении мешающих элементов, часто бывают вызваны личными вкусами того или иного исследователя. Так, например, при анализе силикатов Бэнкс [27] рекомендует выделять железо, алюминий и марганец добавлением аммиака и бромной воды, после чего в аликвотных порциях фильтрата определять кальний и магний по разности в результатах двух титрований в присутствии мурексида и эриохрома черного Т. Беккер [28] точно также осаждает полуторные окислы аммиаком при анализе цементов. Аналогично поступает и Хабёк [29]. При анализе шлаков и руд Граус и Цёллер [30] рекомендуют после растворения пробы и выделения кремнекислоты осаждать тяжелые металлы в мерной колбе сульфидом аммония. После доведения объема раствора до метки достаточно профильтровать только его часть и определить в нем суммарное содержание кальция и магния или содержание одного только кальция. При проведении таких анализов не следует ограничиваться только комплексометрическим определением кальция и магния. Другие присутствующие в растворе катионы в зависимости от их концентрации можно определять комплексометрически (А1, Ре), колориметрически (Т1, Ре), полярографически или воспользоваться методом фотометрии пламени (щелочные металлы). Такой количественный полумикрометод полного анализа силикатов описывают Кори и Джексон [31]. Пробу силиката разрушают плавиковой кислотой или сплавлением с карбонатом натрия. В зависимости от способа разложения пробы в соединении с известными операциями разделения (осаждение аммиаком, щелочью и т. п.) они методом фотометрии пламени определяют натрий и калий, колориметрически — кремнекислоту молибдатом аммония, железо и титан раздельно с помощью тирона, алюминий — алюминоном и, наконец, кальций и магний комплексометрическим титрованием. За подробностями отсылаем читателя к оригинальной работе авторов метода. О некоторых полных анализах сили- [c.453]

    Перхлораты (СЮ ) определяют осаждением в виде перхлоратов калия, рубидия и цезия. Разработаны методы определения СЮ с нптроном, метплен-блау, хлоридом тетрафениларсония, тетраппридином меди, треххлористым титаном. Малые количества IO определяют колориметрически с бриллиантовым зеленым (при этом методе наличие IO пе мешает). [c.348]

    Колориметрический метод определения титана применяется при анализе минералов, цемента, доменных шлаков и других материалов с малым содержанием титана. Иногда же этот метод применяют для анализа материалов и с достаточно высоким содержанием титанй (до 3-5%). [c.487]

    Выше (см. подстрочное примечание на стр 462) было показано, что прн известных навыках в работе берут навеску 0,5 г, так как это значительно ускоряет выделение кремниевой кислоты. В случае такой т авески для определения полуторных окислов (а также Са++ и М + + ) лучше взять несколько больше, чем 100 лл из общего объема в 250 мл (например 150 мл). Иногда для этой цели берут весь фильтрат, оставщийся после определения 8Юг (не переводя его в мерную колбу). В дальнейшем для определения железа и титана прокаленный и взвешенный осадок полуторных окислов сглав-ляют с КИЗО и переводят в раствор. Титан определяют колориметрически по окраске с перекисью водорода после этого разрушают перекись водорода кипячением раствора и определяют железо колориметрически пли объемным методом. [c.467]

    Для определения малы.х количеств фтора пользуются методом Коренмана [109], в котором раствор титанила, содержащий 0,15 г ТЮ2/МЛ цЗ мл 3%-ной Н2О2, разбавляют до 25 мл и равные количества приготовленного реагента используют для составления колориметрической шкалы, применяемой для сопоставления окраски в компараторе. [c.40]

    Экстракция с помощью дитизона применена для фотометрического определения меди в титане и титановых сплавах [257] меди и кобальта после их хроматографического разделения на силикагеле [258] меди, свинца и цинка в природных водах ивы-тяжках из почв [259] цинка и меди в биологических материалах [260] цинка в металлическом кадмии [261] и баббитах [262]. Экстракционное выделение дитизоната цинка использовано для последующего фотометрического определения цинка с помощью ципкона. МетЬд применен для определения цинка в чугуне [263]. Экстракционно-фотометрические методики определения кадмия с помощью дитизона предложены для определения кадмия в алюминии [264], нитрате уранила [2651 и металлическом бериллии [266]. Дитизонат таллия экстрагируют хлороформом. Содержание таллия определяют фотометрированием экстракта [267]. Аналогичным способом определяют таллий в биологических материалах [268]. Индий в виде дитизоната полностью экстрагируется хлороформом при pH 5 [269]. Экстракция комплекса индия с дитизоном применена для фотометрического определения индия в металлическом уране, тории, а также в их солях [270]. Свинец определяют в алюминиевой бронзе [271], теллуровой кислоте [272] и горных породах [273, 274] свинец и висмут — в меди и латуни [275], ртуть —в селене [276] серебро — в почвах, (методом шкалы) [277] ртуть — в рассолах и щелоках (колориметрическим титрованием) [278]. [c.248]

    Основными условиями применения в фотометрическом анализе комплексов титана, ванадия, ниобия и тантала с перекисью водорода является силь номи слая среда и достаточный избыток перекиси водорода. Хлориды и сульфаты мало влияют на оптические свойства этих комплексов, хотя по ряду данных они присоединяются к окрашенным комплексам Ме—Н2О2, образуя смешанные комплексы, иногда анионного типа. С другой стороны, комплексы титана и ванадия с Н2О2 вследствие своей невысокой прочности сравнительно легко подвергаются действию различных анионов, связывающих центральный ион. Например, щавелевая кислота резко ослабляет окраску или совсем обесцвечивает раствор перекисноводородного комплекса титана. При этом образуется смешанный комплекс, причем полоса поглощения постепенно сдвигается в ультрафиолетовую область спектра. Известно, что титан образует с фтором более прочный комплекс по сравнению с ванадием. Поэтому в смеси перекисных соединений этих элементов, при действии умеренных количеств фторидо В, можно обесцветить комплексное соединение титана, тогда как окрашенное соединение ванадия не разрушается. Это является основанием одного из методов колориметрического определения ванадия и титана при совместном присутствии. [c.254]

    Эта схема предусматривает прежде всего выделение остаточной кремнекислоты. Затем отделяют железо, титан и редкоземельные металлы, осаждая их едким натром в присутствии окислителя и карбоната натрия. В фильтрате остаются алюминий, фосфор, ванадий, хром и бериллий. Из осажденных элементов железо выделяют в виде сульфида осаждением сульфидом аммония в присутствии тартрата аммония титан определяют в фильтрате колориметрически, после разрушения винной кислоты цирконий о< аждают в растворе, содержащем перекись водорода, употребленном для определения титана, и, наконец, редкоземельные металлы осаждают вместе с гидроокисью титана в фильтрате от осаждения циркония и отделяют от титана в виде фторидов. Окраска фильтрата, после осаждения едким патром указывает па присутствие хрома или урана, если последние содержатся в количествах, достаточных, чтобы окрасить раствор. Дальше веду-т анализ следующим путем. Сначала, определяют ванадий объемным методом, затем выделяют фосфор в виде фосфоромолибдата аммония и, наконец, осадок, полученный осаждением аммиаком фильтрата от фосформолйбдата, испытывают на алюминий, бериллий и другие элементы. [c.119]

    Если предполагают применить колориметрический метод, то можно предварительно получить приблизительную оценку содержания титана, обрабатывая сернокисль[й раствор пиросульфатного плава осадка от аммиака перекисью водорода, прежде чем выпаривать этот раствор для определения содержания кремнекислоты в этом плаве (стр. 955). Титан удобно определять в растворе, который служил для определения титрованием общего количества железа (стр. 957). [c.966]

    Титан в алюминии определяется экстракционно-колориметрическим методом с салицилгидроксамовой кислотой [10]. Экстрагирование производится ацетнлацетоном. Метод позволяет определять 5-10"3—2-10 % Т1 с погрешностью 5—15%. Показана возможность определения 2-10 >% Т1 при наличии особо чистых реактивов и использовании микрокювет с толщиной слоя 50 мм. [c.264]

    Наиболее старое, простое колориметрическое определение следов элементов основано, главным образом, на измерении интенсивности окраски, вызываемой непосредственно в анализируемом растворе добавлением соответствующего реактива. В этих методах большей частью применяют обычные реакции качественного анализа, например железо определяют роданидом или феррицианидом, титан— перекисью водорода и т. п. Недостатки этих методов общеизвестны. Всестороннее их использование сильно ограничено не только присутствием мешающих элементов, но оптическими свойствами исследуемых растворов, их окраской, мутностью и т. д. Само собой разумеется, это относится и к реакциям с органическими реактивами. Относительно новыми, но весьма многообещающими методами являются те, в которых окрашенные продукты реакции экстрагируются органическими растворителями. Экстрагируют внутри-комплексные соединения металлов с о-оксихинолином (железа, алюминия, галлия, ванадия), диэтилдитиокарбаматом натрия (меди), ксантогенатом калия, диацетилдиоксимом, а-нитрозо- -нафтолом, купферроном, дитизоном и многими другими. Некоторые реактивы выполняют одновременно и функции растворителей (например, аце-тилацетон и другие 1,3-дикетоны). [c.117]

    Определение в воздухе. Н. нитруют до динитробензола, последний извлекают метилэтилкетоном и колориметрируют со щелочью или извлекают эфиром и колориметрируют в ацетоне тоже со щелочью. Метод не специфичен — мешают определению ароматические и некоторые хлорированные углеводороды (Житкова). Гуревич забирает пробу воздуха в эвакуированную бутыль, вводит туда эфир и восстанавливает Н. в этом растворе в щелочной среде сернистым натрием до анилина. Последний определяется колориметрически согласно методике Алексеевой (см. Анилин). Описано также восстановление Н. треххло-" ристым титаном в днилин, который определяют броматным методом или другим путем (см. Коренман). Раздельное определение паров H., анилина, азобензола и бензидина при совместном их присутствии см. у Быховской. [c.410]

    Наиболее часто применямый метод отделения хрома основан на окислении последнего в щелочной среде до хромата, который остается в растворе, в то время как многие металлы — железо, титан, марганец, никель, кобальт и т. п., выпадают при этом в осадок. Элементы, остающиеся вместе с хромом в рас-, творе, частью не мешают дальнейшему колориметрическому определению (алюминий, мышьяк, фосфор), частью же najiy-шают ход определения (уран в хроматном методе, ванадий и большое количество молибдена в дифенилкарбазидном методе). Окисление можно вести в горячем растворе перекисью натрия или перекисью водорода с едким натром. Окислять можно также сплавлением с перекисью натрия или со смесью карбоната натрия (10 ч.) и нитрата калия (1 ч.), а некоторые образцы, например, силикаты анализируют, сплавляя даже с одним карбонатом натрия. При сплавлении марганец окисляется до манганата, но последний можно восстановить до гидрата двуокиси марганца, добавляя спирт к горячему раствору сплава. Хром обычно не остается в нерастворимом остатке после выщелачивания содового сплава, и поэтому повторное сплавление не требуется. Следует избегать плавня, содержащего слишком много нитрата, а также слишком высокой температуры при сплавлении, так как это может привести к разъеданию платинового тигля и ввести в раствор немного платины. [c.496]

    Затем остаток обрабатывают соляной кислотой и переводят в раствор обычным методом осаждают элементы группы полуторных окислов вместе с марганцем (пользуясь бромом). Тогда R2O3 может быть исправлено на количество марганца, прибавленного в виде перманганата калия при определении FeO. Прокаленные R2O3 после взвешивания сплавляют с пиросульфатом и в полученном растворе определяют железо и титан. Определение фосфора из аликвотной части этого раствора не рекомендуется делать по причине, указанной на стр. 175. Нецелесообразно также определять марганец колориметрически в аликвотной части этого раствора, вычитая добавленный для титрования FeO перманганат, и таким образом по разности получать содержание марганца в самом образце. [c.178]

    Содержание закисного железа в хороших стекольных песках незначительно его можно определить из навески 1 г при помощи свежеприготовленного 0,01н. перманганата. Титан встречается главным образом в ильмените и рутиле, а цирконий — в цирконе оба особенно нежелательны для стекольного производства ввиду их крайней тугоплавкости. Цирконий можно определить из навески 2,5 г, предварительно разложенной хлорной и фтористоводородной кислотами для удаления большей части кремнекислоты, затем остаток, даже еле заметный, прокаливают и сплавляют с содой. Весовой способ осаждения циркония в виде фосфата (описанный на стр. 117), обычно применяемый при анализе силикатных пород, не в состоянии обнаружить менее 0,01 % 2г02, даже если брать навеску не менее 1 г, поэтому следует предпочесть современный колориметрический метод. Грин [2] воспользовался для точного колориметрического определения циркония в силикатных породах красным лаком, образуемым ализаринсульфонатным комплексом циркония. Метод применим к определению окиси циркония при содержании его до 0,275 мг точность достигает 0,003 мг окиси циркония. До- сих пор не воз1никала необходимость в определении столь малых количеств циркония в породах, но не исключена возможность, что найдутся случаи, когда этот метод окажется лолезным. [c.185]

    Как и в других областях аналитической химии, получение хорошего анализа зависит от квалификации аналитика, в выполнении им процессов разделения, а также в сочетании весовых и тптриметрических определений. На ранних стадиях для определения марганца использовали даже колориметрический метод, предусматривавший визуальное сравнение окрасок. Достаточно высокая чувствительность фотометрических методов и удобные конструкции приборов, разработанные приблизительно к 1950 г., привели к значительному распространению таких методов. Сначала это были методы для определения второстепенных компонентов и компонентов, содержащихся в следовых количествах, таких, как титан, фосфор и фтор, но позже их стали использовать [c.9]

    Если требуется определение Т]Ог, осадок растворяют в 5%-ной серпой кислоте и определяют титан колориметрическим методом с перекисью водорода (см. стр. 78). После разрушения перекиси водорода кипя-чеггиом, осаждают гидроокиси железа и титана аммиаком. Осадок растворяют в соляной или серной кислоте и определяют железо. [c.320]

    Т. А. Белявская и Э. П. Шкробот [25] разработали ряд методов отделения алюминия от железа и титана, основанные на амфотерности алюминия. После поглощения анализируемой смеси катионитом СБС в Н-форме алюминий избирательно извлекался из колонки 10 %-ным раствором едкого натра, титап или железо десорбировали 2 N раствором соляной кислоты в фильтратах железо определяли колориметрически с роданидом аммония, титан — колориметрическ1г с перекисью водорода, алюминий в форме оксихинолипата. Эти же авторы показали возможность разделения смеси алюминия и цинка 5%-пой лимонной кислотой с pH И в этом случае алюминий быстро вымывался из колонки катионита, а цинк оставался в сорбированном состоянии в форме комплексного аммиаката. Разработанные методики Т. А. Белявская и Э. П. Шкробот успешно применили к определению железа, алюминия и цинка в их сплавах, причем продолнжтельность анализа сокращалась примерно в 2 раза. При изуче-нг ТИ хроматографического разделения смесей меди, алюминия и магния Д. И, Рябчиков и В. Ф. Осипова [26] показали, что магний и алюмииий. легко разделяются путем промывания колонки щелочью если пропускать через колонку щелочной аммиачный раствор, то медь поглощается в форме комплексного аммиаката, а алюминий в форме алюмината переходит в фильтрат. [c.131]

    Титан, обладающий сравнительно наименьшим ионным радиусом, проявляет чаще кислотные свойства, торий является сравнительно сильным металлом. В этом же направлении снижается способность элементов образовывать основные соли, точнее — оксисоли типа титапила или цир-коиила. Для всех элементов этой группы характерно образование устойчивых комплексных соединений. Наиболее многообразны они у титана, который дает комплексы пе только с фтором и кислородсодержащими кислотами, но даже и перекисное соединение комплексного характера с увеличением порядкового номера у элементов подгруппы титана способность к комплексообразованию падает, что используется в значительном числе методов разделения таких смесей. Количественное определение титана обычно производится колориметрически по реакции с перекисью водорода, [c.185]

    Джонс и Товненд (1950) применили для определения перекисей в углях метод Юле и Вильсона, предложенный для определения перекисей в газолине. Навеска угля помещалась в раствор, содержащий ионы закиси железа и родана. Образующееся роданистое окисное железо определялось колориметрически. Они рекомендуют также титрование треххлористым титаном. Опыты они производили с активным углем, ретортным углем и коксом, которые были предварительно обработаны соляной и нлавиковой кислотами, промыты водой и измельчены до 0,075 мм. Прокаленный в вакууме кокс не содержит перекисей. Последние появляются в нем только после пребывания его во влажном воздухе количество перекисей увеличивается пропорционально влажности кокса до 0,0025 г пере-кисного кислорода на 1 г кокса. При 55° они устойчивы и их содержание в коксе не изменяется. Около 80° их количество начинает уменьшаться, а при 350 они исчезают за полчаса. [c.251]


Смотреть страницы где упоминается термин Титан, методы определения колориметрический: [c.774]    [c.1163]    [c.1163]    [c.708]    [c.669]    [c.217]   
Количественный анализ Издание 5 (1955) -- [ c.485 , c.487 ]




ПОИСК





Смотрите так же термины и статьи:

Колориметрический метод определения

Колориметрическое определение



© 2025 chem21.info Реклама на сайте