Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Стационарного состояния теория

    Согласно классическим термодинамическим представлениям все частицы, плотность которых превышает плотность дисперсионной среды, должны были бы осесть на дно сосуда. В действительности же вследствие флуктуаций в соответствии с теорией броуновского движения они распределяются по высоте по так называемому гипсометрическому (барометрическому) закону. Распределение молекул газа (или коллоидных частиц) по высоте определяется интенсивностью теплового движения и силой земного притяжения, зависящей от массы молекул (частиц) и от интенсивности теплового движения. Б результате этих двух факторов устанавливается стационарное состояние. При этом молекулы распределяются по высоте по гипсометрическому закону  [c.401]


    Таким образом, условия (VII.76) являются как необходимыми, так и достаточными. В теории нелинейных дифференциальных уравнений существует теорема, утверждающая, что если уравнения, линеаризованные в окрестности стационарного состояния, имеют устойчивые решения, то нелинейные уравнения имеют решения, возвращающиеся к стационарному состоянию, если возму- [c.174]

    Из другого следствия теории индексов Пуанкаре вытекает, что реактор, поведение которого описывается обобщенной моделью, не может обладать единственным стационарным- состоянием типа седло. [c.84]

    Здесь следует обратить внимание на совершенно неклассический характер этих постулатов с одной стороны. Бор ввел чуждые классике представления о квантовых скачках и стационарных состояниях, которые согласно электродинамическим законам никак не могли появиться в системе ядро — электрон , а с другой, он нарушил привычную взаимосвязь между частотой излучения и частотой вращения движущегося заряда (электрона). В классической физике было установлено, что частота колебаний заряда равна частоте испускаемого им излучения. В теории же Бора этой связи просто не было, для процесса излучения совершенно несущественно, как часто облетает электрон ядро, важна лишь разность энергий стационарных состояний, между которыми происходит квантовый скачок. [c.11]

    К этому следует добавить, что хотя в теории Бора (как и в квантовой механике) все стационарные состояния равноправны, отличаясь друг от друга только значениями энергии и других физических величин, в действительности же, по своему физическому характеру, они существенно различны в основном состоянии изолированный атом может находиться сколь угодно долго, тогда как в возбужденном — всего лишь порядка 10- с. Эта неравноценность состояний (хотя все они полагаются стационарными ) получила свое объяснение только в квантовой теории поля, [c.14]

    В соответствии с терминологией теории дифференциальных уравнений и теории устойчивости по А.М.Ляпунову, устойчивому стационарному состоянию соответствует особая точка — устойчивый узел (см. разд. 18.1). [c.344]

    Уравнения Лагранжа обычно гораздо сложнее и труднее для решения, нежели уравнения Лапласа. По этой причине большинство гидродинамических задач решают на основе уравнения Лапласа, хотя некоторые свойства потока могут быть описаны только на основе теории Лагранжа. Обе теории давно известны, но до настоящего времени в большинстве учебников по гидродинамике рассматривается преимущественно стационарное состояние, т. е. уравнения Лапласа. Нестационарное состояние и некоторые характерные его свойства изучены далеко не в той степени, в какой они того, вероятно, заслуживают. [c.148]


    Если применить условие (V.21) к инженерным задачам, то в качестве х можно рассматривать время осуществления процесса. Тогда условие х->оо означает переход процесса к установившемуся (стационарному) состоянию, и асимптотическая устойчивость есть устойчивость стационарного состояния. В теории регулирования такую устойчивость называют локальной, или устойчивостью в малом. [c.163]

    A. С использованием принципов стехиометрического анализа по априорной (логической, качественной и количественной) информации методами общей алгебры осуществить синтез возможных механизмов химической реакции. При расчете возможных механизмов реакции на ЭВМ учитывается качественный и количественный состав реагирующих молекул, а также их геометрическая конфигурация и оптические свойства. На основе качественной теории дифференциальных уравнений прогнозируются динамические свойства химического процесса и определяются необходимые условия наличия или отсутствия у химических систем колебательных динамических режимов или множественности стационарных состояний. [c.81]

    Самые различные процессы возникновения и поглощения электромагнитных колебаний обладают квантовой природой, т. е. при этих процессах энергия выделяется или поглощается только целыми порциями (квантами), пропорциональными частоте колебаний. Особенно плодотворно квантовые представления о природе излучения были применены к теории атома. Бор допустил, что из бесчисленного множества возможных орбит вращения электронов только некоторые отвечают стационарному состоянию атома. Приняв, что в атоме водорода электрон вращается по круговым орбитам, он постулировал, что устойчивыми из этих орбит могут быть только те, для которых момент количества движения электрона по [c.29]

    Подведем итог сказанному. Уравнение Шредингера играет в квантовой механике такую же важную роль, что и уравнение Ньютона в классической механике. Описание состояния частицы в квантовой механике характеризуется волновой функцией у, являющейся решением уравнения Шредингера (3.9). Эта функция описывает стационарное состояние, указывая распределение вероятности нахождения частицы в пространстве, не зависящее от времени. Плотность вероятности определяется квадратом модуля нормированной функции lyi . Каждому стационарному состоянию физической системы отвечает определенное значение энергии, вследствие чего для частицы или. системы частиц существует набор физически допустимых значений энергии. Существование стационарных состояний и прерывность значений энергии в квантовой механике являются следствием волновых свойств частиц, а не постулатом, как в теории Бора. [c.16]

    Возможно ли, что трубчатый реактор идеального вытеснения имеет более чем один профиль стационарного состояния для данных параметров и условий подачи Так как изменение содержимого реактора периодического действия во времени точно соответствует изменению содержимого трубчатого реактора идеального вытеснения по расстоянию, то этот вопрос может быть сформулирован следующим образом возможно ли, что в реакторе периодического типа имеется более чем один путь реакции при данных условиях Повседневный опыт дает отрицательный ответ на поставленный вопрос, иначе воспроизводимость химических экспериментов вызывала бы серьезные сомнения. Для более строгого доказательства можно сослаться на теорему (гл. III), утверждающую, что решение дифференциальных уравнений первого порядка [c.123]

    МЕТОДЫ КАЧЕСТВЕННОЙ ТЕОРИИ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ В ХИМИЧЕСКОЙ КИНЕТИКЕ (МНОЖЕСТВЕННОСТЬ СТАЦИОНАРНЫХ СОСТОЯНИЙ И ПРОБЛЕМА УСТОЙЧИВОСТИ) [c.224]

    Определение числа стационарных состояний и влияния значений параметров на это число облегчается использованием бифуркационной диаграммы — кривой, связывающей значение какого-нибудь из параметров с координатой стационарного состояния (по терминологии теории управления такая кривая называется статической характеристикой исследуемого объекта). [c.229]

    В работе [73] вопросы существования нескольких стационарных состояний анализируются на основе теории графов. Механизму многостадийного химического процесса ставится в соответствие так называемый двудольный граф, состоящий из вершин двух типов. 1-й тип вершин соответствует веществам, 2-й тип — элементарным стадиям. В предположении справедливости закона действующих масс получено достаточное условие единственности положительной стационарной точки системы, связанное со структурой графа, соответствующего механизму реакции. Сформулированы условия, выделяющие область параметров, для которой положительное стационарное состояние единственно и неустойчиво. Предлагаемый алгоритм реализован в виде программы для ЭВМ. [c.236]


    Согласно радикально-цепной теории крекинг представляет собой сложный цепной процесс, который идет с участием свободных алифатических радикалов. Первичной реакцией крекинга всегда является распад молекулы алкана по связи С—С на два свободных алкильных радикала (может случиться распад по связи С—Н, но при температурах крекинга он в 10 —10 раз менее вероятен). Свободные радикалы вступают в реакции с молекулами алкана, продуктами распада, реагируют между собой и со стенками. Эти вторичные реакции идут легко по сравнению с реакцией зарождения цепей, которая требует энергии активации не меньшей энергии диссоциации связи и определяют развитие и обрыв цепей. Длина цепи определяется конкуренцией реакций развития и обрыва цепей и в различных случаях принимает различное значение. В стационарном состоянии длина цепи определяется отношением скоростей реакций развития и зарождения цепей. [c.25]

    Гельмгольц и Смолуховский разработали теорию потенциала протекания и получили для стационарного состояния выражение, связывающее потенциал протекания Е с величиной электрокинетического потенциала Смысл этого выражения можно уяснить из следующих рассуждений. Величина потенциала протекания будет тем выше, чем больше ионов диффузного слоя будет вынесено из капилляра в единицу времени. Количество этих ионов пропорционально, с одной стороны, -потенциалу, с другой — объемной скорости жидкости, тем большей, чем больше приложенное давление Р и чем меньше коэффициент вязкости жидкости Г]. [c.189]

    Наиболее существенным выводом из теории Бора была идея о стационарных состояниях электронов в атомах. Так, электрон в атоме водорода может находиться только на одной из строго определенных орбит. Орбиты электронов характеризуются различными значениями энергии и могут быть пронумерованы по порядку 1, 2, 3, 4,. .., п этот номер был назван главным квантовым числом. Наиболее устойчивое состояние атома водорода (оно еще называется основным состоянием) соответствует положению электрона на орбите с наименьшим квантовым числом п=.  [c.161]

    Постулаты Бора. В основе теории Бора лежат два постулата, выходящие за рамки классической физики. Согласно первому постулату атом не излучает энергию и является устойчивым лишь в некоторых стационарных (неизменных во времени) состояниях, соответствующих дискретному (прерывному) ряду возможных значений энергии Ех, г, з--- Любое изменение энергии связано с квантовым (скачкообразным) переходом из одного состояния в другое. Согласно второму постулату при переходе из одного стационарного состояния с энергией г в другое с энергией Еь атом испускает или поглощает свет определенной частоты в виде кванта излучения (фотона) /IV. Причем [c.44]

    Все современное учение о спектрах электромагнитного излучения базируется на квантовой теории, согласно которой атомная система является устойчивой лишь в определенных стационарных состояниях, соответствующих некоторой дискрет([он или непрерывной последовательности значений энергии ). [c.6]

    Это значит, что данное соотношение является соответствующим уравнением баланса нейтронов для мультиплицирующей среды в стационарном состоянии в односкоростном приближении (ср. с уравиеиием (5.134)]. Решения кинети- (еского уравнения представляют собой теперь также решения уравненпя диффузии (правильнее, стационарного волнового уравнения, или уравнения Гельмгольца). Наоборот, решения диффузионного уравнепия будут точно также удовлетворять кинетическому уравнению в случае бесконечной среды. Решения диффузионного уравнения для конечной геометрии пе удовлетворяют кинетическому уравнению, однако, если решение относится к областям, далеким от границы, оно будет приближенно удовлетворять кинетическому уравнению. В этих областях угловое распределение потока близко к изотропному, и результаты диффузионной теории могут давать хорошее приближение пространственного распределения нейтронов. [c.270]

    Выражение (1.27) называется уравнением Шредингера для стационарного состояния. Это линейное дифференциальное уравнение второго порядка в частных производных эллиптического типа. Функция Т( ) называется собственной функцией оператора Н, а Е собственным значением. Из теории уравнений типа (1.27) известно, что линейный самосопряженный оператор, каким и является [c.13]

    В некоторых случаях устойчивость стационарных состояний можно определить по диаграммам отвода и подвода тепла. Пользуясь подобными диаграммами, Н. Н. Семенов в свое время сформулировал условия теплового воспламенения и заложил тем самым основы теории теплового взрыва ]Чного лет спустя ван Хирден применил тот же подход для анализа устойчивости режимов автотермических реакторов. [c.66]

    Дуализм волн и частиц—фундаментальное свойство микромира оно означает невозможность независимого рассмотрения таких характеристик частицы, которые в классической физике разделялись. Обратим внимание на результат, к которому приводит уравнение Шредингера, если система представляет собой свободную частицу. Свободная частица, описываемая бесконечной волной, есть простейшая система, находящаяся на низшей ступени организации. Энергия частицы не квантуется и, наблюдая ее, мы, вообще говоря, могли ничего не узнать о стационарных состояниях и скачкообразных переходах между различными энергетическими уровнями, столь существенно определяющих химические свойства элемента. Одним из наиболее глубоких по содержанию утверждений квантовой теории является признание дискретности состояний тех систем, на которые наложены какие-либо ограничения. Будем считать наборы различных ограничений признаками организации. <2 этой точки зрения следующая ступень организации есть частица, находящаяся в потенциальном ящике. Значения ее энергии уже квантованы. Эта организация способна существо- [c.50]

    Отличительная черта неравновесных процессов состоит в наличии макроскопически заметных потоков теплоты, вещества и др. Они возникают под воздействием различных физических причин, называемых в термодинамике силами. Очевидно, для изучения неравновесных процессов необходима система понятий, дающая полное описание потоков и сил и построенная не случайным образом, а в определенной связи с термодинамикой. Ранее по историческим причинам представления о потоках и силах складывались в соответствии с условиями экспериментального исследования для каждого из конкретных процессов. В термодинамике необратимых процессов предложен общий подход к определению потоков и сил, который состоит не только в рационализации, но и имеет существенное значение в теории соотношений взаимности, стационарных состояний и т. д. [c.139]

    Изменение положения отражателей влияет на распределение нейтронов из-за изменения утечки нейтронов из реактора. Строгий расчет таких способов регулирования — задача очень трудная, однако, если эффект не слишком велик , для таких расчетов могут быть использованы методы теории возмуш ений. Многие работаюш ие в настояш ее время реакторы обладают известной степенью стабильности, в частности реакторы с жидким теплоносителем. В таких реакторах некоторые отклонения от стационарного состояния вызывают изменение функции распределения нейтронов и мощности реактора, но эти возмущения быстро затухают, и система возвращается в начальное состояние. В число задач, возникающих перед теорией реакторов, входит и определение динамической реакции реактора на такие возмущения. Задачи динамической реакции и стабильности, представляющие инженерный интерес, в большинстве случаев нелинейны. Многие из этих задач решаются с помощью электронных и других моделей реакторов и быстродействующих вычислителоных машин. [c.21]

    Мозжухин A. ., Сеченых А.Н. Полистационарность в непрерывной ректификации и реализация выбранного стационарного состояния // Теор. основы хим. технологии. 34, №2. С.165-169. [c.121]

    Квазиэнергия или квазиэнтропия. Рассмотрим открытые системы, в которых возможны неравновесные стационарные состояния. Из производящего равенства (28.3) не удается получить ФДС, пригодные вблизи с Льно неравновбсных стационарных состояний. Теорию, соответствующую сильно неравновесным состоянияхм, целесообразно строить на другой основе, а именно целесообразно взять в качестве базисного состояния неравновесное стационарное состояние, а не равновесное состояние, как это делалось в гл. 2. При таком подходе, правда, нельзя пользоваться условием временной обратимости. Поэтому теория становится более бедной, чем обычная теория, изложенная в гл. 2 и 3. Интегрируя уравнение (28.4) по переменным В", по которым система открыта, получаем уравнение [c.338]

    Модель одномерного атома позволяет понять, почему электрон, находящийся в атоме в стационарном состоянии, не излучает электромагнитной энергии (второй постулат теории Бора). Согласно модели Бора — Резерфорда, электрон в атоме совершал непрерывное движение с ускорением, т. е. все время менял свое состояние в соответствии с требованиями электродинамики, он должен при этом излучать энергию. В одномерной модели атома стационарное состояние характеризуется образованием стоячей волны де Бройля пока длина этой волны сохраняется постоянной, остается неизменным и состояние электрона, так что никакого излучения пронсхо- дить не должно. [c.75]

    Найти коэффициент скорости счета детектора с оболочкой и без нее при следующих предположениях 1) диффузионная теория справедлива для материала оболочки сферическая полость и пространство впе ее — вакуум 2) материал оболочки таков, что все деления происходят на тепловых нейтронах быстрые нейтроны, образующиеся при делении, превращаются в тепловые с тем же пространственным распределением, какое они имели, будучи быстрыми. Однако при замедлении до тепловых имеет место поглощение и утечка 3) сборка подкритическая —стационарное состояние без источника не сохраняется состав размножающей оболочки таков, чтодтА >1 (где <7х — вероятность быстрому нейтрону избежать утечки перед превращением его в тепловой). [c.182]

    Например, для анализа предельных стационарных состояний процесса ректификации использовалась теория четких и получетких разделений, являющаяся составной частью общего термодинамико-топологического анализа. В рамках такого подхода математическое описание процесса ректификации в колонне бесконечной высоты, функционирующей в режиме полного орощения, сво-цится к математическому описанию возможных предельных типов разделения. Такое описание может быть получено на основании анализа структуры диаграммы фазового равновесия рассматриваемой реакционной смеси. [c.182]

    Пример 1У-5. Применить теорему Гершгорина для оценки допустимой величины Кр. Необходимо установить устойчивость для модели Лайбена в стационарном состоянии Тя = 600° К, 65 = 0,246. [c.89]

    Вопросы качественной теории уравнений химической кинетики подвергнуты рассмотрению в монографии [194]. В ней исследованы условип множественности стационарных состояний в открытых системах и показано, что необходимым условием существования нескольких решений системы уравнений квазистационарности является наличие в механизме процесса стадии взаимодействип различных промежуточных веществ. В [194] делается попытка выделения структур, ответственных за появление критических эффектов для классических уравнений химической кинетики. Важным свойством структурированных форм является то, что они наглядно представляют, как "собирается"сложный механизм из элементарных стадий. Для линейных механизмов получены структурированные формы стационарных кинетических уравнений. На этой основе могут быть выяснены связи характеристик механизма процесса и наблюдаемых кинетических зависимостей. Показано, что знание механизма процесса и констант равновесия позволяет построить ограничения на нестационарное кинетическое поведение системы, причем эти ограничения оказываются существенно более сильными, чем обычные термодинамические. [c.236]

    Развитая выше теория радиационного режима теплообмена основывалась на некоторых упрощающих предположениях, из которых главнейшими являются постоянство коэффициента излучения иламени и стационарность режима теплообмена. Учитывая это, любой нестационарный режим можно представить приближенно как совокупность следующих друг за другом стационарных состояний. [c.65]

    Большинство формул в теории многоэлектронных систем в случае стационарных состояний можно записать в компактном и удобном для работы виде, если использовать редуцированные матрицы плотности (РМП). В одноэлектронном приближении использование РМП особенно выгодно в случае неортогональных спинюрбиталей. Роль РМП не сводится только к упрощению формул, хотя и это весьма существенно. РМП играют важную роль и в общих построениях теории многоэлектронных систем, и в приближенных методах, связанных с выходом за рамки приближения Хартри - Фока. В частности, они весьма полезны при выборе оптимальных базисных спинюрбиталей фр х) и при отборе наиболее существенных слейтеровских детерминантных функций, которые входят в разложение (2.30) для полной волновой функции с наибольшими коэффициентами. Понятие РМП лежит также в основе упрощенного метода функционала плотности, который в последнее время получил широкое распространение, в частности, в теории хемосорбции. [c.80]

    Появление нестационарной кинетики это типичное проявление закона отрицания отрицания в развитии химических знаний. Еще совсем недавно, в 1950-х годах, в острой полемике с теориями неоднородной поверхности катализаторов рождалось учение Г. К. Борескова о потере энергетической пересыщенности свежеприготовленных катализаторов в ходе реакции й о достижении ими стационарного состояния. Г. 1. Боресков убедительно доказал, что под влиянием реакционной среды свежие катализаторы изменяют свой состав и структуру, достигая стационарного состава и соответствующей ему удельной каталитической активности [25]. [c.206]

    В данной главе будет рассмотрена классификация стационарных состояний, а также расчет их энергий и волновьех функций - тот минимум из теории атомов, с которым должен быть знаком специалист в области квантовой химии. [c.116]

    Принципиально важно, что теория неравновесной термодинамики позволяет ответить и на вопрос оЬ устойчивости неравновесных стационарных состояний к внешним возмущениям и самопроизвольным флуктуациям в системе, а также дает возможность и(хледовать эту устойчивость путем изучения изменения скорости производства энтропии при выводе системы из стационарного состояния. [c.339]

    Таким образом, сгац1(онарным состояниям системы соответствует строго определенный набор допустимых значений энергии. Само суще-. ствование стационарных состояний микросистем и допустимых значений энергии Е с необходимостью вытекает из общего представления о двойственной природе вещества, отраженной в уравнении Шредингера, а не из специальных постулатов, как это было в теории Бора, [c.14]

    Идентичное выражение получается и в теории Бора. Величина п, которая может принимать целочисленные значения, получила название главного квантового числа. В получающихся решениях собственных функций для атома водорода содержатся также орбитальное или побочное квантовое число I и магнитное или азимутальное квантовое число /и,. Описываемые собственными функциями и выражающиеся квантовыми числами п, I, т, стационарные состояния электрона называют атомными орбиталями. Спиновое квантовое число т нельзя непосредственно вывести из упрощенного уравнения Шрёдингера, тем не менее оно должно быть добавлено к трем рассчитанным квантовым числам п, /, т,. В совокупности четыре квантовых числа позволяют описать движение электрона в атоме  [c.175]

    Как видно, эти факты — прямое свидетельство саморазвития открытых каталитических систем. Уже из определения динамики химических процессов, сформулированного М. Г. Слинько, следует, что она, как общая теория, изучающая эволюцию химических систем , должна включать в себя поиск решения задач такой направленности этой эволюции, которая приводит к повышению высоты организации каталитических систем, к увеличению селективности и ускорению базисных реакций, т. е. к общей интенсификации процессов. А это означает, что теория саморазвития открытых каталитических систем А. П. Руденко может стать одним из ведущих звеньев в развитии нестационарной кинетики, ибо иных путей к существенному улучшению работающих в реакторе катализаторов нет, кроме естественного отбора наиболее активных центров катализа и обусловленных этим отбором направленных кристаллоструктурных изменений. Эта теория может быть использована в решении задач изыскания новых оптимальных режимов , о которых говорил М. Г. Слинько в своем докладе на XII Менделеевском съезде [30, с. 9]. В этой связи нельзя не согласиться с утверждением о том, что без соответствующей теории, если опираться лишь на экспериментальные работы на опытных установках, вряд ли можно надеяться на быстрые успехи в создании новых высокоэффективных промышленных процессов, работающих в искусственно создаваемых нестационарных режимах или в окрестности оптимальных неустойчивых стационарных состояний. Чаще всего невозможно в обозримые сроки экспериментально подобрать оптимальные условия осуществления нестационарного процесса. [c.209]


Смотреть страницы где упоминается термин Стационарного состояния теория: [c.337]    [c.96]    [c.17]    [c.22]    [c.173]    [c.179]    [c.207]    [c.25]    [c.25]   
Биология Том3 Изд3 (2004) -- [ c.401 ]




ПОИСК





Смотрите так же термины и статьи:

Состояния стационарные



© 2025 chem21.info Реклама на сайте