Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение элементов азота

    Аэробный процесс биохимической очистки сточных вод протекает в присутствии кислорода под воздействием комплекса определенных видов бактерий и микроорганизмов (биоценоза), развивающихся в сооружениях. Для нормальной жизнедеятельности бактерий и микроорганизмов при этом способе в сточных водах кроме кислорода и органических веществ должны содержаться биогенные элементы (азот, фосфор, калий). В случае недостатка этих элементов они вводятся в сточные производственные воды искусственно. Наиболее дешевый источник биогенных элементов — бытовые сточные воды, поэтому во многих химических производствах на очистку подают смесь производственных и бытовых сточных вод. [c.346]


    Концентраты пищевые. Методы определения жира Продукты пищевые и вкусовые. Общие указания по определению содержания азота методом Кьельдаля Сырье и продукты пищевые. Метод определения ртути Продукты пищевые. Метод определения железа Сырье и продукты пищевые. Подготовка проб. Минерализация для определения содержания токсичных элементов [c.525]

    Как прямая кулонометрия, так и кулонометрическое титрование находят широкое применение в аналитической практике определения неорганических веществ. Подробная сводка возможных объектов анализа приведена в руководстве Агасяна и Николаева. Возможно определение элементов всех групп периодической системы Менделеева. Кулонометрическое титрование используют при анализе органических соединений. Для анализа газов также служит кулонометрия и на ее основе разработаны многочисленные автоматические газоанализаторы па водород, кислород, воду, оксиды углерода, азота и серы, галогены и их производные. [c.252]

    Простейший метод разложения проб с окислением — прокаливание на воздухе в открытых чашках или тиглях при 500—600 °С. Такой способ используют при определении неорганических компонентов в органических материалах, например примесей металлов в биомассах и пищевых продуктах. При определении элементов в виде летучих продуктов окисления, особенно при элементном анализе органических соединений, сжигают пробу в токе кислорода или воздуха. Очищенный, сухой кислород смешивают при этом с инертным газом-носителем (азот, гелий и т.д.). [c.75]

    Высокоспецифичные детекторы незаменимы в определениях следовых количеств соединений, содержащих определенные элементы или группировки. Особое значение они приобрели в анализах пестицидов, лекарственных препаратов, нефтехимических продуктов и биологических образцов, содержащих галогены, фосфор, серу или азот. Большим преимуществом таких детекторов является то, что они требуют лишь минимальной очистки (удаления мешающих примесей) детектируемых образцов, поскольку такой детектор попросту слеп по отношению к соединениям другого типа. Между тем в большинстве анализов очистка поглощает много труда и времени. [c.431]

    Качественное определение типа полимера или полимерного материала (пластмасс, волокон) начинают с определения некоторых его свойств физического состояния, цвета, прозрачности, запаха, температуры размягчения, растворимости в органических растворителях и др. Одновременно сравнивают свойства образца со свойствами известных полимеров. После этого проводят термическое разложение полимера при обычном горении и пиролизе, а также определяют наличие элементов азота, серы, галогенов. [c.147]


    Для определенности будем рассматривать основные биогенные элементы — азот и фосфор. Если для этих элементов, а также почв и возвратных вод известны среднегодовые показатели выноса в расчете на 1 га посева определенной культуры г на типе почв р, способе и норме полива 7, то в простейшем случае формирование возвратных вод, вынос [c.230]

    Основные научные работы посвящены разработке микроанализа органических веществ, создателем которого он является. Поставил перед собой задачу приспособить классические методы элементного органического анализа, разработанные Ю. Либихом и Ж. Б. Д. Дюма, для исследования очень малых количеств веществ. Разработал (1911) методы микроанализа органических веществ, обеспечивающие точность определения углерода, азота, серы и галогенов в навеске вещества до 7—10 мг. Затем (1913) ему удалось уменьшить количество анализируемого вещества до 1—3 мг. Сконструировал и изготовил всю необходимую для этих методов аппаратуру. Создал первую модель микрохимических весов с чувствительностью до миллионных долей грамма. Предложил оригинальные композиции аналитических реагентов, ввел принципиально новые способы разложения органических веществ при элементном анализе. Его методы включали определение элементов, наиболее часто встречающихся в органических веществах (углерода, водорода, азота, галогенов, серы, фосфора и др.), многих функциональных групп, молекулярной массы веществ. [c.406]

    Книга представляет собой практическое руководство по методам определения элементов-неметаллов фосфора, кремния, азота, хлора, брома, йода, фтора, серы, теллура, селена и бора. [c.4]

    Источники пламени. Применяют пламя, для получения которого в качестве горючего используют ацетилен, пропан или водород, а в качестве окислителя — воздух, кислород или оксид азота (I), Выбранная газовая смесь определяет температуру пламени. ВоЗ душно-ацетиленовое пламя и воздушно-пропановое имеют низкую температуру (2200—2400 °С). Такое пламя используют для определения элементов, соединения которых легко разлагаются при этих температурах. Таких элементов большинство, и потому в дальней шем тексте, если нет специальных указаний, предполагается использование воздушно-ацетиленового пламени. Воздушно-пропановое пламя используют тогда, когда имеются затруднения в получе НИИ ацетилена такая замена осложняет работу, поскольку в техническом пропане имеются примеси, загрязняющие пламя. Прй определении элементов, образующих трудно диссоциирующие соа- [c.20]

    Перейдем к технике, известной под названием элементарного анализа и заключающейся в выделении и определении элементов, составляющих уголь. Преобладающими элементами в данном случае являются углерод (около 80%), водород (около 5%), кислород (около 4—15%) имеются также небольшие количества азота (1,5%), серы (0,5—1,0%), ионов металлов, кварца, следов фосфора и других веществ. [c.59]

    При температуре электрической дуги азот соединяется с кислородом, давая оксиды азота. При высоких температуре и давлении в присутствии катализаторов азот соединяется с водородом, образуя аммиак NH3. В определенных условиях азот может давать соединения и с другими элементами (серой, хлором и т. д.). [c.440]

    Пламя в атомной абсорбции выполняет роль температурной ячейки, применяемой для атомизации пробы. Возможность определения с достаточной чувствительностью того или иного элемента методом атомно-абсорбционной спектрофотометрии зависит от температуры пламени, а также от соотношения горючего газа и газа, поддерживающего горение. В основном при этом методе применяются пламена смесей пропан — воздух, ацетилен — воздух, ацетилен — закись азота. Низкотемпературное пламя (пропан — воздух, температура 1925° С) применяется с успехом для определения элементов, соединения которых легко диссоциируют при этой температуре. Сюда относятся цинк, медь, магний. [c.208]

    Предложен з объемный метод определения кремния в кремнийорганических соединениях, а также другие методы определения кремния , азота и прочих элементов , ise g кремнийорганических соединениях. [c.35]

    Методы, основанные на анализе составных частей молекул белка, включают определение элементов азота и углерода, некоторых аминокислот, например тирозина, биуретовой и фор1-мольной группировок. Отдельные белки могут быть иногда определены по специальным группам, например по железу в гемоглобине [2, 3] или иоду в тиро-глобулине. Все эти методы требуют, чтобы определяемая составная часть находилась в испытуемом образце исключительно в белковой части. Поэтому белок должен быть отделен от всех других органических веществ и карбонатов, если он определяется по углеродному составу, и от всех других азотсодержащих составных частей, если основой анализа является метод Кьельдаля. Обычная практика анализа кормов и овощей на белки на основании определения общего азота в этом отношении всегда внушает сомнения. Наличие алкалоидов, аминокислот или других азотсодержащих веществ в таких веществах достаточно вероятно, хотя, как правило, их количества малы по сравнению с содержанием белка. Вследствие изменчивости свойств различных белков нет общих методов их выделения из сложных смесей. В хорошо изученных системах могут применяться специальные методы выделения. [c.15]


    В 1923 г. Д. Бреистед и Т. Лоури, независимо друг от друга, предложили так называемую протолитичсскую теорию кислот и оснований, получившую в настоящее время наибольшее распространение. Согласно этой теории кислоты — это соединения, молекулы которых в определенных условиях способны быть донорами протонов основания — это соединения, способные присоединять протоны, т. е. быть пх акцепторами. Очевидно, что молекулы, способные отщеплять протоны, должны иметь в своем составе атомы водорода, поляризованные положительно. Следовательно, кислоты в соответствии с протолитической теорией представляют собой водородсодержащие соединения. Такое заключение находится в соответствии с общепринятым практическим представлением о составе кислот. Что касается оснований, то ими могут быть соединения разнообразного состава, так как для того, чтобы присоединять протоны, соединению совсем не обязательно иметь в своем составе какие-то определенные элементы. Основания встречаются среди соединений различных классов гидроксиды, амиды и ими-ды активных металлов, водородные соединения азота, оргаьн1чес-кие амины, азотистые гетероциклические и другие соединения. [c.181]

    Концентрация свободных атомов элемента зависит не только от его концентрации в анализируемом растворе, но и от степени диссоциации молекул, в виде которых он вводится в пламя или же образующихся в результате химических реакций, протекающих в плазме. Вследствие этого при атомно-абсорбционном определении элементов, дающих термически устойчивые оксиды, например алюминия, кремния, ниобия, циркония и других, требуются высокотемпературные пламена, например ацетилен — оксид азота (N20). Тем не менее в низкотемпературных пламенах (пламя пропан — воздух) атомизируется большинство металлов, не излучающих в этих условиях вследствие высоких потенциалов возбуждения их резонансных линий медь, свинец, кадмий,, серебро и др. Всего методом атомной абсорбции определяют более 70 различных элементов в веществах различной природы металлах, сплавах, горных породах и рудах, технических материалах, нефтепродуктах, особо чистых веществах и др. Наибольшее применение метод находит при определении примесей и микропримесей, однако его используют и для определения высоких концентраций элементов в различных объектах. К недостаткам атомно-абсорбционной спектрофотометрни следует отнести высокую стоимость приборов, одноэлемеитность и сложность оборудования. [c.49]

    Для превращения растворов анализируемых веществ в атомный пар чаще всего применяют щелевые горелки длиной 5-10 см. Они дово п.но однотипны по конструкции и легко заменяются Большинство приборов рассчитаны на использование в качестве окислителей воздуха, кислорода и закиси азота, а в качестве топлива - гфопана, ацетилена и водорода Наибольшее распространение получило воздушно-ацетиленовое пламя (2200-2400 °С), которое позволяет определять многие высокотоксичные металлы (РЬ, Сс1, Zn, Си, Сг и др.). Для определения элементов с более высокой температурой парообразования (А1, Ве, Мо и др.) широкое признание получила смесь закись азота-ацетилен (3100-3200 С), поскольку она более безопасна в работе, чем смеси с кислородом. Для обнаружения мышьяка и селена в виде гидридов требуется восстановительное гшамя, образующееся при сжигании водорода в смеси аргон-воздух. [c.247]

    Г. Лендель, Д. Гофман, Г. Брайт. Анализ черных металлов, Госхимтехнздат, 1934, (612 стр,). Авторы описывают арбитражные и экспрессные методы определения элементов, входящих в состав чугунов и сталей, методы определения кислорода, водорода и азота и включений окислов, методы анализа ферросплавов, а также руд, известгяков, шлаков, угля и других материалов, мета, 1лургнческого производства. [c.491]

    Предметом органического элементного анализа [62, 63] является качественное и количественное определение элементов, входящих в состав органических соединений без учета их расположения в структуре. В узком смысле под этим понимают определение углерода, водорода и азота. Вещество испаряют и сжигают в токе кислорода, часто наряду с этим можно применять. СиО или другое вещество, содержащее кислород. Катализаторами горения служат С03О4 или платина. Продуктами реакции являются СО2, HjO и N3  [c.383]

    Метод сжигания в колбе с кислородом является одним из перспективных методов количественного элементного анализа. Он включен во многие фармакопеи мира, в том числе Международную и Европейскую, но пока ограниченно используется в отечественном фармацевтическом анализе. Метод основан на разрушении органического вещества сожжением в колбе, наполненной кислородом, растворении образовавшихся продуктов в поглощающей жидкости н последующем определении элементов, находящихся в растворе в виде ионов или молекул. Определение выполняют различными химическими или физико-химическим и методами. Метод может быть использован для качественного и количественного определения органически лекарственных веществ, содержащих в молекуле галогены, с у, фосфор, азот н другие элементы. Преимущества метода состоят в быстроте процесса минерализация, занимающего несколько секунда исключении потерь элемента в процессе минерализации, проходящем в герметически закрытой колбе возможности унификации применительно к различным группам соединений высокой чувствительности анализа на заключительной его стадий и широком сочетании метода на этой стадии с физико-хнмическими методами. Большие перспективы открывает применение метода сжига- [c.134]

    Азот N2 не поддерживает ни горения, ни дыхания. Химически мало активен.- При комнатной температуре непосредственно соединяется лишь с литием, образуя нитрид состава 1лзМ. При высокой же температуре азот соединяется со многими металлами с образованием нитридов, например MgзN2 — нитрид магния, СазМа — нитрид кальция и др. При температуре электрической дуги азот соединяется с кислородом, давая окислы азота. При высоких температуре и давлении в присутствии катализаторов азот соединяется с водородом, образуя аммиак МНз. В определенных условиях азот может давать соединения и с другими элементами (серой, хлором и т. д.). [c.468]

    Для проверки правильности качественного определения серы, азота и брома можно провести контрольный опыт с п-бромбензолсульфонамидами (т. пл. 166°С). Пробу его сплавляют с натрием и определяют указанные элементы. [c.810]

    Количественное определение полимера осуществляют двумя методами. Первый метод — сожжение резины в токе кислорода и вычисление содержания полимера по элементному составу [П]. Второй метод — пиролиз резины при высокой температуре и большой скорости азота и гравиметрическое определение полимера и общего содержания минеральных наполнителей. Первый метод необходим для резин, изготовленных на основе гетеросилоксанового полимера, включая дополнительные химические методы по определению элементов, а также для резин, содержащих сернистые соединения и летучие соединения олова. Резины на основе силоксановых каучуков (СКТ, СКТВ, СКТФВ, СКТЭ и др.), не содержащие летучих соединений, удобно подвергать пиролизу в токе азота. Этот метод точней и экспрессией. [c.111]

    Метод определения емкости основан на количественном определении элементов, которые явлиются основными компонентами функциональных групп ионообменников. Этот метод применим главным образом к монофункциональным ионообменникам. Наиболее часто определяют серу и азот (или фосфор). [c.88]

    Для характеристики сорбционных свойств ХС используют ПОЕ, которая, как и в случае ИС, соответствует общему содержанию функциональных групп на единицу массы сорбента. Для определения содержания функциональных групп в ХС применяются методы анализа на характерные для этих групп элементы азот, серу, фосфор и т.п. — или методы функционального анализа для непосредственного определения этих гру1ш. Величина ПОЕ для ХС является малоинформативным параметром, так как в отличие от ионообменной сорбции в данном случае не выдерживаются стехиометрические соотношения количества [c.133]

    Методы определения отдельных элементов (азота, серы, гплои-дов, кислорода), а также определение основных групп приведены в приложении к специальной части. [c.45]

    К перспективным относится также рентгеноспектральный радиометрический метод — ядерно-физический недеструктивный способ определения элементного состава почвенных и растительных материалов. Метод основан на выделении и регистрации характеристического рентгеновского излучения, эмиссируемого анализируемыми элементами в результате возбуждения их радиоактивными нуклидами. Рентгеноспектральный радиометрический метод используют для определения биофильных элементов азота, углерода, а также калия, кальция, серы и хлора. На проведение одного определения затрачивается не более 1,5 мин. [c.335]

    Дальнейшие пути развития радиоактивационного анализа заключаются в повышении чувствительности, экспрессности и точности определения. Повышение чувствительности возможно путем использования более интенсивных потоков в ядерных реакторах большой мощности до 10 яе /пр/сж -сек,, использования работы реакторов в импульсном режиме с потоками до 10 — 10 нейт.р см сек в импульсе для определения по короткоживущим изотопам, создания ускорителей заряженных частиц с большой силой тока (порядка нескольких миллиампер) для целей активационного анализа, электронных ускорителей сэнергией до30Мэвя мощностью 10 рентг/м-мин для определения кислорода, азота и углерода. Повышения чувствительности и быстроты анализа можно достичь также путем разработки экспрессных химических методов разделения с почти количественным химическим выходом носителей. Чувствительность, быстрота и точность анализа зависят также от совершенства измерительной аппаратуры, в частности от создания полупроводниковых детекторов излучения с высокой разрешающей способностью и многоканальных спектрометров с вычитанием комптонов-ского фона. Большую роль в повышении точности определения должно сыграть применение методов статистической обработки результатов определений, а также разработка быстродействующих анализаторов с элементами электронно-вычислительной техники, позволяющих полностью автоматизировать обработку спектров и результатов измерений [36]. [c.14]

    Для определения кислорода, азота и водорода применяют особые источники света. В металлах приходится определять малые примеси газов, порядка 10 —10 %. Газы относятся к числу трудновозбудимых элементов. Их наиболее чувствительные линии располо1кены в очень коротковолновой ультрафиолетовой области спектра, недоступной для наблюдения с обычной аппаратурой поэтому приходится отказываться от использования наиболее интенсивных линий и пользоваться линиями менее интенсивными. [c.235]

    Среди методов фотоактивационного анализа наибольшее распространение получил гамма-активационный метод. Большинство элементов периодической системы при энергии тормозного излучения выше 20 МэВ активируются хорошо, что позволяет применять гамма-активационный анализ для определения элементов. В их число входят такие важные элементы, как кислород, азот, углерод и другие [310]. [c.84]

    Применение метода для определения углерода, азота, кислорода и серы в органических соединениях было детально рассмотрено Гроссе, Гиндиным и Киршенбаумом [794—796, 798, И17, 1118]. Для того чтобь создать равномерное распределение изотопов каждого из этих элементов в различных присутствующих соединениях, необходимо нагревать компоненты до температуры красного каления в течение часа, иногда в присутствии катализатора. Предварительные опыты со смесями двуокиси углерода, воды и обогащенного кислорода показали, что. в условиях эксперимента достигается равновесие для кислорода. Кислород, обогащенный 0, использовали в качестве изотопного индикатора при определениях кислорода [1119]. Добавлять достаточное количество кислорода для полного превращения органического материала в двуокись углерода и воду нет необходимости. Даже в том случае, когда присутствует окись углерода, кислород полностью распределяется среди различных кислородных соединений. Для измерения распространенности 0 в различных образцах лучше всего использовать молекулярные ионы в масс-спектре двуокиси углерода. Для определения углерода использовалась смесь СОг и кислорода в количестве, обеспечивающем полное сжигание. В этом случае, ввиду количественного образования двуокиси углерода при сжигании, нет необходимости в установлении равновесия, и СОг нужно лишь смешать с образцом газа. [c.113]

    Спектральные методы определения кислорода, азота, водорода в цирконии и гафнии. Эмиссионное спектральное определение названных элементов в цирконии и гафнии встречается со значительными трудностями, обусловленными высокими значениями потенциалов возбуждения спектральных линий, а также большой прочностью соединений циркония и гафни с газообразными элементами. [c.212]

    В дальнейшем возникла необходимость изменения такого определения. В 1919 г. Резерфорд и его сотрудники по Кавендишской лаборатории в Кембридже (Англия), где усиленно изучалось явление радиоактивности, сообщили, что им удалось превратить атомы азота в атомы кислорода путем бомбардировки азота альфа-частицами (ядрами гелия), испускаемыми с большими скоростями атомами радия. Начиная с 1930 г. исследования в области искусственной радиоактивности были весьма успешными, и ныне работы в этой области физики проводятся наиболее активно. К настоящему времени почти каждому элементу удалось сообщить радиоактивность и превратить его в другие элементы путем бомбардировки частицами, движущимися с большими скоростями одновременно с этим происходит накапливание данных, характеризующих свойства атомных ядер. Результаты этих работ позволяют теперь утверждать, что элемент нельзя превратить в другой элемент обычными химическими методами. Открытие новых явлений могло привести к сомнениям в отношении правильности разделения веществ на элементарные вещества и соединения, если бы не тот факт, что наши знания в области строения и свойств атомов за последние годы также быстро возрастали. В данной книге автор не пользуется ни одним вариантом из прежних определений, а ограничивается приведенным в начале рассматриваемой главы определением элемента как вида вещества, представленного атомами определенного вида, а именно атомами с одинаковым атом1шм номером. [c.78]

    В плазменных генераторах в-зо струя плазмы (высокоионизи-рованный газ, образованный при разряде дуги постоянного тока в замкнутом пространстве, имеющем отверстия для подачи газа и выхода плазмы) выбрасывается в виде факела длиной 10— 90 мм потоком азота, аргона или другого газа. Температура факела до 10 000° К и выше. В спектре разряда наблюдаются линии используемого газа, многократно ионизированных атомов металлов и полосы СМ. Чувствительность определения элементов в плазменных генераторах (плазматронах) невелика, а их конструкции нуждаются в усовершенствовании. [c.28]

    В обычных условиях азот с большинством элементов реагирует с трудом. Горения и дыхания не поддерживает. При высокой же температуре азот соединяется со многими металлами, с образованием азотистых металлов илп нитридов, например нитрид магния MggNg, нитрид кальция agNg и др. При температуре дуги Петрова азот соединяется с кислородом с образовав иием окислов азота. При высокой температуре и большом давлении в присутствии катализаторов он соединяется с водородом с образованием аммиака NHg. В определенных условиях азот может соединяться и с другими элементами (серой, хлором и т. д.). [c.228]

    Согласно определению, ковалентность азота в ней равна 4, ковалентность атома кислорода, обозначенного буквой а,, равна единице, а двух других — 2. С другой стороны, учитывая, что все пять электронов атома авота, вошедшие в. состав четырех электронных пар (они обозначены стрелками), смещены к атомам, кислорода, мы находим, что электровалентность азота равна +5, а электровалентность кислорода равна —2. Это отображается классической структурной формулой азотной кислоты. Таким образом, квантовая теория не снимает структурных формул 1неорганических веществ. Валентный штрих в ни х может иметь двоякий физ ический смысл либо изображать электронную пар(у, либо смещение электрона от атома данного элемента (положительная валентность) или К атому данного элемента (отрицательная валентность) независимо от того, в чем проявляется это смещение — в полном переходе электрона от атома А к атому В (или наоборот) или в образовании поляриз ованной ковалентной связи. [c.67]

    Способность нечетных мономеров к конкуренции с продуктами их полимеризации, а также широкий диапазон ступеней окисления азота (от -М до -Ь5) создают возможность существования большого разнообразия окислов азота. Подобно тому как в отношении набора изотопов одного и того же элемента мы употребляем термин плеяда изотопов , так и в данном случае можно охарактеризовать весь набор разнообразных соединений азота с кислородом термином плеяда окислов азота . Одинаковые термины употребляются в этих двух, с первого взгляда резко отличающихся случаях вполне логично, так как изотопы определенного элемента представляют собой разные степени насыщения иейтронами одного и того же количества протонов, а окислы азота являются различными ступенями насыщения кислородом одного и того же количества атомов азота. [c.328]

    Несмотря на все усовершенствования калориметрической аппаратуры и методики работы, данные по теплотам сгорания органических соединений, содержащих кроме углерода, водорода и кислорода еще другие элементы (азот, серу, галогены, кремний, металлы) значительно менее точны, чем углеводородов и их кислородсодержащих лроизводных. Для некоторых целей, например для определения теплот изомеризации, и точность данных по теплотам сгорания углеводородов не представляется достаточно удовлетворительной. Поэтому были разработаны другие способы определения теплот образования органических соединений. Так, теплоты образования ряда олефинов были получены с использованием закона Гесса из теплот их гидрирования и теплот образования, получающихся при гидрировании ненасыщенных углеводородов (Прозен и РоссИнИ 1946 г.). Такой же обходный путь стал применяться и для определе  [c.112]

    Дальнейшие операции зависят от конкретного состава образца, цели разделения (анализ или регенерация) и используемых методов определения элементов. Например, при анализе сплавов InSb, 3InAs-InSb с последующим йодометрическим определением сурьмы необходимо устранять мешающее действие избытка окислителей (окислов азота, азотной кислоты), что достигается осторожным упариванием раствора перед экстракцией до малого объема при температуре не выше 105—110° С [20]. Потери мышьяка при этой операции составляют примерно 18% (его содержание рассчитывается по разности), а потери сурьмы обычно не превышают 2%. [c.172]

    Групповое определение подлинности связующик веществ основывается на присутствии характерных элементов — азота, серы, фосфора и отдельных атомных групп. [c.353]

    Пламя ацетилен — закись азота позволяет достичь еще более высоких температур — до 2955° С, при которых можно проводить определения элементов, образующих труднодиссоциируемые соеди- [c.208]

    Для идептификации некоторых синтетических каучуков, содержащих характерные для них элементы, используются методы, основанные на качественном определении элементов или групп, например, определение азота в нитрильных каучуках, хлора в полихлоропрене и полихлорвиниле, серы в тиоколе, стирола в бу-тадиепстирольных каучуках [4—6]. [c.166]

    Флуоресценцию любого органического соединения, вообще говоря, можно использовать для определения одного из содержащихся в нем элементов. В принципе таким путем можно определить хлор, превратив его во флуоресцирующий 9-хлорантра-цен, или азот, превратив его, скажем, в р-нафтиламин. Конечно, последовательности реакций, необходимых для таких превращений, настолько сложны, что в обычной аналитической практике их не используют. Для целей анализа предпочитают простые реакции, которые протекают с постоянным выходом (лучще всего 100%-ным) при этом следует рассмотреть все механизмы органических реакций, чтобы рещить, какие типы реакций могут оказаться подходящими. Вероятно, это будут реакции с замыканием цикла, приводящие к образованию дополнительной гетероциклической системы. Такие реакции не могут служить методом определения элемента в любом из его соединений, но позволяют определить его в конкретном соединении. Например, реакцию гидразина с о-фталевым альдегидом или, возможно, с более [c.459]


Смотреть страницы где упоминается термин Определение элементов азота: [c.44]    [c.460]    [c.194]    [c.88]   
Методы органического анализа (1986) -- [ c.300 , c.301 , c.333 , c.346 ]




ПОИСК





Смотрите так же термины и статьи:

Азот, определение

Азот, определение азота

Азот-элемент

Элемент, определение



© 2025 chem21.info Реклама на сайте