Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение газов в растворах

    Для определения окислителей и для обратного титрования восстановителей применяют рабочий раствор тиосульфата натрия ЫааЗгОз-бНгО (М, = 248,2). Получить стандартный раствор тиосульфата по точной навеске нельзя, так как его кристаллы на воздухе выветриваются, всегда содержат примеси. Поэтому раствор готовят по приблизительной навеске, которую растворяют в воде, свободной от газа. Раствор тиосульфата натрия следует хранить в сосуде, закрытом пробкой, снабженной трубкой с натронной известью. Фактор эквивалентности тиосульфата натрия, равный 1, определяют по реакц и с иодом. [c.322]


    Поскольку понятие насыщения раствора связано с равновесием процесса растворения, его можно относить только к определенным условиям раствор, насыщенный при одной температуре, может стать ненасыщенным (или пересыщенным) при другой. Таким образом, растворимость вещества является функцией температуры, а если вещ,ество газообразно, то и функцией давления газа над раствором. Чаще всего растворимость твердых веществ при повышении температуры увеличивается, а жидких и газообразных — уменьшается. [c.147]

    Газо-хроматографическое исследование растворения газов и паров в подвижных жидкостях позволяет легко и очень точно (точнее, чем в статических методах) определить коэффициенты активности растворов. Рассмотрим здесь простейший пример определения предельного (ири малых концентрациях) значения коэффициента активности данного летучего компонента, растворимого в неподвижной жидкости, путем исследования отклонения реальной кривой равновесия газ—раствор от закона Рауля. Согласно закону Рауля давленне р пара данного компонента над раствором равно  [c.592]

    Поглощение сероводорода из газа раствором ацетата кадмия последующее иодометрическое определение сульфида кадмия в поглотительном растворе [c.61]

    Жидкости должны меньше растворять в себе газов. Все жидкости обладают определенной способностью" растворять газы, которые в растворенном состоянии не влияют на их механические свойства. Однако если давление в какой-либо точке гидравлической системы уменьшается, газы выделяются из раствора в виде мелких пузырьков, которые, оставаясь во взвешенном состоянии, существенно влияют на механические свойства жидкости. [c.213]

    Согласно определению, понятие раствора охватывает любые агрегатные состояния вещества жидкие, газообразные и твердые. Растворами являются нефть и жидкие нефтепродукты, газы каталитического крекинга и природный газ, продукты реакции, отводимые из химических реакторов, и атмосферный воздух, жидкие и твердые сплавы металлов и расплавленные смеси силикатов. [c.11]

    Каждая из фаз представляет гомогенную смесь (смесь газов, раствор), компоненты которой взаимодействуют на молекулярном или атомарном уровне. Обычно скорости относительного движения компонент малы и их нужно учитывать лишь в связи с определением концентраций компонент, в то время как динамическими и инерционными эффектами диффузионных скоростей можно пренебречь [c.45]


    По первому способу определенную порцию раствора с концентрацией 5-20% в виде пробки продавливают током инертного газа-носителя вдоль всего капилляра под давлением до 30 атм (в зависимости от длины капилляра). При этом на стенках капилляра остается некоторое количество жидкой фазы, которое определяется концентрацией раствора, вязкостью, скоростью потока газа-носителя, смачиваемостью стенок и диаметром капилляра. По второму способу капиллярную колонку заполняют разбавленным 1—2%-ным раствором жидкой фазы в летучем растворителе. После этого закрытый с одной стороны капилляр медленно продвигают через нагретую печь. Летучий растворитель испаряется, и жидкая фаза в виде тонкой пленки 0,1—0,2 мк покрывает стенки капилляра. [c.78]

    Подготовка катализатора. В двух емкостях (рис. 2.2), продутых инертным газом, приготавливают 5%-ный раствор четыреххлористого титана в бензине и 5%-ный раствор триэтилалюминия в бензине. Емкости продувают инертным газом в течение 10 мин. При необходимости в боковой мерный отросток отбирают определенное количество раствора компонента катализатора. Затем трехходовой кран 2, находящийся в положении, продувают инертным газом 1—2 мин и переключают в положение. Шприцем отбирают нужное количество раствора. [c.33]

    Сероводород извлекается из газа раствором уксуснокислого кадмия. Образовавшийся сернистый кадмий разлагается в кислой среде, и выделившийся при этом сероводород определяется иодо-метрически. По ходу определения протекают следующие реакции  [c.43]

    Метод заключается в поглощении сероводорода из газа раствором подкисленного хлористого кадмия и меркаптанов раствором подщелоченного хлористого кадмия и последующим йодометрическим определением образовавшихся сульфида и меркаптида кадмия в поглотительных растворах. [c.34]

    Температура регенерированного раствора, подаваемого в абсорбер, должна быть на 1—6 С выше температуры выходящего из абсорбера газа и обычно равна 40 °С. Это необходимо для предотвращения конденсации тяжелых углеводородов, содержащихся в газе. При определении температуры раствора, выходящего из абсорбера принимается, что вся теплота, выделяющаяся при абсорбции кислых газов, идет на нагрев раствора. Величину нагрева поглотительного раствора рассчитывают, исходя из количества поглощенных кислых компонентов. Теплоту абсорбции НгЗ и СО2 моноэтаноламином можно принять равной 1890 кДж/кг. [c.284]

    В табл. И приведены основные технологические показатели работы производственных установок по осушке газа растворами ДЭГ и ТЭГ. Технологический расчет установок для осушки газа обычно включает определение количества требуемого раствора, числа тарелок в абсорбционной и десорбционной колоннах, габаритов аппаратуры. [c.117]

    Третье направление — установление зависимости свойств твердых фаз от их состава и структуры. Исследование корреляции между составом и строением твердых тел, с одной стороны, и их свойствами — с другой, осуществляется путем использования комплекса физических и химических методов определения газов в металлах. При этом, наряду с задачей определения валового содержания того или иного газообразующего элемента, возникает и задача их раздельного определения в разных формах нахождения. Химическая форма и место локализации в металле газовой примеси могут быть различны. Газ может находиться в кристаллической решетке металла в виде раствора внедрения или замещения (в атомном или ионном состоянии) может быть связан в химические соединения (гидриды, нитриды, оксиды и т.д.) как с основным элементом исследуемого материала, так и с различными случайными примесями или легирующими добавками может быть сорбирован на поверхностях металла (как наружных, так и внутренних) в виде атомов, молекул или химических соединений может быть зажат под большим давлением в пузырьковых дефектах внутри металла в состоянии молекулярного газа может находиться в составе случайных загрязнений поверхности металла, возникающих в результате небрежного их хранения (влага, тонкие пленки нефтепродуктов и пр.). Совокупность методов определения газов в металлах может быть представлена несколькими основными группами. [c.931]

    Определение зарождающихся повреждений трансформаторов посредством анализа растворенных в масле газов. В начальной стадии повреждений трансформаторов образующиеся газы растворяются в масле, поэтому ояи не могут попасть в газовое реле и скопиться в нем. Интенсивность растворения образующихся газов в масле зависит от длины пути пузырьков газа, от места повреждения до газового реле и от величины образующихся пузырьков газа чем длинней путь образовавшихся пузырьков газа и чем они меньше, тем быстрее и в большей мере они будут растворяться в масле в газовом реле трансформатора. [c.240]


    Бумаги реактивные применяются для приблизительного определения pH растворов (их называют индикаторными бумагами) и для быстрого обнаружения некоторых веществ в растворах и газах. Готовят пропитыванием фильтровальной бумаги растворами индикаторов или же соответствующих реагентов с последующим высушиванием. Б. р. вносят в раствор или газ и наблюдают изменение окраски. [c.28]

    Способность дисперсных систем сохранять определенное распределение частиц по объему дисперсионной среды называется седиментационной устойчивостью. Грубодисперсные системы седиментационио неустойчивы, их частицы оседают под действием силы тяжести. Молекулярные системы (газы, растворы) обладают очень высокой седиментационной устойчивостью. Седиментационная устойчивость коллоидных систем зависит от размеров их частиц чем меньше размер частиц, тем более устойчив коллоидный раствор. [c.193]

    Для определения висмута раствор хлорида или сульфата висмута объемом от 25 до 300 мл, содержащий умеренные количества свободной кислоты, помещают в стакан для титрования, пропускают в течение 15—20 мин. струю двуокиси углерода и титруют при непрерывном перемешивании газом (или круговым движением от руки) раствором хлорида или сульфата двухвалентного хрома, следя за изменением потенциала платинового электрода. Резкое падение потенциала от одной капли раствора соли хрома указывает ка точку эквивалентности. Вблизи точки эквивалентности реакция протекает несколько замедленно, поэтому каждую новую каплю раствора следует прибавить лишь после того, как установился потенциал платинового электрода. Присутствие свинца и кадмия не влияет на результаты определения висмута. При определении висмута в присутствии свинца для удержания последнего в растворе прибавляют хлорид аммония (на 2—3 г свинца в растворе объемом 200— 300 мл достаточно прибавить 10—15 г хлорида аммония, при меньших количествах свинца — 5—10 г). Титрование в последнем случае производят хлоридом двухвалентного хрома (но не сульфатом). [c.262]

    Растворы соединений пятивалентного молибдена, в отличие от растворов соединений трехвалентного молибдена, достаточно устойчивы по отношению к Оз воздуха. Нет необходимости изолировать растворы, содержащие Мо , от соприкосновения с воздухом, что в значительной степени упрощает выполнение определения. С растворами же соединений трехвалентного молибдена необходимо работать в среде инертного газа или использовать специальные приемы эксперимента. Устойчивость солянокислых растворов соединений трехвалентного молибдена красного цвета относительно О2 воздуха очень сильно повышается при увеличении концентрации НС [59, 631]. [c.92]

    ОПРЕДЕЛЕНИЕ ГАЗОВ В РАСТВОРАХ [c.156]

    Сущность динамического метода заключается в предварительной очистке стенок колонки растворителями (обычно ацетоном, бензолом диэтиловым или петролейным эфирами) с последующим смачиванием внутренней поверхности капилляра при пропускании через него определенного объема раствора НЖФ в растворителе (диэтиловый или петро-лейный эфиры, пентан, гексан, хлороформ, бензол) под действием повышенного давления инертного газа. [c.42]

    Сущность метода заключается в смачивании внутренней поверхности капилляра при пропускании через него определенного объема раствора жидкой фазы под действием повышенного давления инертного газа. [c.123]

    Для понимания механизма адсорбции и других поверхностных явлений полезно иметь в виду, что адсорбция является по существу формой выделения вещества из раствора (и из газовой фазы). При отсутствии межфазных границ вьщеление растворенного вещества в виде новой фазы требует определенного перенасыщения раствора, тогда как при наличии межфазной границы (как и зародышей кристаллизации) выделение растворенного вещества сильно облегчается и происходит в виде адсорбционного слоя на межфазной границе при любой концентрации раствора. По этой причине чем слабее растворимость вещества (летучесть для газов), тем сильнее оно адсорбируется. Для водных растворов эта зависимость в ряде случаев известна количественно (см. ниже правило Траубе). [c.578]

    Различают идеальные и реальные растворы. В идеальных растворах компоненты смешиваются, как идеальные газы, без изменения объема и энтальпии. Увеличение энтропии таких растворов рассчитывают по уравнениям для идеальных газов. Растворы, подчиняющиеся законам идеальных растворов прн всех концентрациях, называют совершенными-, если это условие соблюдается лишь при сильном разбавлении, то их называют бесконечно разбавленными. Чем меньше концентрация раствора, тем ближе его свойства к свойствам идеального раствора. Изучение свойств идеальных растворов (давление насыщенного пара, температура кипения, температура кристаллизации) используют для определения молекулярного веса, стспенн диссоциации растворенных веществ. В физико-химических исследованиях концентрацию растворов выражают через моляль-ность — число молей вещества на 1000 г растворителя или мольные доли, равные числу молей вещества, деленному на число молей всех компонентов в растворе. Для бинарного раствора (из компонентов А и В с числом модей Пд и мв) мольные доли компонентов Л д и Мц равны  [c.43]

    Wallis (Ann. 345, 353 [1905]) обращает внимание на тот факт, что синильная кислота количественно поглощается подкисленным азотнокислым серебром, в то время как на циан оно не действует. Rhodes (J. Ind. Eng. hem. 4, 652 [1912]) изучал их разделение и определил условия анализа. Он рекомендует следующие условия для открытия и определения свободного циана в присутствии синильной кислоты для качественного определения газы пропускают через два поглотителя (пробирки с боковыми отростками), первая содержит 10 см 10% раствора азотнокислого серебра, подкисленного 1 каплей 1/6 н. азотной кислоты, — вторая—Юш3 1/2 н. едкого кали. Слабый ток воздуха пропускается затем через поглотители в течение 10 минут для вытеснения растворившегося циана из растворов азотнокислого серебра. 5 см3 10%-ного раствора железного купороса и 1. каплю раствора хлорного железа прибавляют теперь к раствору из пробирки со щелочью, затем через 15 минут добавляют достаточно разбавленной серной кислоты для растворения осадка гидратов закиси и окиси железа. Зеленое окрашивание или голубой осадок указывают на присутствие циана во взятой пробе газа. Этим методом можно открыть 0,3 см3 циана в 10 см3 синильной кислоты. [c.8]

    Анализ жидкостей. Как правило, речь идет об определении газов, растворенных в жидкостях (водах различной природы и назначения, нефтепродуктах, растворах и др.). Наибольшее распространение для анализа таких объектов получили электрохимические и хроматографические методы. Электрохимические методы (полярография, амперометрия, кулонометрия) могут быть непосредственно использованы для определения газов в водах, что и определило приоритетность применения этого метода в решении такого рода задач. Газы, содержащиеся в нефтепродуктах (масла, топлива и пр.), обьино определяются газохроматографическими методами. В этом случае аналитическая процедура включает экстракцию газов из пробы анализируемой жидкости. [c.930]

    Методы электрического сопротивления эффективно применяются в качестве косвенных методов анализа жидкостей и газов определения концентрации растворов контроля уровня измерения и контроля содержания влаги в твердых (листо- [c.510]

    Кулонополярографический газоанализатрр типа ГКП-1 предназначен для определения концентрации сернистого ангидрида в воздухе производственных помещений. Действие прибора основано на использовании метода поглощения сернистого газа раствором иода с последующим электроокислением образующихся иодид-ионов. [c.263]

    Расход газа-носителя (объемную или линейную скорость потока) измеряют ротаметром, установленным на входе в колонку. Для более точного измерения применяют мыльно-пленочный расходомер (рис. 43), состоящий из калиброванной бюретки 1 и небольшой резиновой груши 5, заполненной мыльным раствором. Груига присоединена к бюретке нрн помощи тройника 2, через свободный конец которого подается газ-носитель. При легком пажатии на грушу уровеиь мыльного раствора повышается и часть его увлекается газом в виде пленки. Секундомером определяют время, за которое мыльная пленка проходит расстояние между двумя отметками калиброванного объема бюретки. По результатам замера рассчитывают объемную и линейную скорости потока газа-носителя (в мл/мпи и см/с) при различном давлении на входе в колонку. Расход газа-иосителя на выходе из колонки можно измерять также обычным жидкостным реометром, предварительно откалиброванным для определенного газа. При замене газа-носителя снова проводят калибровку. [c.97]

    С момента выхода из слоя точки фронта газа (раствора) с нулевой кон-центра[1ией, соответствующей началу проскока (практически с минимально возможной концентрацией, доступной для определения), завершается время адсорбционного, или защитного, действия слоя. [c.568]

    Иногда неправильно называют (но по существу не используют) в качестве основного признака классификации агрегатное состояние вещества, или способ измерения количества вещества для анализа, или, наконец, физические свойства, используемые для измерения (вес, цвет, электрические свойства и т. п.). Действительно, в зависимости от агрегатного состояния вещества выбирают тот или другой способ измерения количества вещества твердые вещества обычно взвешивают, при анализе растворов и газов чаще всего измеряют их объем. Однако если в измеренном объеме раствора, например хлорного железа, осаждают железо в виде гидроокиси, а затем прокаливают осадок и взвешивают окись железа, говорят о весовом методе определения железа. Если же определяют объем раствора марганцовокислого калия, необходимого для окисления двухвалентного железа в подготовленном растворе, то говорят об объемном методе анализа, независимо от того, бралн для анализа навеску материала, содержащего железо, или определенный объем раствора. [c.22]

    БУМАГА РЕАКТИВНАЯ ИНДИКАТОРНАЯ УНИВЕРСАЛЬНАЯ прикс няется для ориентировочного определения pH растворов, а также для быстрого открытия некоторых веществ в растворах и газах. Для определения pH тонкую беззольную бумагу пропитывают раствором соответствующего индикатора, а для открытия тех или иных веществ — растворами реактивов, реагирующих с открываемым веществом с образованием окрашенного продукта реакции. Пропитанную бумагу сушат на воздухе, не содержащем газов кислого и щелочного характера. Полоску Б. р. и. у. погружают в испытуемый раствор или наносят на нее каплю этого раствора. При испытании воздуха или газа Б. р. и.у., смоченную водой, вносят в газовое пространство. Во всех случаях наблюдают изменение окраски Б. р. и. у. Например, для открытия азотистой кислоты при контроле процесса диазотирования и ни-трозирования, брома — при контроле процесса бромирования пользуются иодкрахмальной бумагой (белого цвета), пропитанной растворами К1 и крахмала. Бумага чернеет или синеет при действии окислителей. Свинцовая бумага, пропитанная раствором ацетата свинца (белого цвета), чернеет при действии сероводорода и др. [c.48]

    К электродам первого рода относятся также газовые электроды, представляющие собой металлический проводник, контактирующий одновременно с определенным газом, который пропускают через раствор, и с раствором, содержащим ионы этого газа (или ионы, образующиеся при взаимодействии газа с молекулами растворителя). Металлический проводник адсорбирует газ, который непосредственно принимает участие в электродном процессе. Металл при этом выполняет функции проводника И катализатора, ускоряющего установление электродного равновесия между газом и его ионами в растворе. Металлический электрод должен быть химически инертным относительно раствора и всех остальных составляющих электрс- [c.323]

    Газометр наполнить из баллона азотом или инертным газом, предварительно очищенным от кислорода. Очистку азота от кислорода производить пропусканием газа через три колонки, наполненные спиралями из металлической меди и насыщенные раствором ЫН4С1 в ЫН40Н. При поглощении кислорода металлическая медь окисляется до Си + и раствор синеет. После подачи газа раствор быстро обесцвечивается, вследствие восстановления Си + до Си- металлической медью. После того как температура в термостате достигнет определенного значения, в сосуды 5 залить раствор гидросульфита цинка определенной концентрации (исследуемое вещество). Заполненные сосуды поместить в термостат и включить в общую систему. В аспиратор залить воду. Проверить герметичность системы и после установ- [c.166]

    Иногда определение идеального раствора связывают именно с выполнением для его компонентов закона Рауля. Однако, вообще говоря, не имеет значения, какое из соотношений (V. 53) или (V. 54) принять за исходное, поскольку эти соотношения вытекают одно из другого и дают функции смешения (V.52). Функции смешения при Т, р = onst оказываются одинаковыми для идеального жидкого раствора, идеальной газовой смеси и для смеси идеальных газов. Энергетические изменения при образовании идеального раствора являются нулевыми, изменяются только энтропийные характеристики. Подобное поведение систем взаимодействуюш,их частиц, как уже отмечалось при рассмотрении идеальных смесей реальных газов, возможно лишь в случае совпадения потенциалов взаимодействия пар всех типов (для бинарного раствора 1—2 это пары 1—1, 2—2 и 1—2). Для жидких растворов требование одинаковости потенциалов 11, 2 2 и 12, как условия идеальности смеси, является более жестким, чем для смесей реальных газов, поскольку межмолекулярные взаимодействия с увеличением плотности системы играют все большую роль. [c.240]

    Обратную реакцию — восстановление растворенного молекулярного кислорода — исследовали в работах [182, 183]. Скорость реакции очень низка, по всей вероятности, из-за слабой адсорбции на электроде промежуточных продуктов реактши. Предполагается, что реакция протекает на активных -местах (sp -углерод был в основном удален предварительной анодной поляризацией). В щелочной среде кинетические параметры реакции таковы а = 0,24, = 1 10 см с . Существештым моментом является то, что из-за высокого перенапряжения этой реакции растворенный кислород не может являться помехой при исследовании других катодных реакций на алмазных электродах даже в не продутых инертным газом растворах. Этим можно воспользоваться при некоторых аналитических определениях. Электрокатадиз кислородной реакции на дисперсном алмазе, промотированном порфирином Со и его пирополимером, исследовал в работе [184]. [c.62]

    Газометрическое определение. Из раствора выделяют таллий электролизом в виде металла (стр. 83). Если электрод с таллием обработать кислотой, то выделяется водород, объем которого при прочих равных условиях пропорционален количеству таллия, что и дает возможность газо-хметрического определения этого металла 696]. Метод требует специальной аппаратуры и не дает точных результатов, особенно при малых количествах таллия, так как при промывании осадок частично окисляется [2]. [c.125]

    Для определения серы к щелочному раствору плава приливают 1—3 мл 30%-ной HjOj и нагревают на электрической плитке, избегая бурного разложения перекиси водорода. После прекращения выделения пузырьков газа раствор осторожно кипятят 2—3 мин., затем выпаривают до 15—20 мл, охлаждают, пропускают через колонку с катионитом. Колонку промывают водой. Кислый раствор и промывные воды собирают в мерную колбу и разбавляют до 100 мл. [c.212]

    Раствор красителя фильтруют через стеклянный фильтр и охлаждают. Краситель выделяют добавлением концентрированной соляной кислоты до сильнокислой реакции при этом заметен запах сернистого газа. Раствор снова охлаждают и краситель отфильтровывают, промывают два раза порциями по 100 мл раствора, содержащего 150 г хлорида натрия и 50 г концентрированной соляной кислоты на литр. Полученный продукт оставляют на воздухе до полного высушивания. Он вполне пригоден как комплексонометри-ческий индикатор при определении кальция и магния. [c.22]

    Интерес к разработанному Клаусом процессу возродился после того, как было установлено, что при определенных условиях водные растворы аммиака избирательно абсорбируют сероводород из газов, содержащих также двуокись углерода. Было предложено несколько процессов, основанных на этом нринцине некоторые из них были осз ществлены (в последнее время) в опытном или промышленном масштабах, в основном в ФРГ. В период с 1949 по 1954 г. объем газа, очищаемого в ФРГ растворами аммиака, увеличился с 2,4 до 7,35 млн. в сутки [17]. Опубликован обзор [18] технологии очистки газа растворами аммиака по состоянию на начало 1957 г. [c.73]

    Равновесия твердая фаза—жидкость в свврх-критическом состоянии. Как известно, некоторые газы растворяются в твердых веществах, так, например, водород растворяется в металлах. Однако при определенных условиях содержание газа в жидкости или твердых веществах может быть значительно больше, чем можно заключить исходя из их нормального давления паров. [c.275]

    Сульфомасса после отдувки поступает на нейтрализацию сульфитом. Нейтрализацию проводят непрерывным способом (рис. 7). Сульфомассу и раствор сульфита натрия параллельно в определенном соотношении загружают в стальной футерованный кислотоупорной плиткой нейтрализатор 3. По широкой переточной трубе реакционная масса, содержащая значительное количество сернистого газа, поступает в колонну для отдувки 13 и стекает по насадке вниз. Противотоком снизу подается водяной пар,который отдувает сернистый газ от раствора натриевой соли бензолсульфокислоты. Освобожденный от сернистого газа раствор продукта через гидравлический затвор 2 поступает в сборник 1. Сернистый газ через эмалированный каплеуловитель 7 и игуритовый пакетный конденсатор 8 подается на участок выделения фенола. [c.51]

    По направлению движения различают вертикальную и боковую, латеральную миграцию вдоль пласта. Вертикальная миграция может быть внутрирезервуарной и происходит в пределах мощного пласта или в рифовом массиве. Межрезервуарная вертикальная миграция более явно проявляется в складчатых областях в связи с большей нарушенностью структур. Платформенные условия хотя и более спокойные, но флюиды, в том числе и угле-- водороды, по-видимому, также перемешаются не только вдоль пластов-коллекторов, т.е. латерально, но и по вертикали. Латеральная миграция может ограничиваться ближайшими структурами, препятствующими дальнейшему перемещению, но может идти и дальше, если ловушка не способна удержать нефть или газ или ловушка наполнена уже до краев . При перемещении мощного потока нефти и газа на более или менее значительное расстояние проявляется иногда так называемое дифференциальное улавливание при перемещении по цепи взаимосвязанных поднятий по линии их воздымания. По первоначальной схеме В. Гас-соу и С.П. Максимова, в самую близкую (и наиболее глубоко расположенную) к очагу генерации углеводородов ловушку первым приходит газ и заполняет ее полностью до замка (рис. 5.8, I). Если даже нефть и газ приходят совместно, то дополнительные порции газа вытеснят нефть в более высоко расположенную ловушку. В ней формируется нефтяная залежь, потом по мере прихода газа — нефтяная залежь с газовой шапкой, затем по мере увеличения газа — газовая залежь с нефтяной оторочкой, затем нефть переходит в структурно более высокие ловушки. Возникает как бы аномальное распределение — газовая залежь находится на более глубоких уровнях, а газонефтяные и чисто нефтяные выше. Затем в эту схему бьши внесены поправки с учетом пластового давления и давления насыщения нефти газом. При пластовом давлении выше давления насыщения на больших глубинах газ растворяется в нефти и могут возникать нефтяные залежи с высоким газонасыщением (рис. 5.8, П). По мере миграции углеводородов в более приподнятые структуры и уменьшении пластового давления газ вьщеляется из нефти в свободную фазу. Далее все идет по схеме, описанной выше. Схема не учитывает все разнообразие природных факторов, которые коренным образом могут ее нарушать. Подобная ситуация, возникающая при определенных условиях, является нестабильной и разрушается по любой причине погружение, изменение структурного плана, изменение [c.217]


Смотреть страницы где упоминается термин Определение газов в растворах: [c.556]    [c.211]    [c.125]    [c.71]   
Смотреть главы в:

Газовая экстракция в хроматографическом анализе -> Определение газов в растворах




ПОИСК





Смотрите так же термины и статьи:

Растворы газов



© 2025 chem21.info Реклама на сайте