Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ионы водорода, кислорода и азота

    Рентгеновские лучи, гамма-лучи, поток нейтронов и другие излучения большой энергии также вызывают в веществе глубокие физикохимические изменения и инициируют разнообразные реакции. Так, при действии ионизирующих излучений кислород образует озон алмаз превращается в графит оксиды марганца выделяют кислород из смеси азота и кислорода или воздуха образуются оксиды азота в присутствии кислорода ЗОг переходит в 50з происходит разложение радиолиз) воды, в результате которого образуются молекулярные водород, кислород и перекись водорода. Возникающие при радиолизе свободные радикалы (-Н, -ОН, -НОз) и молекулярные ионы ( НзО , -НзО ) способны вызывать различные химические превращения растворенных в воде веществ. [c.203]


    Ионы водорода, кислорода и азота [c.73]

    Для активации поверхности полимерных пленок используют также газовый разряд в атмосфере кислорода или гелия (обработка полиолефинов), тлеющий разряд (для полиэтилентерефталатных пленок) при 140 ""С, электронную или ионную бомбардировку ионами водорода, кислорода, азота, аргона (для полиолефинов, политетрафторэтилена, поливинилхлорида). В последнем случае адгезия этих пленок после обработки зависит от природы используемого газа. [c.139]

    Типичными представителями веществ с ионной связью являются соли, основные окислы и др. Типичными представителями веществ с атомной связью могут служить простые газы — водород, кислород, азот. [c.84]

    Электроотрицательность углерода (2,5) близка к середине шкалы, и он не может образовывать ионных или сильнополярных связей с водородом, кислородом, азотом и другими элементами. Образование ионных или атомных кристаллов для соединений углерода не характерно, и в основном они являются молекулярными системами. [c.395]

    При составлении уравнения полуреакции восстановления азота исходим из схемы N0 —> N0. В ходе этого процесса высвобождаются два атома кислорода, которые а кислой среде связываются в две молекулы воды четырьмя ионами водорода  [c.169]

    Многие пики можно исключить из числа пиков возможных молекулярных ионов просто на основании разумных структурных требований. В этом отношении часто очень полезно азотное правило . Оно утверждает, что молекула с четным молекулярным весом либо не должна содержать азот, либо число атомов азота должно быть четным нечетный молекулярный вес требует нечетного числа атомов азота. Это правило справедливо для всех соединений, содержащих углерод, водород, кислород, азот, серу и галогены, а также многие другие реже встречающиеся атомы, такие, как фосфор, бор, кремний, мышьяк и щелочноземельные элементы. Полезным выводом является утверждение, что простой разрыв (без перегруппировки) ординарной связи дает осколочный ион с нечетной массой из молекулярного иона с четной массой и, наоборот, осколочный ион с четной массой образуется из молекулярного иона с нечетной массой. Для этого вывода существенно также, что такой осколочный ион должен содержать все атомы азота (если они вообще имеются) молекулярного иона. Рассмотрение картины распада в сочетании с другой информацией будет также способствовать идентификации пиков молекулярных ионов. Следует помнить, что приложение А содержит брутто-формулы как осколков, так и молекул. [c.39]


    Из механизма диссоциации ясно также, что диссоциировать будут вещества, обладающие ионной или полярной связью, поэтому степень диссоциации зависит от природы растворенного вещества, вернее, от типа связи в его молекулах. Следовательно, из приведенных примеров растворов Na l (ионная связь), НС1 (полярная связь) и I2 (ковалентная связь) диссоциировать будут Na l и ИС1, а хлор в растворе будет находиться в виде молекул хлора. Если же в растворе оказываются сложные молекулы с различным типом химической связи, то распад на ионы произойдет в том месте молекулы, где существуют ионная и полярная связь. Так, молекула азотной кислоты HNO3 диссоциирует на ионы водорода Н + и кислотный остаток N0 , , который не распадается под действием воды, так как азот с кислородом связаны здесь ковалентной связью. [c.44]

    Ионы водорода, кислорода п азота [c.49]

    Чтобы понять, насколько важно связывание одной метаболической -последовательности с другой через общие метаболиты, следует рассмотреть энергетические потребности клетки. В природе вообще спонтанные явления приводят к нарушению упорядоченного расположения атомов и увеличению беспорядка, но в живых клетках постоянно происходит обратное. Так, например, если в раствор, содержащий молекулы уксусной кислоты и несколько видов неорганических ионов, внести определенные бактерии, то они быстро организуют атомы углерода, водорода, кислорода, азота и фосфора в такие сложные и упорядоченные структуры,из которых строятся макромолекулы их потомства. Как отмечал физи-ко-химик Г. Льюис Одни только живые организмы способны, по-видимому, противостоять огромному потоку явно необратимых процес- [c.12]

    Металлический барий активно реагирует с водородом кислородом, азотом и парами воды, образуя ионные соединения окись, гидрид и нитрид. Взаимодействие бария [c.47]

    Водородная связь образуется в тех случаях, когда водород, связанный с атомом А в составе соединения А — Н, в то же время взаимодействует еще с другим атомом В. Схематически это можно изобразить следующим образом А — Н... В. Составные части А и В таких соединений, как правило, являются ионами самых типичных окислительных элементов (неметаллов) — фтора, кислорода, азота. Поэтому соединения типа А — Н. .. В следует считать комплексными соединениями, комплексообразователем которых является ион водорода, а лигандами — ионы фтора, кислорода, азота. Таким образом, водородную связь можно рассматривать как результат одновременного взаимодействия иона водорода с двумя отрицательно заряженными ионами. [c.62]

    Поэтому максимальное значение координационного числа равно 2, т. е. один ион водорода не может присоединить больше чем два иона фтора, кислорода, азота. [c.62]

    Выделение и характеристика вещества. Выше было указано, что большинство органических соединений состоит из небольшого числа элементов кроме углерода, они содержат водород, кислород, азот и реже галоиды и серу. Поэтому качественный анализ для характеристики и определения вещества в органической химии применяется в значительно меньшей мере, чем в неорганической. Большинство органических веществ в отличие от ионов неорганических веществ не обладает характерными цветными реакциями или реакциями осаждения. [c.14]

    А. Авогадро, 1811 г.). Закон Авогадро позволил сделать выводы о числе атомов в молекулах газов например, таких, как водород, хлор, кислород, азот. Закон применим и для заряженных частиц в газовой фазе (электронов, ионов), если их концентрация невелика, а воздействием магнитных и электрических полей можно пренебречь. [c.20]

    ГОМОГЕННОЕ РАВНОВЕСИЕ - химическое равновесие в физически однородных, т. е. гомогенных системах, у которых нет поверхностей раздела между отдельными частями системы, отличающимися по составу и свойствам, как, например, равновесие водорода, кислорода и водяного пара равновесие кислорода, оксида углерода и диоксида углерода равновесие ионов и недиссоциированных молекул исходных электролитов в водных растворах и др. Г. р. имеет большое практическое значение во многих производственных процессах, например, синтез аммиака из водорода и азота и др. [c.78]

    Примером донорно-акцепторных ст-связей являются связи в ионах аммония (рис. П1.27, а) и гидроксония (рис. П1.27, б). Здесь атомы азота и кислорода предоставляют свои неподеленные пары, а ион водорода — вакантную 1з-орбиталь. Таким образом, донорно-акцепторная связь отличается от ковалентной только по способу образования. Доказательство — полная равноценность всех связей N—И и О—Н в получающихся ионах. Это, в свою очередь, означает, что [c.194]

    Двадцать из первых тридцати элементов периодической системы, а также четыре более тяжелых элемента необходимы для жизни. Водород, углерод, азот и кислород присутствуют в организме в виде многих соединений. Натрий, калий, магний, кальций и хлор присутствуют в виде ионов в крови и межклеточных жидкостях. Фосфор в виде фосфат-иона обнаружен в крови эфиры фосфорной кислоты содержатся в фосфолипидах и других соединениях гидроксиапатит содержится в тканях костей и зубов. Сера — важная составная часть инсулина и других белков. Фтор, содержащийся в виде фторид-иона в питьевой воде, необходим для образования прочных зубов и костей он необходим также для нормального роста крыс. Кремний, ванадий, хром, марганец, железо, кобальт, медь, цинк, селен, молибден, олово и иод в небольших количествах необходимы для жизни (микроэлементы). Сведения о некоторых из этих элементов были получены только в опытах с животными (особенно с крысами), однако весьма вероятно, что полученные данные относятся также и к человеку. [c.418]


    Пример. В ионах аммония и оксония НзО+ акцепторами электронных нар являются ионы водорода, но в качестве комплексообразователей следует рассматривать атомы, занимающие центральное положение, — атомы азота (к. ч. = 4) и кислорода (к. ч. = 3), выполняющие функции доноров. [c.108]

    Пример. В ионах аммония NH и оксония НдО акцепторами пар являются ионы водорода, но в качестве комплексообразователей следует рассматривать атомы, занимающие центральное положение, —i атомы азота (к. ч. = 4) и кислорода (к. ч. = 3), выполняющие функции доноров. Ион водорода можно считать комплексообразователем в гидродифторид-анионе HF (см. гл. 4 4.5), в котором ион находится в центре между двумя ионами F, и его к. ч. = 2. [c.140]

    С водородом элементы подгруппы азота образуют соединения состава КНз. Молекулы КНз имеют пирамидальную форму (см. рис. 3.4). В этих соединениях связи элементов с водородом более прочные, чем в соответствующих соединениях элементов подгруппы кислорода и особенно подгруппы галогенов. Поэтому водородные соединения элементов подгруппы азота в водных растворах не образуют ионов водорода. [c.186]

    Биологические системы состоят главным образом из водорода, кислорода, углерода и азота. Действительно, более 99% атомов из числа необходимых биологическим клеткам приходится на долю этих четырех элементов. Тем не менее, как известно, биологические системы нуждаются во многих других элементах. На рис. 23.5 показаны необходимые для биологических систем элементы. К их числу относятся шесть переходных металлов-железо, медь, цинк, марганец, кобальт и молибден. Роль этих элементов в биологических системах обусловлена главным образом их способностью образовывать комплексы с разнообразными электронно-донорньши группами. Многие ферменты, выполняющие в организме роль катализаторов, функционируют благодаря наличию в них ионов металлов. Принцип действия ферментов будет рассмотрен подробнее в гл. 25. [c.375]

    Кривая окислительно-восстановительного титрования может быть пройдена и в обратном направлении, если к раствору окисленной формы постепенно добавлять сильный восстановитель. При этом следует принять меры предосторожности против возможного окисления восстановителя кислородом воздуха. Измерения при этом должны проводиться в атмосфере инертного газа (азота или аргона). Другое условие, которое должно соблюдаться в точных работах, относится к необходимости поддержания постоянного значения pH раствора в ходе титрования, так как окислительно-восстановительный потенциал обычно находится в зависимости от концентрации ионов водорода в растворе. С этой целью титрование проводится в буферных смесях с достаточно высокой буферной емкостью. [c.146]

    В спектрах масс твердых веществ можно всегда обнаружить линии ионов водорода, кислорода, азота, углерода, как атомарных, так и молекулярных. Они образуются из остаточных газов в источнике. Остаточное давление в ионном источнике слагается из парциальных давлений газов и продуктов крекинга масла, проникающих из высоковакуумных насосов. Газы, сорбированные поверхностью твердых веществ, также являются источником регистрируемых масс. Поверхности электродов загрязняются при подготовке проб к масс-спектрометрическо.му анализу примесями из режущего инструмента, из реактивов, воды, растворителей и т.п. Наконец, эти же примеси могут содержаться и в самих исследуемых веществах. [c.53]

    Пики молекулярных ионов должны располагаться только прн четных т/г, если только в соответствующих молекулах не содержится нечетное число атомов азота. Это правило выполняется для всех органических молекул, состоящих из наиболее распространенных элементов углерода, водорода, кислорода, азота, фосфора, серы, кремния и галогенов. Отсюда следует, что пик при нечетном т/г не может соответствовать молекуляртому иону не содержащего азот соединения скорее всего он отвечает осколочному иону, азотсодержащей примеси, а в редких случаях также продукту ион-молекуляр-ной реакции. При низком давлении, обычно поддерживаемом в ионном источнике, столкновения между ионами и нейтральными молекулами представляют собой сравнительно редкое событие. Все же иногда такое событие происходит чаще всего оно привадит к захвату атома водорода молекулярным ионом и, сяедовательно, к появлению в масс-спектре иона [М -I- В таких случаях предполагаемую молекулярную массу соединения можно подтвердить химической ионизацией (разд. 5.3.2), в которой создаются особо благоприятные условия для ион-молекулярных реакций. [c.184]

    Ацетамидная группа ЫНСОСНд также обладает активирующим действием и ориентирует в орто,пара-положения, но в меньшей степени, чем свободная аминогруппа. Оттягивание электронов атомом кислорода карбонильной группы приводит к тому, что атом азота амидной группы становится гораздо более слабым донором электронов, чем атом азота аминогруппы. Электроны менее доступны для образования связи с ионом водорода, и поэтому амиды будут гораздо менее слабыми основаниями, чем амины амиды карбоновых кислот не растворяются в разбавленных водных кислотах. Электроны менее доступны для обобществления с ароматическим кольцом, и поэтому ацетамидогруппа активирует ароматическое кольцо менее сильно, чем аминогруппа. [c.717]

    С удельное электрическое сопротивление (т-ра 8—4,2 К) 3,55 мком-см. Н. не становится сверхпроводником даже нри т-ре 0,41 К. Металлический И. парамагнитен. Легко образует сплавы с плутонием и ураном заметно растворим в жидком кадмии. Получены сплавы Н. с алюминием, бериллием, марганцем, металлами семейства железа и платины. И. легко вступает в реакции с водородом, кислородом, азотом, серой и др. элементами, образуя, в зависимости от условий, соединения разного состава. При комнатной т-ре реакции с кислородом и азотом протекают очень медленно. В соляно1"1 кислоте Н. растворяется полностью лишь при наличии фторосиликат-ионов. Металлический Н. получают восстановлением фторида КрР кальцием при нагревании в инертной среде. Н. получается как побочный продукт при выделении плутония из облученного ядерного горючего. Изотоп 237Np образуется в ядерпых реакторах, его используют для получения изотопа к-рый применяют в космических исследованиях и микроэнергетике. [c.53]

    Кремний, кислород, алюминий и множество тяячелых поливалентных элементов образуют природные линейные и трехмерные полимеры — минералы, построенные посредством высоконоляризованных и ионных химических связей. В то же время элементы органогены — углерод, водород, кислород, азот, расположенные в I и II периодах таблицы Д. И. Менделеева, для которых характерны относительно малонолярные химические связи, служат основой огромного большинства как до сих нор полученных в. лабораториях, так и выпускаемых промышленностью синтетических полимеров. Такие чисто органические полимеры, в отличие от минеральных, обладают оптимальным сочетанием относительной стабильности и изменчивости, способностью проявлять весьма разные свойства в зависимости от состава, строения, способов модификации и переработки. Не удивительно, что природа выбрала именно органические соединения для построения самых пластичных систем — живых организмов, главным образом из больших полимерных молекул, включающих С, Н, О, N. [c.72]

    Ион водорода и водородная связь. В 1887 г. М. А. Ильинский высказал и ооосновал утверждение, что хотя водородный атом может соединяться валентной связью лишь с одним атомом, но в случаях связи с кислородом или азотом тяготеть может к двум таким атомам . Близкие к этому взгляды высказал примерно в то же время Н. И. Бекетов. Развитие наших знаний о строении и свойствах молекул подтвердило это и привело к открытию еще одной своеобразной формы связи как между атомами, принадлежащими различным молекулам, так и между атомами одной и той же молекулы. Это — связь через водородный атом. [c.82]

    Особенно заметно влияние поверхностной обработки при применении высокомодульных волокон с модулем упругости более 400 ГПа [9-32]. В этом случае увеличивается активнм площадь поверхности волокна. Механизм и методы активации поверхности аналогичны используемым для саж. Применяются обработка на воздухе при 400-800 С, в озонированном воздухе при 120-150°С, в возбужденных плазмой кислороде или аммиаке, ионной бомбардировкой поверхности волокна кислородом, азотом, водородом, метаном [9-150]. [c.531]

    Взаимодействие простых веществ с кислотами — окислительно-восстановительный процесс, в котором кис- ота выступает в качестве окислителя, а простое вещество — в роли восстановителя. Характер протекания процесса зависит рт а) природы кислоты и ее концентрации б) температуры с) природы простого вещества. Разбавленные кислоты, как правило, проявляют окислительные свойства за счет иона водорода, а концентрированные — за счет элемента (не водорода и не кислорода) в высшей степени окисления. НС1 и в разбавленном и в концентрированном виде в реакциях с металлами проявляет окислительные свойства за счет иона водорода . HNO3 и в разбавленном и в концентрированном виде проявляет окислительные свойства только за счет азота (в степени окисления -1-5). [c.107]

    Особенно важной была идея о том, что атомы, соединяясь в определенном порядке в соответствии с их валентностью, взаимно влияют друг на друга таким образом, что частично изменяется их собственная природа. Так, свойства атома водорода существенно меняются в зависимости от того, соединен ли он с атомом хлора (в молекуле НС1), кислорода (в молекуле НгО) или азота (в молекуле NH3). В первом случае в водных растворах атом водорода сравнительно легко отщепляется от молекулы НС1 в виде иона Н" ", что и определяет кислотные свойства хлороводорода от молекулы воды ион водорода отщепляется с гораздо большим трудом, так что кислотные свойства выражены у воды весьма слгьбо наконец, для молекулы аммиака отщепление иона водорода еще менее характерно — аммиак ведет себя как основание. Особенно многообразно проявляется взаимное влияние атомов в молекулах органических соединений. [c.99]

    Азот и фосфор являются элементами УА группы периодической системы Д. И. Менделеева. На внешнем энергетическом уровне атомов этих элементов находится пять электронов из них три р-электрона. Поэтому в нормальном состоянии они проявляют валентность, равную трем. Наибольшее изменение в химических свойствах элементов УА группы наблюдается при переходе от азота к фосфору. В атомах азота внешним энергетическим уровнем является второй, содержащий только 5- и р-поду ровни, а подуровень с1 отсутствует. Атомы азота при переходе в возбужденное состояние могут увеличить число непарныхэлектронов максимум до четырех и при этомза счет потери одного электрона. В этом случае образуется электронная конфигурация а азот становится четырехвалентным, как в ионе [ЫН4] . Поэтому азот не проявляет валентности, равной пяти. В атомах фосфора наружным энергетическим уровнем является третий, состоящий из трех подуровней з, р и й. При возбуждении атомов фосфора увеличение числа непарных электронов происходит за счет использования -подуровня с образованием электронной конфигурации поэтому фосфор в отличие от азота может проявлять валентность, равную пяти. Размеры атомов азота и фосфора меньше, а энергия ионизации этих элементов соответственно больше, чем углерода и кремния. В связи с этим азот и фосфор при химических реакциях не теряют электронов и не превращаются в элементарные катионы. Сродство к электрону этих элементов незначительно и поэтому они, как правило, не превращаются и в элементарные анионы. Азот и фосфор образуют соединения как с кислородом, так и с водородом, только с ковалентными связями. Таким образом, азот и фосфор являются неметаллами. Причем свойства неметаллов у них выражены сильнее, чем у углерода и кремния. [c.213]

    Молекулы спиртов ассоциированы за счет возникновения между ними водородных связей. Водородная связь возникает там, где есть водород и сильно электроотрицательный элемент — ( ггор, кислород, азот, хлор, сера. Так как электронная плотность от водорода смещена, то водород может взаимодейсгвовать с неподеленной электронной парой другого атома или иона. Эта связь более слабая, возникающая за счет электростатического и донорно-акцепторного взаимодействий. Для водородной связи характерны направленность в пространстве и насыщенность. [c.222]

    Удаление одного из интранулярных водородов понижает внутреннюю энергию циклодекана, особенно если этот водород принадлежал атому типа III. Поэтому тригональные углеродные атомы (карбонильная группа, экзоциклическая двойная связь, карбониевый ион) или гетероатомы (азот, кислород) занимают в десятичленном кольце положение типа III. При этом наблюдается [91] уменьшение расстояния между двумя С-атомами типа III (или соответственно атомом углерода и гетероатомом), находящимися на противоположных сторонах кольца (в положении 1 и 5). Для самого циклодекана соответствующее расстояние составляет 3,29 А, для циклодеканона СНа - - - СО 3,04—3,13 А, для 1-оксациклодекано-на-5 О - - - СО 2,83 А. [c.374]

    Межмолекулярная водородная связь возникает между молекулами, в состав которых входят водород и сильно электроотрицательный элемент — фтор, кислород, азот, реже хлор, сера. Поскольку в такой молекуле общая электронная пара сильно смещена от водорода к атому электроотрицательного элемента, а положительный заряд водорода сконцентрирован в малом объеме, то протон взаимодействует с неиоделенной электронной парой другого атома или иона, обобществляя ее. В результате образуется вторая, более слабая связь, получившая название водородной. [c.77]

    Вследствие электростатического происхождения водородной связи ее образуют лишь атомы наиболее электроотрицательных элементов — фтора, кислорода, азота. Обычно неподеленная электронная пара притягиваемого атома наиболее тесно сближается с притягивающим ионом водорода. Вода особенно подходящее вещество для образования водородной связи, поскольку каждая молекула имеет два атома водорода и две неподеленные электронные пары, а следовательно, может образовать четыре водородные связи. Тетраэдрическое расположение поделец-ных и неподеленных электронных пар обусловливает тетраэдрическое направление этих четырех связей в пространстве и приводит к образованию характерной кристаллической структуры льда (рис. 9.8). Эта структура, в которой каждая молекула окружена только четырьмя ближайшими соседними частицами, весьма ажурна, и поэтому лед является веществом с аномально низкой плотностью. При плавлении льда тетраэдрическая структура частично разрушается и молекулы воды сближаются, вот почему плотность воды превышает плотность льда. Однако многие водородные связи сохраняются, и агрегаты молекул с тетраэдрической структурой присутствуют в воде при температуре за- [c.252]

    Относительная легкость отщепления серина вызвана, по-видимому, миграцией пептидного остатка от азота к кислороду образующаяся в результате эфирная связь гидролизуется гораздо легче амидной (см. стр. 506). Устойчивость дипептидов обусловлена, вероятно, близостью двух полярных групп — аминной и карбоксильной, затрудняющих подход иона водорода к СО-группе. [c.515]


Смотреть страницы где упоминается термин Ионы водорода, кислорода и азота: [c.37]    [c.242]    [c.117]    [c.116]    [c.192]    [c.236]    [c.222]   
Смотреть главы в:

Новый справочник химика и технолога Химическое равновесие -> Ионы водорода, кислорода и азота




ПОИСК





Смотрите так же термины и статьи:

Азот водород

Азот кислород

БГК и кислорода и водорода

Водорода ионы



© 2025 chem21.info Реклама на сайте