Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гетерогенно-гомогенное окисление углеводородов

    Прежде чем построить стадийную схему сложного гетерогенного окислительного процесса, рассмотрим для сравнения наиболее точные схемы гомогенного окисления углеводородов и оценим возможности протекания аналогичных реакций на поверхности катализаторов. Как показали Налбандян и Фок [192], при фотохимическом окислении пропана (100°) наряду с первичными продуктами — перекисями — образуются и альдегиды. При температурах выше 300° перекиси не обнаруживаются, образуются только альдегиды, СО и СО2. Из этих опытов следует, что альдегиды не являются продуктами распада гидроперекисей. Альдегиды и перекиси образуются параллельно и независимо друг от друга, и перекисные радикалы должны превращаться в эти соединения различными путями. Таким образом, имеет место конкуренция радикальных реакций в определенной области температур и давлений она приводит к сосуществованию ряда реакций, в результате которых образуются разнообразные продукты. [c.88]


    Таким образом, при гомогенном окислении углеводородов ряд стадий осуществляется гетерогенно. Поверхность катализаторов значительно больше, чем стенок реактора, по составу более разнообразна, и на ней возможно протекание различных радикальных реакций. Следовательно, в гомогенных процессах установлено наличие гетерогенных стадий, а при окислении углеводородов на гетерогенных катализаторах — гомогенных стадий. Для определения этих стадий необходимо применять специальные методы исследования. [c.107]

    Эта реакция аналогична изомеризации перекисного радикала в гомогенном окислении углеводородов и была принята нами ранее [1] как основной процесс при гетерогенном окислении углеводородов. На поверхности катализатора происходит взаимодействие углеводорода с кислородом и образуются перекисные радикалы. В зависимости от прочности связи М — О и М — С с окислом металла КОа способен изомеризоваться. Так, при окислении пропилена на окислах металлов возможны следующие реакции  [c.227]

    По теории гомогенного окисления углеводородов перекисные радикалы являются основными активными формами, ведущими процесс. Вероятно, и при гетерогенном окислении образуются промежуточные соединения такого типа. Следует также учесть возможность изомеризации этих радикалов. Закрепление радикала решеткой твердого тела не должно препятствовать реакции изомеризации. Имеется возможность закрепления свободной валентности радикала на свободной валентности поверхности, но эта реакция приводит к потере реакционной способности радикала. Если же существует адсорбционное равновесие таких перекисных [c.127]

    В работе [512] показано влияние гетерогенных стадий в гомогенном окислении углеводородов в жидкой фазе. [c.336]

    Обычно зарождение цепей в окисляемых углеводородах происходит по обоим механизмам — гомогенному и гетерогенному. Вклад каждого механизма в суммарную скорость зарождения цепей зависит от условий окисления — соотношения объема углеводорода и поверхности реактора, скорости диффузии кислорода к поверхности металла и т. ц. Так, например, при длительном хранении топлив в больших резервуарах зарождение цепей будет происходить преимущественно по гомогенному механизму. При жидкофазном окислении топлива в реакторе в условиях интенсивного перемешивания смеси и барботирования кислорода зарождение цепей с большей вероятностью происходит по гетерогенному механизму. Гетерогенный механизм зарождения цепей остается постоянным при окислении углеводородов как в газовой, так и в жидкой фазе. Иначе обстоит дело при гомогенном зарождении цепей. [c.29]


    В условиях хранения и эксплуатации углеводородное топливо С растворенным в нем кислородом находится в контакте с металлической поверхностью стенками баков для хранения, трубопроводов, насосов. Известно, что металлы, их оксиды и соли катализируют окисление углеводородов. В связи с этим необходимо определить влияние поверхности конструкционных материалов на окисление топлива в условиях хранения соотношение между процессами окисления топлива в объеме и на стенке стадии окисления, на которые воздействует металлическая стенка ингибиторы, которые следует применять для стабилизации топлива в присутствии металлической поверхности и др. Наряду с гетерогенным катализом в топливе. может протекать и гомогенный окислительный катализ, вызываемый растворенными в нем солями металлов. Роль металлов в окислении углеводородов неоднократно исследовалась. Достаточно подробные данные имеются о механизме гомогенного катализа окисления углеводородов растворенными солями жирных кислот. [c.192]

    В упрощенном виде схема гетерогенно-гомогенных процессов на примере окисления углеводородов дана на рис. 3.1. Как следует из этой схемы, на катализаторе наряду с поверхностной реакцией 1 образования вещества 8 происходит реакция 2 генерирования радикалов в объем. Образовавшиеся радикалы с кислородом дают перекис-ные радикалы (реакция 3), превращающиеся в гидроперекиси при взаимодействии с углеводородами (реакция 4). Перекиси могут либо разрушаться на иоверхности с образованием промен<уточного продукта 8 (реакция 6) либо с кислородом давать один из конечных продуктов (реакция 7). В свою очередь продукт 3, взаимодействуя с нерекисными радикалами, может дать конечный продукт Га но реакции 8. Кроме всех этих реакций в процессе окисления может происходить генерация перекисных радикалов объемным путем. за счет реакции 5. [c.52]

    В книге рассмотрены превращения углеводородов на гомогенных и гетерогенных катализаторах, в частности окисление углеводородов — один из важнейших процессов современной нефтехимии. Приведена классификация катализаторов (неорганические комплексы, металлы, кислотные гомогенные и гетерогенные, бифункциональные) и разобраны механизмы их действия с точки зрения современных представлений физической и органической химии. [c.4]

    ДО дает восстановленный катализатор и продукты реакции. Этот механизм возможен при взаимодействии одной молекулы окисляемого ве-и ества с одной молекулой кислорода, однако при глубоком окислении, когда по стехиометрии для реализации процесса необходимо участие в реакции большого числа молекул кислорода, механизм становится маловероятным (например, для окисления одной молекулы этилена в элементарном каталитическом акте должны одновременно участвовать три молекулы кислорода, для окисления более сложных молекул необходимы десятки молекул кислорода). Стадийный механизм включает по крайней мере две стадии процесса, при этом вначале происходит стадия диссоциативной хемосорбции кислорода на катализаторе с образованием активированного комплекса. На второй стадии молекула окисляемого вещества взаимодействует одновременно с несколькими активированными комплексами с образованием продуктов реакции и восстановлением катализатора. При гетерогенно-гомогенном радикально-цепном механизме катализатор облегчает наиболее энергоемкий этап цепного процесса - зарождение цепей. Образовавшиеся радикалы органических веществ десорбируются в газовую фазу, давая начало объемному развитию цепи. Гомогенные стадии в гетерогенно-гомогенном катализе изучены пока недостаточно глубоко. Многочисленные экспериментальные данные по глубокому окислению углеводородов часто проти- [c.11]

    Следует отметить, что, пользуясь этим же методом раздельного калориметрирования, А. М. Маркевич [18] в 1948 г. открыл, что при темновой реакции взаимодействия водорода с хлором, для которой всегда предполагалось зарождение ценей в объеме, оно на самом деле происходит на стенках реакционного сосуда. В 1950 г. гетерогенное образование активных гомогенных частиц показали с помощью этого же метода С. Ю. Ело-вич и П. Ю. Бутягин [19] нри окислении углеводородов при низких давлениях. [c.64]

    Возможны и такие случаи, когда реагирующие вещества находятся в разных фазах, но реакция между ними является гомогенной. В качестве примера можно привести окисление углеводородов в жидкой фазе молекулярным кислородом. Исходные вещества — кислород и углеводород — находятся в разных фазах, но реакция между ними является гомогенной, так как в химическую реакцию вступает растворенный в углеводороде кислород. Гетерогенной в рассматриваемом случае является не химическая реакция, а предшествующая ей нехимическая стадия растворения кислорода. [c.33]


    Поскольку на всех стадиях окисления углеводородов тип реакции один и тот же, катализаторы, как гомогенные, так и гетерогенные, ускоряют все стадии в одинаковой степени. Поэтому основной смысл применения катализаторов в процессах окисления углеводородов заключается в том, что катализаторы способствуют резкому снижению продолжительности индукционного периода и уменьшению температуры процесса. Понижение температуры благоприятствует увеличению выхода полезных продуктов [145]. Вследствие этого катализатор увеличивает избирательность окисления в той степени, в какой он снижает температуру процесса. Из гомогенных катализаторов применялись окислы азота, хлористый водород и озон, из гетерогенных — смесь фосфата алюминия и окиси меди на инертном носителе, окислы железа [146], бораты и фосфаты олова [130]. [c.308]

    Стадийные схемы различных реакций окисления углеводородов рассматривались выше как протекающие только на поверхности контактов. В настоящее время считается доказанным [214—2191 существование поверхностно-объемных реакций, т. е. процессов, в которых сложная химическая реакция протекает частично гетерогенно на поверхности твердого тела, а частично гомогенно в объеме газа или жидкости. Оказалось, что многие процессы каталитического окисления, считавшиеся совсем недавно чисто гетерогенными, протекают по поверхностно-объемному механизму. К таким реакциям относится окисление водорода [220], метана [221], этана [222], этилена [223], пропилена [224] и аммиака [225] на платине при высоких температурах. При окислении углеводородов на металлическом катализаторе (платине) реакция начинается на поверхности катализатора и заканчивается в газовой фазе. [c.121]

    Рассматривая реакции, проводящиеся в газовой и паровой фазах, не следует забывать большую перспективность осуществления процессов в жидкой фазе. В литературе почти не имеется подробного анализа реакции каталитического гетерогенного окисления углеводородов в жидкой фазе. Проведение процессов в жидкой фазе под давлением при гомогенном окислении позволило достичь высокой селективности. [c.234]

    Характерной особенностью гетерогенно-гомогенных реакций окисления углеводородов является протекание гетерогенных стадий по радикальному, а не по цепному механизму. Например, при окислении метана цепными остаются только превращения формальдегида в объеме (анализ радикалов, вылетающих с поверхности в объем, подтверждает это положение). [c.118]

    При окислении На АП-56 и-ксилола и стирола наблюдается выход реакции в объем (гетерогенно-гомогенный процесс). Поэтому для каталитической очистки газов от ароматических углеводородов был сконструирован реактор со свободным объемом за слоем катализатора это увеличивает степень превращения ароматических углеводородов. [c.128]

    Гомогенное образован11е альдегидов из углеводородов п кислорода молекулярным путем в настояш ее время представляется маловероятным. Большинство авторов предполагает поэтому, что эта реакция гетерогенна. Поскольку, однако, механизм каталитического окисления углеводородной и альдегидной молекул на стеклянной поверхности неизвестен и, кроме того, самый факт наличия таких гетерогенных процессов в рамках обш,ей реакции гомогенного окисления углеводородов еш,е не получил объективного подтверждения, то сделанное предположение о начальной реакции на поверхности также не решает все затруднения, которые возникают при вскрытии пстинпой природы акта зарождения цепей. [c.129]

    Так, нейтрализация кислоты [целочью является гомогенным гомофазным процессом, рассмотренное выше гидрирование этилена — гомофазным гетерогенным процессом Окисление углеводорода в жидкой фазе газообразным кислородом представляет собой гомогенный гетерофазнын процесс. Наконец, гашение извести [c.33]

    Понятия гомо- и гетерофазности совершенно независимы от 1ю-нятия гомо- и гетерогенности. Так, нейтрализация кислоты щелочью является гомогенным гомофазным процессом, рассмотренное выше гидрирование этилена — гомофазным гетерогенным процессом. Окисление углеводорода в жидкой фазе газообразным кислородом представляет собой гомогенный гетерофазный процесс. Наконец, гашение извести [c.51]

    По теории гомогенного окисления углеводородов перекисные радикалы являются основными активными формами, ведущими процесс. Вероятно, и при гетерогенном окислении образуются промежуточные соединения такого типа. Следует также учесть возможность изомеризации этих радикалов, когда свободная валентность атакует связь внутри радикала и происходит миграция атома. Закрепление радикала решеткой твердого тела не должно препятствовать реакции изомеризации. Имеется возможность закрепления свободной валентности радикала на свободной валентности поверхности, но эта реакция приводит к потере реакционной способности радикала. Если же существует адсорбционное равновесие таких перекисных радикалов, то всегда имеется вероятность одновременного образования и гибели форм со свободно валентностью, а продолжительность жизни их иа поверхности определит скорость процесса их дальнейшего превращепня. [c.98]

    Ранее считалось [59], что гетерогенное каталитическое окисление углеводородов протекает аналогично их гомогенному цепному окислению. Поэтому многие гсслсдоЕЗтели переносили закономерности цепных радикальных реакций на гетерогенное окисление. Подробно разбирались схемы гетерогенного окисления, в которых промежуточными формами, ведущими процесс, считались свободные радикада.1. Поскольку в ряде частных реакций гомогенного и гетерогенного окисления углеводородов наблюдались одинаковые продукты, предположение об одинаковом механизме этих процессов считалось справедливым. Однако методом ЭПР углеводородные илн перекисные радикалы на поверхности катализаторов при окислении углеводородов не были обнаружены. Наступило разочарование, и, высказы1вались мнения, что в присутствии гетерогенных катализаторов свободные радикалы не образуются. [c.74]

    Как отмечалось выше, при контактном окислении реакция нередко выходит в объем между зернами катализатора, и некоторая часть исходного органического вещества и промежуточных продуктов подвергается гойогенным окислительным превращениям. В отсутствие гетерогенного катализатора состав продуктов гомогенного окисления углеводородов в газовой фазе в сильной степени зависит от температуры и концентрации кислорода. При относительно невысоких температурах (до 300 °С) и некотором избытке кислорода преобладают реакции мягкого окисления, сопровождающиеся образованием кислородсодержащих веществ. С повышением температуры усиливается деструктивное окисление в этих условиях кислородные производные с удовлетворительным выходом получают за счет сокращегния времени контакта. Выше 600 °С, особенно при недостатке кислорода, превалируют реакции окислительного распада- и дегидрирования. Механизм окислительной деструкции углеводородов в этих условиях хорошо согласуется с положением [4] о конкуренции бимолекулярных превращений промежуточных гидропере-кисных радикалов с термическими мономолекулярными реакциями распада. Закономерности и многочисленные примеры го-, могенного окисления подробно описаны в монографии [20]. [c.14]

    Исследование окислительных реакций показывает условность приведенного выше деления реакций этого типа по методу их осуществления. Как показали работы Полякова [63], Эмаауэля [64], Налбандяна [65], Воеводского [66] и других исследователей, гомогенное окисление углеводородов обычно начинается на стенке сосуда, т. е. процесс инициирования имеет каталитический характер. Как и во многих других цепных реакциях, разрушение активных форм, ведущих цепь, происходит также в значительной мере на стенке. В то же время, по данным Ковальского и Богоявленской [67], Еловича и Бутягина [15], Полякова [68], в определенных условиях окисление на катализаторах протекает гетерогенно-гомогенным путем с выходом реакции в объем. Для всех трех направлений окислительных процессов общими являются некоторые существенные особенности химизма реакции образование пере-кисных соединений, атомарного кислорода и др. [c.16]

    На примере окисления углеводородов на гетерогенных окисных катализаторах было установлено, что в жидкофазном процессе в ряде случаев образуются иные продукты, чем в газофазном с той же исходной системой [77, 78]. Продукты реакции при этом приближаются к продуктам реакции жидкофазного цепного окисления с гомогенными катализаторами из растворимых солей металлов переменной валентности. Так, о-ксилол в газовой фазе окисляется на пятиокиси ванадия во фталевый ангидрид, а в жидкой — в о-толуи-ловую кислоту, которая получается при окислении о-ксилола в жидкой фазе и с солями кобальта и марганца. В некоторых работах роль поверхности окисных катализаторов при жидкофазном окислении углеводородов сводят только к генерированию радикалов для ценного процесса, протекающего в объеме [79, 80]. Однако исследования [c.42]

    Так, полного и четкого выделения сернистых соединений из нефтяных фракций экстракционными или хроматографическими методами практически невозможно достигнуть из-за малой полярности этих компонентов, близкой к полярности ароматических углеводородов. Г. Д. Гальнерн с сотр. предложил окислять нефтяные сульфиды, трудно отделяемые от других компонентов, в суль-фоксиды перекисью водорода [169, 170]. При обработке светлых нефтяных дистиллятов эта реакция протекает в мягких условиях, и высокоселективно [171], и гетерогенным эмульсионным окислением удается получить сульфоксиды, полностью свободные от примесей тиофеновых производных [172]. Селективность окисления фракций, кипящих выше 350—360°С, значительно хуже даже при более жестких условиях (при гомогенном окислении 37%-ной Н2О2 в уксусном ангидриде). Например, среди продуктов окисления фракции С21—С24 ромашкинской нефти обнаружено около 30% производных тиофена и бензотиофена [173]. [c.22]

    Гетерогенным и гомогенным окислением газообразных метановых углеводородов получают альдегиды, кетоны, спирты. Так, окис-лон1 ем метана кислородом воздуха в присутствии окислов азота получают формальдегид. При окислении пропана и бутана в жидкой фазе воздухом в присутствии ацетатов металлов образуется смесь спиртов, альдегидов и кетонов. [c.59]

    СТИН частицы, в данном случае радикалы, могут переходить в свободный обт.ем реакционной зоны, инициируя в нем протекание цепной реакции окисления углеводородов, то есть реализуется гетерогенно-гомогенный реасим окисления органических примесей. Впервые возможность выхода радикалов в свободный объем реакционной зоны была показана опытами М.В.Полякова [81, 82]. По своей сущности процесс окисления в гетерогенно-гомогенном режиме можно рассматривать как замедленный взрыв , быстро прекращаемый в результате обрыва цепи в простран-стне свободного объема реакционной зоны или на фрагменте конструкции реактора (рис. 4.1). [c.121]

    При обсуждении природы каталитической активности соединений непереходных металлов в окислительных реакциях следует иметь в виду, что зти реа4сции на такого типа катализаторах можно осуществлять не только в гетерогенных, но и в гомогенных условиях, например в жидкой фазе. В этом случае не приходится говорить о каких-либо дефектах кристаллической структуры, которые иногда связьшают с проявлением активности твердофазных катализаторов. Рассмотрим несколько примеров жидкофазного каталитического окисления углеводородов и других веществ. [c.130]

    Отсутствие экспериментальных данных о природе элементарных актов при каталитическом окислении углеводородов не позволяло выяснить истинный механизм каталитических гетерогенных реакций. Несмотря на это, ряд исследователей предположил, но аналогии с реакциями, протекающими в гомогенной фазе, что каталитическое окисление углеводородов протекает через образование и взаимодействие радикалов. Сосин [189] предполагает, что при окислении на V2O5 ароматических углеводородов имеет место следующая последовательность реакций  [c.85]

    В процессе синтеза углеводородов из окиси углерода и водорода группой советских исследователей методом меченых атомов было показано, что на поверхности катализатора возникают и развиваются полидюризационные плоские цепп. Следовательно, могут существовать процессы, в которых должны наблюдаться обратные реакции — уменьшение размера молекулы в результате деструктивных и окислительных реакций. Поэтому Рогинский [199] предложил назвать такой процесс закрепленной цепной деструктивно-окислительной реакцией. Это интересное предположение пока еще не уточнено, не разобраны стадии процесса и не выяснена природа промежуточных продуктов, которые способствуют развитию цепных реакций при окислении органических веществ. В гипотезе о закрепленных цепях на поверхности учитываются как полупроводниковые свойства катализатора, так и строение реагирующих молекул и радикалов, образующихся в результате реакции, тогда как в ряде других стадийных схем гетерогенного окисления углеводородов механически перенесены ценные схемы гомогенных химических реакций в гетерогенный катализ. [c.92]

    Сравнение предполагаемых схем гетерогенного и гомогенного окисления проиаиа показывает, что в обоих случаях радикалами, ведущими реакцию, являются и нормальные и изопропильные радикалы. При взаимодействии этих радикалов с адсорбированным кислородом образуются перекисный ион-радикал НО2 и новый углеводородный радикал типа СдН , который прп взаимодействии с кислородом газовой фазы или адсорбированным кислородом превращается в альдегид или в кислоту. Расиад перекисных радикалов приводит к образованию конечных продуктов реакции СО, СО2 и НдО. В гомогенном окислении перекисные пропильные радикалы, ведущие процесс, при взаимодействии с углеводородом, вновь возрождают пропильные радикалы, которые обеспечивают течение цепного процесса. В случае же гетерогенного окисления такого рода процесс сводится к возрождению свободной валентности поверхности вследствие десорбции иронильных перекисных радикалов. Цепным процессом является также реакция глубокого окисления, при которо1"1 вследствие отрыва перекисного радикала с меньшим числом атомов углерода, чем в исходном радикале, непрерывно рождаются углеводородные радикалы, которые также вступают в реакцию с кислородом, вновь отщепляют перекисный радикал, иока эта последовательная деструкция пе прпводпт к полному окислению, и тогда на свободной валентности поверхности вновь начинается такой же процесс. [c.107]

    Дискуссионным остается еще вопрос о возможности существования гетерогенно-гомогенной реакции при наличии свободного объема только между зернами катализатора. В последнее время Поляков [227] с сотрудниками методом раздельного колориметри-рования показал, что неполное окисление углеводородов и спиртов является гетерогенно-гомогенным каталитическим процессом, причем роль катализаторов играют как контакты мягкого и глубокого [c.124]

    В присутствии катализаторов мягкого окисления (УаОб и У204) имеет место гетерогенно-гомогенный распад ацетальдегида, являющийся побочной реакцией, которая резко снижает выход альдегидов ири окислении углеводородов. [c.182]

    Стадийные схемы различных процессов окисления углеводородов рассматривались выше как протекающие только на поверхности гетерогенного катализатора. Однако в настоящее время считается доказанным, что сложная химическая реакция идет частично гетерогенно на поверхности катализатора, а частично гомогенно в объеме газа или жидкости (см. гл. VIII). Оказалось, что многие процессы каталитического окисления, считавшиеся совсем недавно чисто гетерогенными, протекают по поверхностно-объемному механизму. К таким реакциям относится, например, окисление метана, зтана и этилена на платине при высоких температурах [217] реакция начинается на поверхности, а заканчивается в газовой фазе. [c.102]

    Окисление о-ксилола и нафталина на пятиокиси ванадия было иоследоваио методом раздельного калориметрирования [237, 238]. Температура в слое оказалась значительно выше, чем температура газа в центре реактора (рис. 24). С повышением температуры 01кисления разность между температурой катализатора, и газа снижается, что указывает на увеличение доли гомогенных стадий в окислении ароматических углеводородов. Следовательно, до 450 °С окисление протекает только гетерогенно (па поверхности катализатора), а при дальнейшем повышении температуры становится гетерогенно-гомогенным. [c.113]

    При исследовании механизма действия гетерогенных катализаторов используют модельные оистемы, имитирующие отдельные стадии жидкофазного окисления. Например, гомогенные превращения радикалов, десорбирующихся с поверхности катализатора в объем раствора, можно моделировать реакциями окисления углеводорода в присутствии гомогенных инициат01ров — веществ, распадающихся на свободные радикалы в тех же условиях, в которых осуществляется гетерогенный катализ. Имеющиеся в литературе сведения о константах скоростей отдельных элементарных стадий позволяют определить соотношение скоростей гомогенных и гетерогенных реакций в процессе окисления. Большое значение для установления механизма инициирования гетерогеннокаталити-ческого окисления углеводородов имеет изучение распада гидроперекисей. [c.266]

    Результаты изучения гетерогенно-гомогенных процессов в газовой фазе показали, что некоторые продукты мягкого окисления углеводородов образуются не на поверхности, а в объеме. Эти данные указывают на возникновение радикалов на поверхности катализаторов, что подтверждено зкспериментально методом ЭПР для окисления метана. Поэтому чтобы повысить селективность таких процессов, необходимо обеспечить образование перекисных радикалов, их изомеризацию на поверхности катализатора и дальнейшее превращение в целевые кислородсодержащие продукты в объеме [59]. [c.291]

    Характерной особенностью глубокого окисления углеводородов является протекание их по гетерогенно-гомогенному механизму с вылетом радикалов с поверхности катализатора в объем. Следовательно, для повышения селективности таких процессов необходима слабая связь радикалов (обычно перекишых) с поверхностью, и сохранение их в объеме для образования продуктов глубокого окнсления. Наиболее эффективным катализатором глубокого окисления является платина. На поверхности этого катализатора сосуществуют различные формы кислорода, легко образуются разные адсорбированные формы из углеводородов, число центров поверхности, на котогрых протекает глубокое окисление, значителвно больше, чем на окисных катализаторах, н наконец, [c.293]


Смотреть страницы где упоминается термин Гетерогенно-гомогенное окисление углеводородов: [c.146]    [c.31]    [c.43]    [c.188]    [c.169]    [c.102]    [c.204]    [c.265]    [c.276]   
Смотреть главы в:

Окисление углеводородов на гетерогенных катализаторах -> Гетерогенно-гомогенное окисление углеводородов




ПОИСК





Смотрите так же термины и статьи:

Гетерогенные гомогенных

Гомогенное окисление углеводородов



© 2025 chem21.info Реклама на сайте