Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Адсорбция, природа и энергия адсорбционных сил

    При адсорбции газов н паров на поверхности адсорбентов образуется не только мономолекулярный, но и полимолекулярный адсорбционный слой. Такая адсорбция возможна, если адсорбционные силы действуют на расстояниях, превышающих размеры молекул. Этим свойством обладают силы Ван-дер-Ваальса. Энергия молекулярного притяжения U пары молекул убывает, как известно, ио закону U=—Л/г , где г — расстояние между центрами молекул и А — константа, зависящая от природы молекул. [c.40]


    В Советском Союзе широким фронтом ведутся работы по исследованию влияния характера пористости адсорбентов на их адсорбционные свойства, по исследованию зависимости адсорбции и энергии адсорбционных сил от структуры и химической природы поверхности адсорбентов. [c.12]

    Адсорбция поверхностно-активных веществ (ПАВ) как органического, так и неорганического происхождения на поликристаллическом осадке происходит избирательно, поскольку различные грани кристалла обладают неодинаковой поверхностной энергией. Торможение (ингибирование) роста одних граней, на которых адсорбировано вещество, и ускорение роста других, свободных, граней вызывает изменение характера роста кристалла и структуры образующегося осадка. ПАВ, специально вводимые в электролит либо присутствующие в растворе в качестве примесей, могут адсорбироваться лишь в определенной области потенциалов. Так, органические вещества молекулярного типа адсорбируются преимущественно вблизи потенциала нулевого заряда, катионного типа при отрицательных зарядах поверхности, т. е. в области потенциалов отрицательнее потенциала нулевого заряда, а анионного типа (например, анионы сульфосоединений) — на поверхности, заряженной положительно, т. е. в области потенциалов положительнее потенциала нулевого заряда. Сопоставление области адсорбции органического вещества с его влиянием на электрохимические и структурные характеристики в процессе электроосаждения позволяет установить природу его адсорбционного действия. [c.335]

    Механизм каталитических гетерогенных реакций очень сложен и зависит от природы реакции. Все каталитические гетерогенные реакции включают в себя стадии адсорбции и десорбции. За счет энергии адсорбционного взаимодействия с поверхностными атомами катализатора ослабляются, а иногда и разрываются, химические связи реагирующих частиц. Например, реакция гидрогенизации этилена на катализаторе протекает через стадии адсорбции [c.199]

    Для понимания процессов адсорбции на твердых телах, имеющих огромное практическое значение, необходимо прежде всего познакомиться с природой сил, действующих на границе твердого тела с газом и жидкостью, а также с величинами энергии адсорбционного взаимодействия. Эти представления, необходимые для построения теоретических основ адсорбции, рассматриваются в следующей главе. [c.116]


    Рассмотрим теперь адсорбционное (в отсутствие коррозии или растворения) влияние среды и ПАВ на механические свойства компактного материала — моно- или поликристаллического либо аморфного твердого тела. Это явление было открыто П. А. Ребиндером на кристаллах кальцита (1928 г.) и получило название эффекта Ребиндера. Очень характерно его проявление на ряде пластичных металлов. Так, будучи весьма пластичными по своей природе, монокристаллы цинка под действием микронной ртутной пленки или же массивные цинковые пластины при нанесении капли жидкого галлия или ртути хрупко ломаются уже при очень малых нагрузках (рис. 6). По Ребиндеру, общее термодинамическое объяснение таких явлений состоит в резком понижении поверхностной энергии о и тем самым работы разрушения вследствие адсорбции из окружающей среды (или контакта с родственной жидкой фазой). Одной из наиболее универсальных и вместе с тем простых моделей, связывающих прочность материала Рс с величиной ст, служит схема Гриффитса, являющаяся по сути приложением теории зародышеобразования к решению вопроса об устойчивости трещины и устанавливающая пропорциональность Рс ст . [c.312]

    Некоторые исследователи предлагали для оценки 5 различные вещества в качестве адсорбатов, в частности и-бутан, который кипит при 0° С. Нами [41 было показано, что вычисление 5 но адсорбции к-бутана с применением уравнения БЭТ указывает па существенную зависимость м от химической природы поверхности, от энергии адсорбционного взаимодействия. Следовательно, выбор со в каждом конкретном случае должен быть аргументирован. [c.86]

    В основе физико-химического влияния среды на процессы деформации и разрушения твердых тел лежит эффект понижения их прочности в результате адсорбции. Природа этого весьма общего физико-химического явления состоит в следующем. При деформации и разрушении твердых тел всегда имеет место образование новых зародышевых поверхностей. Работа образования таких поверхностей уменьшается, если свободная поверхностная энергия на границе твердого тела с окружающей средой оказывается сниженной по сравнению с ее наибольшим значением в вакууме ( или в воздухе). Следовательно, присутствие поверхностно-активной среды должно приводить к облегчению возникновения и развития пластических сдвигов и зародышевых трещин. В микромасштабе это означает, что взаимодействие с адсорбционно-активными молекулами (или атомами) помогает перестройке и разрыву межатомных связей в дапном твердом материале. [c.336]

    Современное изучение адсорбционных и каталитических свойств твердых пористых тел немыслимо без знания площади их поверхности и внутренней структуры. Эти показатели с точки зрения физической адсорбции и каталитических процессов наряду с химической природой поверхности являются наиболее важными характеристиками адсорбентов и катализаторов. Во-первых, величина удельной поверхности определяет количество вещества, адсорбируемого единицей массы адсорбента, дает необходимые сведения о характере адсорбционного процесса, о наличии моно- или полимолекулярно-адсорбцион-иых слоев, позволяет сравнить результаты теоретических вычислений адсорбции, поверхностной энергии, работы и теплоты адсорбции с экспериментальными данными и целым рядом других факторов, тесно связанных с применением адсорбентов (катализаторов) в различных отраслях промышленности и народного хозяйства. Во-вторых, удельная поверхность и структура адсорбентов дают возможность глубже понять механизм адсорбции и гетерогенных каталитических реакций, протекающих на поверхности и в объеме адсорбента (катализатора), позволяют судить о количестве и протяжспности активных центров, а также о кинетике и избирательности сорбционного и каталитического процессов. [c.102]

    В результате проведенных исследований было установлено, что наиболее подходящим адсорбатом для измерения поверхности твердых тел является аргон Адсорбция аргона мало чувствительна к химической природе поверхности. Из газов, обычно применяемых для определения поверхности (азот, аргон, криптон, ксенон), аргон имеет наименьшую молекулу. Критическая температура двумерной конденсации для него ниже температуры жидкого азота, и поэтому осложнения, связанные с фазовыми переходами в адсорбционном слое, исключены. Хотя энергия адсорбционного взаимодействия для него ниже, чем, например, для азота, они достаточно велики, чтобы можно было пренебречь взаимодействием адсорбат— адсорбат вдоль поверхности и применять уравнение метода БЭТ для расчета величины поверхности. [c.195]

    Учение об адсорбции находится на том же пути детального и широкого развёртывания чрезвычайно плодотворной работы по выяснению природы адсорбционных взаимодействий, установлению этой природы для различных типов адсорбции, связи различных адсорбционных эффектов с электростатической или с дисперсионной компонентами адсорбционной энергии. [c.114]


    Измерение дифференциальных теплот адсорбции значительно дополняет те сведения, которые можно получить из изотерм адсорбции. Так, они позволяют непосредственно характеризовать энергию адсорбционных сил в зависимости от природы и структуры сорбента, а также и от строения молекул адсорбата, величины заполнения сорбционного объема, состояния вещества в нем и дают возможность оценить степень неоднородности поверхности исследуемых природных сорбентов. [c.137]

    Далеко не полный перечень упомянутых неоднородностей вносит значительные осложнения в однозначное истолкование механизмов адсорбционных и каталитических процессов. Обычно эти осложнения учитываются введением функций распределения участков поверхности по соответствуюш пм характеристикам (теп-лотам адсорбции, тепловым эффектам химических поверхностных реакций, энергиям активации хемосорбции и катализа). Иногда эффекты, воспринимаемые как следствие неоднородностей в кинетике и статике адсорбции и в кинетике каталитических реакций, объясняются как результат некоторого отталкивательного взаимодействия между адсорбированными молекулами [141. Однако до сих пор не выяснен вопрос о реальности и природе постулируемых сил отталкивания. Возникает проблема идентификации природы неоднородностей, разработки приемов их распознавания, позволяющих отличать географические неоднородности от влияния сил отталкивательного взаимодействия. [c.12]

    Уравнение (И1.6) было использовано Лондоном, а затем и другими учеными для экспериментального доказательства дисперсионной природы адсорбционных сил и связи энергии адсорбции со свойствами адсорбированных молекул и адсорбента. [c.111]

    Дифильный характер молекул типичных ПАВ обусловливает два близких по природе явления 1) адсорбцию ПАВ на различных поверхностях раздела 2) возможность агрегации молекул (ионов) ПАВ в растворах с образованием коллоидных частиц — мицелл. Оба процесса протекают самопроизвольно и носят о р и е н т а ц ионный характер, т. е. сопровождаются определенной ориентацией асимметричных молекул ПАВ в адсорбционных слоях или в мицеллах, обеспечивающей уменьшение энергии Гиббса системы. [c.6]

    Наиболее важным и своеобразным является адсорбционное понижение прочности твердых тел, т. е. облегчение их диспергирования под действием внешних сил влиянием адсорбирующихся веществ. При этом новые поверхности развиваются иа основе разных поверхностных дефектов — изъянов структуры, развитие поверхностей облегчается адсорбцией. Предельным случаем является адсорбционное самопроизвольное диспергирование вследствие понижения поверхностной энергии до очень малых значений под влиянием поверхностно-активной среды. Именно такова природа самопроизвольного эмульгирования под влиянием больших добавок поверхностно-активных веществ и распускания (коллоидного растворения) бентонитовых глин в воде. Пептизация является диспергированием коагуляционных агрегатов, которые слабо связаны силами Ван дер-Ваальса и поэтому легко распадаются на отдельные первичные частички под влиянием адсорбции. [c.67]

    Для выяснения природы адсорбционного коэффициента Ь необходимо учесть, что, согласно уравнению (III.1), константа 1 слабо зависит от температуры. Напротив, в отличие от адсорбции процесс десорбции всегда активирован, так как для осуществления десорбции молекуле необходимо сообщить энергию, превышающую теплоту адсорбции Q. Поэтому 2. которая дает долю молекул, обладающих энергией большей, чем теплота адсорбции Q, должна изменяться с температурой согласно больцмановской экспоненциальной функции  [c.39]

    В работе дается также общая теория изменения энергии системы я процессе адсорбции в зависимости от диэлектрической проницаемости адсорбата. Ильин Б. В. Природа адсорбционных сил. М. Л. Техтеоретиздат,. 1952. С. 71. [c.147]

    Широко распространенное явление адсорбции частиц на электроде заметно влияет на изменение двойного электрического слоя и свойства электродной поверхности. Это значит, что в цепи ряда последовательных стадий, осуществляемых с одинаковыми скоростями, энергия, затрачиваемая на преодоление адсорбционных слоев, возникающих на электроде, становится настолько значительной, что в конечном итоге именно эта стадия оказывается наиболее замедленной, лимитирующей скорость всего электродного процесса. Вместе с тем, электрохимические процессы с участием органических или коллоидных ПАВ чрезвычайно сложны по своей природе. Скорость электродного процесса и механизм его протекания определяются природой ионов, находящихся в растворе и разряжающихся на электроде, свойствами раствори- [c.385]

    В работах Киселева, Жданова и их сотрудников калориметрия и хроматография использованы как чувствительные методы оценки адсорбционных сил и энергии адсорбции веществ различной химической природы [1—5]. [c.137]

    В. П. Древингом, О. М. Джигит, Г. Г. Муттиком, В. И. Лыгиным, Н. Н. Авгуль, А. А. Исирикьяном, Ю. А. Эльтековым, А. П. Карнауховым, И. Ю. Бабкиным, А. Г. Безусом и другими ведутся работы по исследованию зависимости адсорбции и энергии адсорбционных сил от структуры и химической природы поверхности адсорбентов. Успеху этих работ способствовали разработанные А. В. Киселевым и его сотрудниками новые точные методы измерений не только изотерм, но и дифференциальных теплот адсорбции, а также комплексные методы изучения структуры адсорбентов и катализаторов. [c.265]

    В-четвертых, судя по имеющимся в литературе данным для адсорбции Сз+ на ртути [41, 42], свободная энергия адсорбции катионов мало зависит от природы электрода, тогда как на висмуте в водных и спиртовых растворах энергия адсорбции анионов заметно ниже, чем на ртути [50]. В среде ДМФ энергия адсорбции анионов на В1 практически такая же, как нaHg [53]. Все эти эффекты указывают на существенное изменение взаимодействия молекул растворителя с поверхностью висмута при переходе от одного растворителя к другому, а также на весьма близкую энергию адсорбционной связи галогенидов с висмутом и со ртутью. [c.119]

    Низкотемпературная форма хемосорбцин водорода, обнаруженная нами, проявляет удивительное сходство с соответствующей формой хемосорбции кислорода. Действительно, обе эти формы адсорбции требуют энергии активации, обе в одинаковом температурном интервале имеют качественно сходные изотермы, изобары и изостеры адсорбции и тем самым удовлетворяют экспоненциальной неоднородной поверхности. Вероятнее всего в хемосорбции как водорода, так и кислорода принимают участие одни и те же центры поверхности, обладающие избыточной электронной плотностью и способные в случае кислорода полностью перетянуть электрон от Адсорбционного центра. Такими электронно-донорными центрами, вероятно, являются валентно- и координационно-ненасыщенные ионы металла, образующиеся при удалении остаточных гидроксильных и карбонатных групп поверхности. При всей схожести в поведении форм адсорбции кислорода и водорода и природе центров адсорбции трудно объяснить образование на поверхности ионных кристаллов нейтральных молекул водорода без электронного взаимодействия. Очевидно, образующиеся на поверхности дефекты создают такие электрические поля, которые поляризуют молекулы водорода [41—43]. При этом происходит, вероятно, внутримолекулярный перенос электронной плотности от иона металла к иону кислорода, так что суммарный поверхностный заряд не изменяется. Различие в величинах хемосорбции кислорода и водорода при одинаковых условиях тренировки окислов можно объяснить в рамках электронной теории значительным изменением положения уровня Ферми при хемосорбции кислорода, препятствующим дальнейшей хемосорбции в заряженной форме. Судя по теоретическим расчетам [44], донорная способность катиона должна усиливаться в ряду окислов гольмия, иттрия, лантана. Наши результаты подтверждают такую очередность в перечисленном ряду окислов температурная область хемосорбции водорода и кислорода сдвигается в сторону низких температур, т. е. растет доля слабых и наиболее активных центров. [c.306]

    Изучена адсорбция водорода и окиси углерода на арсениде галлия и селениде цинка в обычной вакуумной установке объемным методом при температурах от —186 до -f400° С и давлениях 0,0554—1,588 мм рт. ст. Для указанных систем найдены энергии активации адсорбции, рассчитаны теплоты адсорбции, определены относительные адсорбционные коэффициенты. Адсорбция смесей газов исследована при температурах от —186 до - ЗбСС. Кривые зависимости удельной величины адсорбции от температуры имеют сложный характер с двумя явно выраженными максимумами, положение которых зависит от состава смеси и природы адсорбента. На основании анализа изобар адсорбции газовых смесей, кинетических зависимостей, данных по измерению электропроводности сделаны предположения о механизме адсорбционно-каталитического процесса. [c.260]

    В результате проведенного выше анализа данных по плотности прочно связанной воды можно сделать вывод, что высокая энергия взаимодействия ее молекул с активными центрами гидрофильной поверхности и, как следствие, друг с другом еще не предопределяет повышенной по сравнению с объемной плотности связанной воды. Поверхность навязывает адсорбционным слоям структуру, зависящую от топографии и природы активных центров, т. е. в определенном смысле оказывает разу-порядочивающее действие на связываемую воду. Конечно, подвижность адсорбированных на гидрофильных поверхностях молекул воды, как это следует из анализа изменений энтропии при адсорбции [85] и данных ЯМР (см., например, [86]), намного ниже, чем в жидкой воде. Но приспособление адсорбционного водного слоя к топографии активных центров приводит к нарушению в нем целостности сетки межмолекулярных водородных связей в ИК-спектрах сорбированной воды полосы валентных колебаний слабо нагруженных ОН-групп воды существенно выше, чем в жидкой воде [66]. [c.35]

    На рис. 10 приведена по М. М. Дубинину схема трех типов пор (а — до адсорбции, б — после адсорбции). Переход пар- -— жидкость осуществляется, как и всякий фазовый переход, через стадию дисперсного состояния в виде межфазного слоя. На поверхности поры устанавливается равновесие между адсорбирующимися и десорбирующимися соедипепиями (или продуктами реакции), которое в значительной степени зависит от природы и размера ССЕ, попадающих и уходящих с поверхности адсорбционного слоя. Это равновесие обусловливает определенную толщину адсорбционного слоя, в котором под действием силового поля слоя ири определенных температурах происходит деструкция молекул при энергиях активации значительно меньших, чем энергия активации деструкции молекул в объемной фазе. Толщина адсорбционных и межфазных слоев зависит от размеров адсорбируемых и десорбируемых ССЕ на поверхности катализатора и влияет на выход и качество получаемых продуктов реакции. [c.203]

    Адсорбцию можио рассматривать как взаимодействие молекул адсорбата с активными центрами поверхности адсорбента. Такое рассмотрение этого явления оказалось достаточно общим и удобным, особенно для адсорбции на твердых адсорбентах, когда возникают трудности в экспериментальном определении межфазного натяжения. Кроме того, такая интерпретация адсорбции открывает возможность нсслелвдвания природы адсорбционного взаимодействия. Если отсутствует химическое взаимодействие адсорбата с адсорбентом, то адсорбция, как правило, является результатом самопроизвольного уменьшения поверхностной энергии системы, выражающегося в компенсировании поля поверхностных сил. При наличии специфического сродства адсорбата к адсорбенту, адсорбция возможна вследствие самопроизвольного уменьшения энергии Гиббса всей системы, что может привести даже к увеличению поверхностной энергии. Это возможно в том случае, если изменение химической составляющей энергии Гиббса системы больше изменения поверхностной энергии. При химической адсорбции между адсорбентом и адсорбатом образуется химическая связь, и их индивидуальность исчезает. [c.108]

    Одним из важных практических выводов при рассмотрении природы адсорбционного взаимодейств1[я является вывод о значительно лучшей адсорбции веществ в трещинах и порах, когда проявляется преимущественно дисперсионное взаимодействие, так как вблизи адсорбированной молекулы находится большее число атомов твердого тела. Если же в адсорбционном взаимодействии значителен электростатический вклад, то в щелях и порах положительные и отрицательные заряды компенсируют друг друга и наибольший потенциал оказывается на выступах, где и будет преобладать адсорбция, особенно при образовангш водородных связей (адсорбция воды, метилового спирта и др.). Кроме того, из уравнений (И1.6) и (III. 7) следует, что чем большее число атомов имеет молекула адсорбата, тем с большей энергией она будет притягиваться к адсорбенту. [c.111]

    Электрохимические процессы с участием органических веществ часто проводят в неводных растворителях, так как в воде многие органические вещества слабо растворимы. Природа растворителя прежде всего сказывается на константах скорости реакции к и адсорбционного равновесия В . От природы растворителя зависит и коэффициент активности реагирующих молекул. При переходе от одного растворителя к другому при =сопз1 изменяется заряд поверхности, что приводит к изменению ф потенциала и, соответственно, скорости электродного процесса. Наконец, от природы растворителя зависят величины и На скорость электродных процессов с участием органических веществ влияет природа металла. При переходе от одного металла к другому изменяются энергия адсорбции органических веществ и молекул воды, 1 31-потенциал и потенциал максимальной адсорбции Ет- В меньшей степени зависит от природы электрода отношение ( < 0—К ) 2НТТ . Так, например, для ртути, кадмия и висмута этот коэффициент для одного и того же вещества оказывается примерно одинаковым. [c.383]

    Вопрос адсорбции на биографически неоднородной поверхности молекул, занимающих две или более элементарные площадки, был рассмотрен в работе Ю. А. Чизмаджева и В. С. Маркина. Для вывода изотермы адсорбции на такой поверхности требуются более детальные сведения о структуре неоднородности, о характере распределения адсорбционных мест. Были рассмотрены два крайних случая. Первый случай — когда места с одинаковыми значениями энергий адсорбции объединены в макроскопические (по сравнению с размерами одной адсорбционной площадки) участки— доменная неоднородность. Второй случай —когда адсорбционные площадки с различными значениями энергии связи совершенно произвольно разбросаны на поверхности — микроскопическая неоднородность. Предполагалось, что функция распределения площадок по энергиям адсорбции равномерна и что все связи адсорбированной частицы с поверхностью идентичны (одинаковы по своей природе). Теоретическое рассмотрение привело к выводу, что в обоих случаях изотерма в области средних заполнений близка к логарифмической. Однако при доменной неоднородности наклон изотермы (значение фактора /) определяется разбросом энергий адсорбции в расчете на всю частицу, т. е. зависит от числа связей, а при микроскопической неоднородности— разбросом энергии адсорбции, отнесенной к одной связи, т. е. не зависит от числа овязей. [c.98]

    О, адсорбированные анионы, адатомы металлов и др.) а/ и ttj/i — соответствующие значения адсорбционных коэффициентов. Уравнение отвечает аддитивному влиянию различных адсорбированных частиц на энергию активации процесса хемосорбции органического вещества. В случае собственной неоднородности поверхности уравнение (3.57) выполняется при условии, что адсорбция различных компонентов происходит на одних и тех же адсорбционных центрах и энергии адсорбции на i-x местах компонентов А, В, С... связаны между собой простой связью (ЛО°а) =а (ДО°в) = a"( AG° ). .., т. е. вид функции распределения для различных компоненто.в сохраняется неизменным. Одновременное выполнение названных условий при адсорбции веществ, сильно отличающихся по своей химической природе, представляется маловероятным. Возможна некоррелируемость или сложная связь свободных энергий и энергий активации процессов хемосорбции различных частиц. Соответственно уравнения, выражающие зависимость Уа от 0i, могут отличаться от уравнения (3.57) и быть значительно более сложными. Аддитивность в большей мере соответствует модели наведенной неоднородности, когда частицы различных сортов одновременно участвуют в соз-.дапии общего дипольного потенциала на поверхности или определенной плотности электронного газа. [c.111]

    Электродные процессы с участием органических соединений на металлах группы шлатины относятся к типичным электрокаталитическим процессам, которые характеризуются тем, что участвующие в них исходные вещества и (или) промежуточные и конечные продукты хемосорбируются на поверхности электрода. Поэтому природа электрода сказывается на скорости и направлении этих реакций прежде всего через зависимость от материала электрода энергий адсорбции компонентов и заполнений поверхности компонентами. В этом отношении электрокаталитиче-ские процессы сходны с обычными гетерогенными каталитическими процессами, главную роль в которых также играют адсорбционные явления и взаимодействие адсорбированных частии друг с другом. Для электрокаталитических процессов, как и для гетерогенных, характерны дробные, а иногда и отрицательные порядки реакций по реагирующим веществам. [c.268]

    Если появление одного из компонентов смеси у поверхности раздела фаз приводит к снижению поверхностного натял ения, то ее концентрация у поверхности раздела фаз самопроизвольно увеличивается. Это явление — изменение концентрации вещества у поверхности раздела фаз по сравнению с объемной фазой — называют адсорбцией. Адсорбционные явления многообразны, так как многообразны возможные сочетания агрегатного состояния и состава пограничных фаз. Однако все они имеют общую термодинамическую природу — осуществляются с понилсением энергии Гиббса (или энергии Гельмгольца в зависимости от условий). [c.206]

    Теории стерической стабилизации в общих чертах правильно объясняют природу адсорбционной составляющей свободной энергии или расклинивающего давления, однако методы расчета или АЕайа для рвальных систем, особенно для черных углеводородных пленок, в настоящее время весьма далеки от совершенства и не могут использоваться для предсказания стабилизирующей способности ПАВ. В обоих вариантах теории стерической стабилизации неявно предполагается, что адсорбированные молекулы достаточно прочно закреплены на поверхности частиц. При стабилизации дисперсных систем с твердыми частицами это условие легко реализуется, например, при хемосорбции. Для жидких поверхностей раздела, где стабилизация осуществляется только растворимыми ПАВ, а десорбция возможна в обе фазы, теория, на наш взгляд, должна включать и степень (энергию) закрепленности молекул на поверхности раздела относительно адсорбции в каждую из фаз. [c.162]

    Теплота адсорбции является нторой важнейшей количественной характеристикой адсорбционгюй системы, определяющей механизм адсорбционного процесса. При физической адсорбции ее теплота близка по величине к теплоте конденсации, при кемосорбции - - к теплоте химической реакции. Энергия адсорбции зависит как от природы и строения молекул адсорбата, так и огТ1рироды и структуры поверхности адсорбента. [c.130]


Смотреть страницы где упоминается термин Адсорбция, природа и энергия адсорбционных сил: [c.70]    [c.481]    [c.25]    [c.171]    [c.52]   
Смотреть главы в:

Адсорбенты и их свойства -> Адсорбция, природа и энергия адсорбционных сил




ПОИСК





Смотрите так же термины и статьи:

Адсорбционная энергия

Адсорбция энергия



© 2025 chem21.info Реклама на сайте