Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электроды, измеряющие окислительно-восстановительный потенциал раствора

    Обезвреживание хрома автоматизировано аналогичным образом. В качестве реагента для восстановления шестивалентного хрома используется бисульфат натрия. Величина pH кислой среды автоматически поддерживается путем добавки раствора серной кислоты. После восстановления шестивалентного хрома вода обрабатывается щелочными стоками, получающи-мис.ч после удаления цианидов. pH этих стоков составляет 10,5—11 единиц. Осаждение гидроокиси хрома происходит в отстойнике, расположенном на территории завода. Концентрация шестивалентного хрома измеряется датчиком со стеклянным и золотым электродами, установленным в I секции резервуара. Эти электроды измеряют окислительно-восстановительный потенциал системы шести—трехвалентный хром . Результаты измерений сильно зависят от абсолютной чистоты электродов, поэтому необходимо тщательно очищать их поверхность каждую неделю. Кстати, то же можно сказать и об электроде для контроля цианидов раз в неделю необходимо восстанавливать его амальгамирование. Вся измерительная аппаратура (регуляторы, дозаторы реагента и т. д.) аналогична описанной ранее. На задатчике автоматического регулятора хрома установлено значение 1 мг/л, что соответствует приня- [c.178]


    Если прибавить хингидрон к какому-либо раствору, то он, распавшись на хинон и гидрохинон, дает раствор, содержащий окисленную (хинон) и восстановленную (гидрохинон) формы. Платиновым электродом можно измерить окнслительно-восстано-вительный потенциал такого раствора (гл. V, 5). Так как окисление-восстановление протекает с участием водорода, то окислительно-восстановительный потенциал раствора должен зависеть от концентрации ионов водорода. На поверхности платинового электрода На ионизуется и устанавливается равновесие [c.291]

    Таким образом, чтобы определить окислительно-восстановительную способность раствора, в него помещают платиновый электрод и электрод сравнения и измеряют ЭДС системы. В геологии эту операцию часто называют определением Eh (или eh) раствора (из французского обозначения — потенциал [c.342]

    Последовательность выполнения работы. Окислительно-восстановительные системы приготовить из 0,1 М растворов сульфатов, хлоридов железа разной степени окисления (II и III), Титрованием определить концентрации исходных растворов. Если концентрация растворов одинакова, то соотношение активности ионов Fe + и Fe2+ можно заменить соотношением их объемов. Составить смеси с различным соотношением окисленной и восстановленной форм ионов железа 9 1 8 2 7 3 6 4 5 5 4 6 3 7 2 8 1 9. В сосуд для измерения налить 10 мл приготовленной смеси, погрузить платиновый электрод и с помощью каломелевого электрода измерить ре-докс-потенциал. В качестве компенсационной установки использовать потенциометр. Перед заполнением сосуда последующей смесью необходимо ополоснуть дистиллированной водой сосуд, платиновый электрод, солевой мостик. Измерения э.д.с. повторять до тех пор, пока расхождения не будут превышать 1—2 мВ. [c.305]

    Окислительно-восстановительный потенциал любой полуреакции может быть измерен путем сравнения с потенциалом стандартного водородного электрода. Например, стандартный электродный потенциал цинка можно измерить с помощью прибора, изображенного на рис. 16.5, где цинковый электрод погружен в 1 М раствор при 25 °С. Условное обозначение этого электрохимического элемента имеет вид [c.290]

    Для определения окислительно-восстановительного потенциала готовят раствор, содержащий в одинаковой концентрации окисленные и восстановленные формы вещества. В раствор помещают платиновый электрод и измеряют электродвижущую силу элемента, образованного этим электродом и нормальным водородным электродом. Величины, полученные при pH 7,0 обозначаются Ео- [c.119]


    Предложен метод определения сероводорода в воздухе, основанный на поглощении сероводорода раствором иода, причем за концентрацией следят по изменению потенциала электрода, находящегося в растворе [Ю. На основании этого метода разработан прибор [11 . Раствор иода в 0,01 . НС1 соприкасается с анализируемым воздухом, непрерывно поступающим в поглотительный сосуд. Если в воздухе присутствует сероводород,- то происходит реакция образования иодида. Изменение окислительно-восстановительного потенциала на платиновом электроде измеряется относительно каломельного электрода сравнения ламповым вольтметром. Погрешность определения 5%. [c.154]

    Интенсивность присоединения или отдачи электронов различными веществами измеряется так называемым о/сис-лительно-восстановительным потенциалом. Чем больше его величина, тем сильнее окислительные свойства вещества и, наоборот, чем меньше величина потенциала, тем окислитель слабее. Окислительно-восстановительный потенциал измеряется электрохимическим способом в гальваническом элементе, схема которого изображена на рис. И. Элемент состоит из двух ячеек / и 2, разделенных диафрагмой, пропускающей ток, но препятствующей смешиванию находящихся в ячейках растворов. По одну сторону диафрагмы наливают раствор окислителя, по другую — восстановителя. В растворы опускают твердые электроды 3 п 4, которые не взаимодействуют с окружающей средой. Эти электроды называются индифферентными они бывают платиновыми или золотыми. Электроды соединены друг с другом вне раствора металлической проволокой. [c.88]

    Измерение ЭДС гальванических элементов — простой и точный метод получения сведений о термодинамических характеристиках компонентов окислительно-восстановительных реакций. Потенциал электрода, а следовательно, и ЭДС элемента, включающего этот электрод, зависят от активностей ионов, участвующих в электрохимическом процессе на электроде. Поэтому, измеряя 3)ДС соответствующим образом сконструированных элементов, можно определять активности ионов и их концентрации, в частности концентрации ионов водорода и тем самым pH растворов. [c.300]

    Для количественной характеристики окислительно-восстановительных процессов пользуются электродными потенциалами, т. е. разностью потенциалов между металлом и раствором его соли. Измерить непосредственно электродный потенциал не представляется возможным, поэтому условились определять электродные потенциалы по отношению к так называемому нормальному водородному электроду, потенциал которого принят равным нулю. [c.190]

    Электроды сравнения служат эталонами, по отношению к которым измеряют потенциал индикаторного электрода. Поэтому любой индикаторный электрод в принципе может служить также электродом сравнения, если создать условия, при которых потенциал такого электрода остается неизменным в процессе титрования. Для этого можно, например, поместить индикаторный электрод в раствор, одинаковый по составу с титруемым раствором, но отделенный от последнего пористой перегородкой или электролитическим ключом. Иногда можно даже помещать электрод сравнения непосредственно в титруемый раствор. Так поступают и окислительно-восстановительных методах титрования. Индикаторным электродом служит платиновый электрод, а электродом сравнения, например, вольфрамовый электрод. Поверхность последнего быстро покрывается в растворе оксидной пленкой. Такой электрод реагирует на изменение pH раствора, но не на изменение соотношения концентраций окисленной и восстановленной форм определяемого элемента. Обычно титруемый раствор содержит большой избыток свободной кислоты, и кислотность этого раствора практически не изменяется в процессе титрования. В этих условиях вольфрамовый электрод выпол- [c.477]

    Для определения Гщ раствора, содержащего окислительно-восстановительную систему, измеряют потенциал гладкой платины и потенциал обычного водородного электрода. Разность потенциалов этих двух электродов, опущенных в один и тот же раствор, определяется различием в давлении водорода на платиновых электродах. Потенциал Е, таким образом, является мерой величины Гщ. [c.494]

    Мембранные электроды. Если между двумя растворами, содержащими разные катионы или различные концентрации одного катиона, поместить мембраны, проницаемые для катионов и непроницаемые для анионов, то в таких мембранах возникает потенциал. Были сделаны попытки использовать селективные мембранные электроды для измерения активностей ионов металлов, особенно металлов главных подгрупп 1-й и 2-й групп, металлические или амальгамные электроды которых разлагаются водой и нет возможности найти подходящую окислительно-восстановительную систему. Большое число таких электродов рассматривается в работах [85, 204]. Первые исследования проводились с коллодием или гидратированными цеолитами, но позднее начали изготовлять мембраны из синтетических ионообменных смол, содержащих карбоновые, фосфоно-вые [158] или сульфогруппы, либо из стеарата бария [86], окиси графита [58] и неорганических осадков в парафиновом воске [80]. Ионы щелочных металлов, также как и протоны, были изучены с помощью стеклянного мембранного электрода. Потенциал мембраны обычно измеряется косвенным путем с помощью элементов типа [c.165]


    Термодинамическая теория окислительного потенциала рассматривает окислительный электрод как индифферентный по отношению к раствору проводник электрического тока [6—12]. Поэтому в качестве электрода может быть применен любой, не взаимодействующий в данных условиях с раствором металл платина, золото, вольфрам, ртуть и т. д. Следствием термодинамической теории является деление систем на обратимые , в которых потенциал может быть измерен, и необратимые , в которых лотенциал измерить невозможно. Критерием обратимости или необратимости системы считается возможность или невозможность измерения в ней окислительного потенциала [7]. Величина окислительного потенциала в обратимой системе должна зависеть не от материала и состояния поверхности электрода, а только от концентрации и природы окисленных и восстановленных компонентов реакции [11]. Термодинамическая теория справедлива при условии достижения равновесия между окислительно-восстановительной системой и электродом. Термодинамическая теория не может, однако, характеризовать систему до наступления равновесия. Известно вместе с тем, что в слабых, т. е. имеющих слабую тенденцию вызывать потенциал на электроде, системах время установления потенциала может исчисляться не только часами, но и сутками [7—9, 17, 18]. К слабым системам относятся, как правило, системы молекулярно-водородные и в особенности кислородные. Впервые вопрос о кинетическом характере окислительного потенциала рассмотрен в работах Н И. Некрасова [19], где показано, что в случае достижения предельного потенциала в неравновесных системах или окислительного потенциала в равновесных, но медленно реагирующих системах, величина его определяется кинетическими факторами. Можно, однако, показать, что кинетические факторы имеют существенное значение не только при измерении окислительного потенциала в слабых системах — регулируя соответствующим образом кинетику установления потенциала, в принципе можно измерить окислительный потенциал в любых химически обратимых системах. [c.169]

    Для исследования окислительно-восстановительных свойств пероксокарбонатов мы измеряли потенциал платинового электрода (гладкой или платинированной Pt) в растворах указанных выше веществ. Сравнительным электродом служил насыщенный каломельный электрод. Измерения проводились при помощи лампового вольтомметра А4-М2. [c.151]

    Автоматические устройства для определения элементного хлора в некоторых случаях фиксируют потенциал системы ТгД, изменение концентрации элементного иода в которой эквивалентно содержанию элементного хлора [482,883,893]. Автоматический метод контроля стоков [893] включает смешение потока анализируемого раствора с потоком раствора KJ или NaJ и измерение концентрации J2 с помощью двух электродов. Один электрод из платины измеряет окислительно-восстановительный потенциал системы, т. е. отношение концентраций второй электрод измеряет концентрацию иодид-иона и представляет собой твердый иодселек-тивный электрод. Разница в потенциалах двух электродов пропорциональна концентрации Jj. [c.98]

    Окислительно-восстановительные потенциалы измеряют с помощью ин-аифферентного платинового электрода. Так как в стандартном водородном электроде ток также подводится платиной, то электродные потенциалы этого типа не включают гальвани-потенциалов MeilMej. Если же при измерении окислительно-восстановительного потенциала использовать электрод из другого индифферентного металла, например золота, то электродный потенциал включит в себя гальвани-потенциал пфли контакта Pt/Au. При этом измеряемый суммарный электродный окислительно-восстановительный потенциал относительно стандартного водородного электрода остается неизменным, так как оп соответствует тому же процессу перехода электрона от одного иона к другому. При замене платины золотом скачок на границе электрод раствор изменится так, что дополнительный гальвани-потенциал Pt[Au будет компенсирован. [c.556]

    Измерения, о которых будет идти речь в настоящей главе, включают частично потенциометрическое титрование соли кобальта (II) феррицианидом при постоянной концентрации этилендиамина, частично аналогичные титрования смесей соли триэтилендиаминкобальта (III) и соли кобальта (II) при различных концентрациях этилендиамина. Первые из упомянутых измерений показали, что окислительно-восстановительный потенциал хорошо определялся и был постоянным для растворов с раз-ли1 ными соотношениями солей кобальта (II) и (III), в то время как измерения с различными концентрациями этилендиамина давали удовлетворительное подтверждение кривой образования системы этилендиаминовых комплексов кобальта (II) (получен-нсй, как описано в предыдущей главе, путем измерений с водородным электродом). Окислительно-восстановительный потенциал системы акво-ионов кобальта (который так высок — почти 1,8 в по сравнелнк с нгрчальным водородным электродом,—что его можно измерить только в сильнокислом растворе) автор не определял, а вычислял на основании результатов измерений, имеющихся в литературе. Комбинацией найденных нормальных потенциалов с известной общей константой устойчивости системы комплексов кобальта (II) (Кз = 10 ) была вычислена соответствующая константа для системы этилендиаминовых комплексов кобальта (III). Полученное значение (Кз = 10 - [c.230]

    Окислительно-восстановительные потенциалы были определены для систем, состоящих из инертных ионов триэтилендиаминкобальта (III) и равновесной смеси этилендиаминовых комплексов кобальта (II). Потенциалы, которые измеряли с помощью гладких платиновых электродов, хорошо воспроизводились и легко измерялись. Было найдено, что нормальный окислительно-восстановительный потенциал системы триэтилендиамин-ионов относительно нормального водородного электрода, равен —0,259 в для 1 н. раствора хлорида калия при 30°. [c.301]

    Проиллюстрировать отображение данных лучше всего на каком-нибудь простом эксперименте. Возьмем реакщ1Ю Белоусова — Жаботинского — наиболее известную колебательную реакщ1ю, которую можно осуществить в обычном химическом стакане. Окислительно-восстановительный потенциал измеряют платиновым и каломельным электродами, результаты измерений поступают в ЭВМ и отображаются в виде графика на дисплее. Для эксперимента потребуются следующие реактивы 50 мл 1,2 М раствора малоновой кислоты, 50 мл 0,004 М раствора сульфата церия(П1), 50 мл [c.370]

    Так как скачок потенциала на инертном электроде измеряет работу окисления-восстановления веществ в растворе, то он не зависит от природы инертного металла. Окислительно-восстановительный потенциал часто называют редокс (redox)-потенциалом (от латинских слов redu tio — восстановление и oxydatio — окисление). [c.199]

    Основное кислотно-основное равновесие А В-ЬН+ формально очень похоже на окислительно-восстановительную реакцию Я Ох + е. И в том и в другом случае реализуемые на практике процессы получают как комбинацию двух кислотно-основных или редокс-систем. Следовательно, представляет интерес указать на главные различия между обоими упомянутыми классами явлений. Прежде всего отметим, что равновесие между двумя кислотно-основными парами почти всегда устанавливается быстро, в то время как две редокс-системы часто реагируют очень медленно. Далее, вода и аналогичные растворители обратимо участвуют в кислотно-основных реакциях, однако обычно являются индифферентными растворителями для редокс-систем (в том случае, если они не окисляются или не восстанавливаются необратимо). По этой причине силу кислот и оснований всегда определяют, рассматривая равновесие со стандартной кислотно-основной парой, обычно с растворителем, тогда как редокс-системы характеризуют потенциалом относительно стандартного электрода. Стандартные окислительно-восстановительные потенциалы, конечно, тесно связаны с константами равновесия. Например, если окислительно-восстановительный потенциал системы К—Ох измеряют по отношению к стандартному водородйому электроду, величина потенциала определяется равенством РЕ = кТ пК, где К — константа равновесия процесса К + + HзO+ч Ox- /гИг + НгО. В общем случае, однако, термодинамику таких реакций нельзя исследовать непосредственно кроме того, соответствующие константы равновесия изменяются в пределах 50—60 порядков. Для характеристики кислотно-основных равновесий, вообще говоря, можно было бы использовать редокс-потенциал на том основании, что потенциал водородного электрода в растворе, содержащем кислотноосновную пару А—В, определяется константой равновесия процесса А- -е В + /гНг. Если окислительно-восстановитель-ный потенциал данной системы измерять относительно стандартного водородного электрода, соответствующую э. д. с. можно непосредственно связать с константой равновесия реакции А-)-Н20ч=ьВ + Нз0+. Значения констант равновесия [c.57]

    Платиновый электрод, погруженный в раствор, содержащий нафтохинон и нафтогидрохинон, приобретает электрический потенциал, который можно измерить относительно полуэлемента сравнения. Термин нормальный окислительно-восстановительный потенциал , Ео, определяется как потенциал (по отношению к водородному электроду), приобретаемый электродом в растворе, содержащем хинон и гидрохинон в равных молярных концентрациях при нормальной концентрации ионов водорода (рН = 0) . Раствор нафтохинона и нафтогидро.хинона готовят путем растворения соответствующего хингидрона или путем потенциометрического тигрования нафтохинона восстановителем до средней точки кривой титрования. В растворах с неизвестной величиной pH (например, в растворах в этиловом спирте) необходимо применять водородный электрод, погруженный в тот же растворитель, который применяется для растворения нафтохинона . [c.445]

    Применяя низкие концентрации реагентов, можно легко измерить скорости очень быстрых реакций при условии, что имеется чувствительный метод регистрации изменений малых концентраций реагентов. Например, была точно измерена очень высокая константа скорости реакции броми-рования N, N-диэтил-лг-тoлyидинa в водном растворе [5]. Это измерение стало возможным потому, что концентрацию брома 10 М. определяли по величине окислительно-восстановительного потенциала гладкого платинового электрода, а концентрацию свободного амина понижали до 10 М добавлением серной кислоты. [c.19]

    Контроль осуществляется либо по иодкрахмальной бумажке, либо специальными индикаторами — метаниловым желтым или сульфон-реактивом [26], дающим с азотистой кислотой слабоокрашенные растворы. Для непрерывного контроля содержания свободной азотистой кислоты в реакционной массе удобно измерять в лаборатории и на производстве окислительно-восстановительный потенциал системы с помощью платинового индикаторного электрода в паре с каломельным (или хлорсеребряным) электродом сравнения. Изменения потенциала среды фиксируются редоксметром и позволяют судить о наличии или отсутствии азотистой кислоты в реакционной массе [27]. [c.12]

    Потенциометрическое детектирование тиолов [96]. Тиолы количественно окисляются иодом до дисульфидов. Следовательно, количество тиола, элюируемое с хроматографической колонки, можно обнаружить, измеряя изменение окислительно-восстановительного потенциала стандартного раствора иода и иодида, поскольку по мере элюирования относительные количества двух веществ будут меняться. Стандартный раствор готовят, добавляя 0,025 М раствор иода (0,2 мл) в абсолютном этаноле и 0,05 раствор иодида калия (0,4 мл) в воде к 70-процентному (по объему) этанолу (50 мл). Раствор перемешивают в электродном сосуде, снабженном небольшой мешалкой и платиновым электродом. Выходная линия хроматографа ведет в этот раствор. Полуячейку соединяют солевым мостом, заполненным агартагаром, с полуячейкой Ag + Ag . Эту ячейку соединяют с самописцем через последовательное сопротивление 20 ком. Зависимость между изменением окислительно-восстановительного потенциала и количеством тиола, элюированного в ячейку, не строго линейна, поскольку величина pH не поддерживается постоянной и отношение [1г]/[1] при меньших концентрациях иода уменьшается быстрее, чем при высоких его концентрациях. Чувствительность детектора в конце опыта будет, однако, только на 5% выше, чем в начале, если общее элюированное количество (в молях) тиола только на 20% меньше исходной молярности иода (5 микромолей). В противном случае во время опыта раствор следует менять. [c.281]

    Окислительно-восстановительный потенциал ЕН измеряется при помощи электродной системы, состоящей из платинового и сравнительного электродов. При погружении электродной системы в анализируемую среду, например, в сточные воды, на платиновом электроде возникает потенциал, определявдший окислительно-восстановительную способность контролируемого раствора. Потенциометрический иономерный прибор состоит из чувствительного преобразователя, измерительного преобразователя и вторичного прибора. [c.431]

    Окислительно-восстановительный потенциал - это электрохимическая категория. Рассмотрим для примера вещество, которое может существовать в окисленной X и в восстановленной форме X . Такая пара называется окислительно-восстановительной парой (рис. 14.3). Окислительно-восстановительный потенциал такой пары можно определить, измеряя электродвижущую силу, развиваемую опытной полукамерой по отношению к стандартной контрольной полу-камере. Опытная полукамера представляет собою электрод, погруженный в раствор [c.72]

    Окислительно-восстановительный потенциал в растворе измеряется системой электродов, связанных с регулирующим клапаном, который установлен на линии подачи раствора в систему очистки газа. При уменьшении потенциала подача раствора на очистку увеличивается. Установлено, что в растворе хелатного соединения Ре — ЭДТА при концентрации 0,02—0,5% ионов Ре окислительно-восстановительный потенциал должен быть не менее 0,215— [c.139]

    Как было указано в 30, электродный потенциал измерить невозможно, его определяют сравнением с потенциалом стандартного электрода, в частности водородного, потенциал которого принят равным нулю. Для этого собирают гальваническую цепь из окислительно-восстановительного электрода, например Мп04"/Мп2+ (платиновая пластина, опущенная в подкисленный раствор КМПО4), и стандартного водородного электрода и компенсационным способом измеряют эдс этой цепи. [c.329]

    Наиболее часто применяют потенциометрический метод индикации. Используя окислительно-восстановительный или ионселективный электрод (ср. разд. 4.2.1), потенциал можно измерять как логарифмическую функцик> концентрации титруемого вещества или титранта и экспериментальным путем получить такие же кривые, которые были рассмотрены ранее при описании равновесия. Скачок на кривой титрования соответствует его конечной точке. Однако не всегда нужно снимать всю кривую. Во многих случаях достаточно оттитровать анализируемый раствор до заданного конечного потенциала. Потенциал в точке эквивалентности, так называемый потенциал скачка Ей, находят из условия эквивалентности [для этого ср. уравнение (3.1.32)] [c.73]

    Для потенциометрической индикации применяется обычная компенсационная схема, используемая в потенциометрическом титровании. При окислительно-восстановительном титровании индикаторным электродом служит платина, при кислотно-основном титровании индикаторным электродом является стеклянный электрод и I. д. Используются они в паре с каломельным или хлорсеребря-ным электродом сравнения. Индикаторный электрод и электрод сравнения опускают в анализируемый раствор. Включают ток электролиза, идет генерирование реагента. Периодически измеряют потенциал индикаторного электрода относительно электрода сравнения. На основе полученных данных строят график зависимости потенциала индикаторного электрода от времени и находят точку эквивалентности по скачку потенциала.  [c.182]

    Перли и Годшелк [84] описали модифицированный кислородный электрод, с помощью которого можно измерить pH в растворах, свободных от различных окислительно-восстановительных систем. Он представляет собой металлический электрод, покрытый плотным слоем иридия, рения, осмия или рутения. Электрод не должен содержать окклюдированного водорода. Как утверждают авторы, потенциал, измеренный относительно каломельного электрода, линейно зависит от pH в интервале 0—14 ед. pH в растворах, содержащих молекулярный кислород. Потенциал воспроизводим при температурах О—100° С. [c.230]

    Потенциалы можно найти экспериментально для систем, не включающих металла в качестве одного из реагентов (например, Ее /Ее ), путем измерения потенциала платинового электрода, погруженного в раствор. Платина не обладает склонностью переходить в раствор в виде ионов и создавать свой собственный потенциал поэтому ее потенциал определяется давлением электронов в окислительно-восстановительном равновесии в растворе. Такие потенциалы называются окислительновосстановительными, или редокс-потенцшлами. Нельзя измерить только один потенциал между электродом и раствором, поскольку в раствор необходимо ввести какой-то проводник тока и это обязательно приводит к возникновению второго потенциала. Поэтому окислительно-восстановительные потенциалы (включая частный случай электродных потенциалов) всегда связаны со стандартным потенциалом, обычно соответствующим системе Н + V2H2 В этой шкале потенциал 2п /2п равен —0,76 в, а потенциал Си /Си--НО,34 в. Эти величины означают, что цинк должен восстанавливать ионы водорода до водорода (причем сам цинк окисляется до ионов цинка), так же как он восстанавливает ионы закисной меди до металлической меди, тогда как медь не должна восстанавливать ионы водорода. Действительно, любой металл с отрицательным электродным потенциалом должен вытеснять водород из кислоты. Некоторые окислительно-восстановительные потенциалы приведены в табл. 17 в тех случаях, когда нельзя провести непосредственного измерения, они выводятся из величин АО для реакции О + /гНа 1= Н + Н (здесь О и К означают окисленную и восстановленную формы окислительно-восстановительной пары). Если потенциал системы 07R более отрицателен, чем потенциал системы 0 7R", то реакция Р + О"-—о + К" будет проходить спон  [c.197]


Смотреть страницы где упоминается термин Электроды, измеряющие окислительно-восстановительный потенциал раствора: [c.242]    [c.260]    [c.112]    [c.240]    [c.60]    [c.6]    [c.8]    [c.315]    [c.381]    [c.341]    [c.306]    [c.306]   
Смотреть главы в:

Теоретическая электрохимия -> Электроды, измеряющие окислительно-восстановительный потенциал раствора

Теоретическая электрохимия Издание 3 -> Электроды, измеряющие окислительно-восстановительный потенциал раствора

Теоретическая электрохимия Издание 4 -> Электроды, измеряющие окислительно-восстановительный потенциал раствора




ПОИСК





Смотрите так же термины и статьи:

Окислительно-восстановительные электроды и их потенциалы

Окислительные потенциалы окислительно-восстановительных

Потенциал окислительно-восстановительны

Потенциал окислительный

Потенциал раствора

Потенциал электрода

Электрод окислительно-восстановительные



© 2025 chem21.info Реклама на сайте