Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Промышленность производства ацетилена из углеводородов

    До второй мировой войны карбид кальция являлся практически единственным источником получения ацетилена для промышленных целей. Отсутствие разработанных методов не позволяло использовать для производства ацетилена большие ресурсы углеводородов нефти и природного газа, хотя в лабораториях научно-исследовательских институтов многих стран уже велись обширные исследования по определению условий превращения низших парафинов в ацетилен. Между тем пиролиз углеводородов для получения олефинов (этилена и пропилена), а также термический крекинг углеводородов уже давно получили промышленное развитие. Постепенное накопление теоретических и практических сведений позволило создать первые полупро-изводственные установки, а затем и крупное промышленное производство ацетилена на основе высокотемпературного пиролиза углеводородного сырья. [c.64]


    В отличие от промышленности органического синтеза США, базирующейся главным образом на парафиновых и олефиновых углеводородах нефти, основным сырьем этой промышленности в Германии явился уголь и синтезируемые на его основе водяной газ и ацетилен. Производство на базе ацетилена пластических масс, синтетического каучука и заменителей смазочных масел из природной нефти, конечно, диктовалось принципами автар- [c.476]

    Среди ненасыщенных С4-углеводородов наиболее важную роль в химической промышленности играет дивинил. Ограниченное количество этого диолефина присутствует в -фракции, получаемой при производстве этилена пиролизом жидких углеводородов. Вследствие высокой концентрации дивинила в этой фракции выделение его обходится дешево. Эта фракция и была первым источником дивинила, на который США ориентировались в 1941—1942 гг. Эту же фракцию используют и в Англии при современных полупроизводственных испытаниях. В том случае, когда дивинила требуется больше, чем его имеется в качестве побочного продукта производства этилена, этот диолефин производят дегидрированием н-бутиленов. Одностадийный процесс получения дивинила из н-бутана по существу не отличается от метода, в котором исходят из бутиленов. Его можно использовать в тех случаях, когда вследствие относительной доступности бутана последний будет более дешевым исходным веществом. В других методах производства дивинила сырьем служит ацетилен или этиловый спирт. Первый из этих методов использовали в Германии вплоть до 1945 г., по второму методу в США во время второй мировой войны получали подавляющую часть дивинила, необходимого для производства синтетического каучука. Считается, что в нормальных условиях наиболее экономичным является производство дивинила из н-бутиленов. Из других применений н-бутиленов в химической промышленности следует указать на производство растворителей втор-бутилового спирта и метилэтилкетона. Изобутилен применяют для получения бутил-каучука, полиизобутиленов, диизобутилена и полупродуктов в производстве искусственных моющих средств. [c.405]

    НЕФТЯНЫЕ ГАЗЫ — смесь различных газообразных углеводородов, растворенных в нефти, выделяющихся в процессе ее добычи и перегонки. Газы крекинга нефти, состоящие нз предельных и непредельных углеводородов (этилен, ацетилен и др.), также относят к Н. г. Н. г. применяются как топливо н как сырье для химической промышленности. Путем химической переработки из Н. г. получают пропилен, бути-лены, бутадиен и др., которые используют в производстве пластмасс, каучуков и других продуктов органического синтеза. [c.174]


    Переработкой нефтегазового сырья для получения целевых (конечных) продуктов или сырья для других химических производств занимается нефтехимическая промышленность. Она производит в больших количествах прежде всего углеводородное сырье простейшие парафиновые и этиленовые углеводороды, ацетилен (из метана), циклогексан, бензол. Из этого сырья получают синтетическое горючее, мономеры для пластиков, синтетических каучуков, фенол, ацетон, синтетические спирты, синтетический глицерин, кислоты, хлорпроизводные, нитропарафины. Многие из этих промышленных синтезов будут рассмотрены в дальнейшем. [c.272]

    Сырьевая база промышленности органического синтеза тесно связана со структурой топливно-энергетического баланса отдельных регионов и стран. Преобладание угля в этом балансе создало в свое время сырьевую основу для производства химической продукции на коксохимических заводах и на базе ацетилена. С переходом энергетики и транспорта на преимуш,е-ственное использование нефти и газа ацетилен в большинстве промышленных процессов был вытеснен нефтехимическим этиленом, а источником получения ароматических углеводородов, помимо коксохимического производства, стала нефтепереработка. Современный этап развития промышленности органического синтеза определяется обычно как нефтехимический однако его можно называть и олефиновым . При мировом объеме производства продуктов в процессах тяжелого органического синтеза, равном 100 млн. т в год, мош ности по этилену достигают 50 млн. т в год [2]. [c.6]

    Сроки и темпы перехода промышленного органического синтеза с угольного сырья на нефтегазовое и с ацетилена на низшие олефины в разных странах были не одинаковы. В странах Западной Европы, Японии и СССР преобладание низших олефинов в сырьевой базе отрасли стало заметным с 60-х гг. В США этилен и пропилен, полученные из газов крекинга при переработке нефти, применяли наряду с ацетиленом в химической промышленности уже в 20—30-е гг. [3], а современный процесс производства низших олефинов — термический пиролиз углеводородов с водяным паром — выделился из процессов нефтепереработки и превратился в основной промышленный метод получения этилена и пропилена в период 1920—1940 гг. Работы в области производства и химического использования нефтяного и газового сырья проводились в эти же годы и в СССР. Вскоре после окончания войны вступили в строй нефтехимические заводы в гг. Сумгаите, Грозном, Куйбышеве, Уфе, Саратове, Орске и других городах. На этих предприятиях синтетический этанол, изопропанол и ацетон вырабатывались на основе этилена и пропилена, полученных в процессе пиролиза углеводородного сырья [4]. [c.6]

    Из компонентов искусственного углеводородного газа в ре акцию полимеризации вступают непредельные углеводороды, причем с повышением степени непредельности склонность углеводорода к полимеризации возрастает. Ацетилен полимери-зуется легче этилена, бутадиен легче бутилена и т. д. Склон- ность непредельных углеводородов к полимеризации возрастает также с увеличением их молекулярного веса и повышением температуры реакции. В практике нефтеперерабатывающей промышленности применяете полимеризация бутиленов на этой реакции основано производство изооктана и так называемого полимербензина. [c.224]

    При возможности использования в качестве дешевого сырья парафиновых углеводородов большего молекулярного веса, чем метан, и при возможности сочетания установки по производству ацетилена с установкой, производящей аммиак и метанол, можно применять процессы пиролиза типа СБА. Объединение установок, производящих и потребляющих ацетилен, с установками для получения аммиака и метанола, ведет при полном использовании промышленных мопщостей к повышению их экономичности. Для создания таких комбинатов требуются очень большие капитальные затраты в течение довольно короткого времени, а также наличие рынков сбыта для всех продуктов. При наличии дешевых парафиновых углеводородов тяжелее метана возможно применение процессов тина процесса Вульфа для производства одного ацетилена (или ацетилена и этилена), не связанного с производством аммиака или другими процессами. Для процесса Вульфа не требуются установки, разделяющие воздух, и, следовательно, отсутствует побочный продукт такого разделения — азот, а выход остаточного газа в результате использования большей его части для обогрева печи и парообразования снижается до минимума. Возможно проведение процесса в таком режиме, когда весь остаточный газ будет расходоваться в самом процессе для обогрева печи, парообразования и для газогенераторного привода компрессоров. Этим обеспечиваются минимальные энергетические затраты и не остается побочных продуктов для использования за пределами установки. Возможно использование установок типа Вульфа или Копперс-Хаше для совместного производства ацетилена и бытового газа. [c.188]


    В последние годы в промышленности широко применяется получение ацетилена нри неполном горении метана в кислороде. По технико-экономическим показателям этот процесс является одним из наиболее эффективных процессов получения ацетилена из метана. В Советском Союзе он внедряется на ряде заводов на основе переработки природного газа и последующего использования отходящих газов Для производства аммиака и метанола. Образующийся при неполном окислении метана в кислороде ацетилен является термодинамически неустойчивым он легко разлагается на углерод и водород, а также взаимодействует с углекислотой и водяным паром с образованием окиси углерода и водорода. Схема процесса приводится на рис. V. 2. Сырье (природный газ или метан), не содержащее окиси углерода, водорода и высших углеводородов (так как в противном случае оно преждевременно воспламенится), поступает через подогреватель 1, где нагревается до 600° С, в верхнюю часть реактора 3 (в смесительную камеру горелки), куда подается также подогретый до той же температуры кислород в количестве до 65 объемн. % от метана. В результате процесса горения температура в реакторе 3 поднимается до 1500° С продукты реакции охлаждаются до 80° С орошением водой. [c.148]

    Кроме рассмотренных основных источников ароматических соединений следует упомянуть еще два, не имеющих в настоящее время существенного значения. Это — ацетилен и эфирные масла растений. В связи с исключительным развитием промышленности ацетилена может быть поставлен вопрос о получении на его основе ароматических углеводородов. Уже сейчас ароматические углеводороды являются отходом производства ацетилена пиролизом природного газа. [c.295]

    Ацетон является одним из самых широко используемых растворителей. Он применяется в огромных количествах в лакокрасочной промышленности, в производстве искусственного шелка, кинопленки, во всевозможных экстракционных процессах. Ацетон широко используется также для ряда органических синтезов. В смеси с ароматическими углеводородами его применяют для удаления парафина из смазочных масел. Ацетон используют при наполнении баллонов ацетиленом (стр. 134) благодаря высокому октановому числу он может применяться как добавка к моторному топливу. [c.192]

    В послевоенные годы производство ацетилена продолжало расширяться, так что уже к 1960 г. ни одна промышленно развитая страна не обходилась без собственного ацетилена, причем расход ацетилена на промышленный органический синтез возрос втрое по сравнению с уровнем военных лет [417[. До настоящего времени основным методом получения ацетилена остается карбидный, однако последние 15 лет характеризовались стремительным ростом числа заводов, перерабатывающих дешевые углеводороды, преимущественно природный газ, в ацетилен [418, 419 3, стр. 435— 436]. К 1968 г. доля углеводородного ацетилена в общей мировой продукции его достигла 30% [420, стр. 402]. Главными потребителями ацетилена, как и в 1930—1940-е годы, являются производ- [c.90]

    В современных условиях атмосферный воздух промышленных районов, где работают воздухоразделительные установки, сильно загрязнен такими веществами как ацетилен, предельные и непредельные углеводороды, окислы азота, сероуглерод и т. д. Источниками накопления углеводородов в блоках разделения являются коксохимическое и доменное производство, ТЭЦ, хранилища мазута. Опасность представляют также шлаковые отвалы, выделяющие ацетилен. Химические предприятия, газопроводы, расположенные в районах работы воздухоразделительных установок, также загрязняют воздух углеводородами. Загрязнение воздуха промышленных районов опасными примесями усложняет задачу взрывобезопасной эксплуатации воздухоразделительных установок. [c.108]

    Ацетилен стал доступен в конце XIX в., после того как был получен в промышленных условиях карбид кальция, явившийся сырьем для производства ацетилена. Использование дешевого природного газа и продуктов переработки нефти стало новым мощным стимулом для получения ацетилена и последующего развития на его основе крупной промышленности органического синтеза. Предпочтительное и пользование методов получения ацетилена из углеводородов или карбидного метода зависит главным образом от наличия в данном районе страны нефтяного сырья, природного газа или кокса и энергетических ресурсов. Из новых способов получения ацетилена чаще применяются окислительный пиролиз природного газа, электрокрекинг углеводородов и пиролиз нефтяных фракций в потоке высокотемпературных газов, образующихся в кислородной горелке. [c.9]

    Органические хлоропродукты составляют подавляющую часть продукции хлорной промышленности. Поэтому ее развитие тесно связано с возникновением и развитием такой прогрессивной области химической технологии, как нефтехимия, а также с увеличением добычи и потребления природных и попутных газов. Эти сравнительно новые отрасли промышленности дают доступное и дешевое органическое сырье в виде газов (метан, ацетилен, этилен, пропилен и другие углеводороды) и жидких органических веществ (бензол, этиловый спирт, керосин и др.), пригодных для переработки в хлоропродукты. Все это определяет высокие темпы развития производства хлора в последние годы в США, Японии, ФРГ, Англии, Франции, Италии и других странах.  [c.8]

    Если работы Бертло можно рассматривать как первые шаги на пути к современному производству ацетилена из углеводородов, то именно Велера можно считать отцом промышленного способа ползгчения ацетилена из карбида кальция. В 1862 г. при сильном нагревании углерода со сплавом цинка и кальция он получил ацетилен и гидроокись кальция, подействовав на продукт реакции водой [19]. [c.16]

    Производство хлоропренового каучука на базе ацетилена в промышленном масштабе впервые в СССР было осуществлено на НПО Наирит . Ацетилен, получаемый из карбида кальция и пиролизом газообразных углеводородов, в результате каталитической димеризации превращается в моновинилацетилен (МВА), а последний путем каталитического гидрохлорирования — в хлоропрен. Продукт эмульсионной полимеризации хлоропрена выпускается в товарном виде как хлоропреновые латексы, или после выделения различными способами полимера из латекса в виде хлоропренового каучука. Укрупненная технологическая схема производства МВА приведена на рис. 30. [c.144]

    В принципе все основные продукты, производимые в настоящее время на основе нефти, можно вырабатывать и из угля, тем более, что до начала 1920-х годов он являлся основным источником сырья для химической промышленности. Так называемые смоляные краски (азо-, ализариновые, индантреновые и другие красители) и сегодня производят на основе бензола, нафталина и антрацена, которые раньше получали только из каменноугольной смолы, а позднее — из сырого бензола коксохимических заводов. На основе химии красителей были созданы производства фармацевтических препаратов и средств защиты растений, другие отрасли промышленности органического синтеза. Из коксового газа выделяли аммиак, который шел на производство минеральных удобрений. Водород для синтетического аммиака также получали газификацией угля либо кокса. Отрасли собственно углехимии основывались на карбиде кальция и ацетилене, а также на синтез-газе, из которого затем получали углеводороды или метанол. Карбид кальция получали из угля и известняка в электрических дуговых печах, а затем перерабатывали в цианамид кальция (ценное удобрение) или ацетилен. Таким образом, для возрождения углехимии имеются [c.15]

    Важнейшими видами сырья для нефтехимической промышленности наряду с другими углеводородами являются этилен, ацетилен и высшие а-олефины. Особенно возрастают масштабы потребления этилена. 0 необходим для производства таких многотоннажных продуктов, как этиловый спирт, полиэтилен, этилбензол, дихлорэтан и др. На базе высших олефинов развивается производство синтетических моющих средств, поверхностно-активных веществ, разнообразных присадок к нефтепродуктам и ряда других химических веществ. Роль ацетилена в промышленности органического синтеза общеизвестна. Все перечисленные виды сырья для нефтехимии получаются в основном путем высокотемпературной деструктивной переработки газообразных, жидких и твердых парафиновых углеводородов. Так, ацетилен получается при пиролизе метана. Потребности в этилене почти на 90 /о удовлетворяются за счет пиролиза этана и пропана, а частично также и гази- [c.188]

    Основной конкурент ацетилена — этилен, производство и применение которого намного опередило производство и потребление ацетилена, хотя и началось несколько позднее. В 1960 г. производство этилена, стоимость которого в 2 раза ниже стоимости ацетилена, только в капиталистических странах составило 5,7 млн. т, а в 1970 г. —15,5 млн. т. В 1980 г. производство этилена в этих странах должно достигнуть 43 млн. т [6]. Конкуренция двух рассматриваемых углеводородов, как подчеркивалось на конференции, посвященной различным аспектам этой проблемы (Франкфурт-на-Майне, март 1968 г.) [7], отражается на перспективах развития многих промышленных процессов. В ряде крупных производств (в частности, при получении ацетальдегида и винилхлорида) ацетилен со временем будет практически полностью вытеснен этиленом. В других производствах, где в настоящее время доля ацетилена в сырьевом балансе еще очень велика (например, в производстве винилацетата, где на основе ацетилена получается 90—95% целевого продукта), прогнозируется значительное увеличение потребления этилена. [c.7]

    Бертло первый показал, что при неполном сгорании органических веществ образуется ацетилен, и разработал метод для лабораторного получения ацетилена этим путем [2—3]. Гофман и Билль [5] первые стали изучать образование ацетилена при неполном сгорании некоторых органических соединений. Так как при этом способе можно избежать и высокой стоимости электро-дугового нагрева и трудностей передачи тепла в случае других пирогенетических методов, то за последнее время были сделаны попытки применить его в промышленном масштабе. Однако оптимальная температура образования ацетилена достигается этим путем нелегко, и полученный продукт обычно содержит ацетилен в концентрациях ниже, чем при других пирогенетических процессах. Фишер и Пихлер [6] сообщают о получении ацетилена из коксового газа или метана в смеси с воздухом и кислородом, пропускаемых через нагретую фарфоровую трубку, при разных давлениях, с различными скоростями. Аппаратура для производства ацетилена методом неполного сгорания газообразных углеводородов явилась предметом многочисленных патентов 17—17]. В патентах/. О. Р. [7] защищается применение метода неполного сгорания в присутствии элементарного кремния с целью повышения выходов ацетилена. [c.49]

    Производство химических продуктов из нефтегазового сырья характеризуется весьма высокой экономической эффективностью. Наиболее многотоннажными по масштабам потребления промежуточными продуктами нефтехимического происхождения, играющими решающую роль в развитии промышленности синтетических материалов, являются олефины (этилен и пропилен), дивинил, изопрен, ацетилен, а также ароматические углеводороды (особенно бензол и ксилолы). В качестве сырья для нефтехимических процессов стали применять не только газы и жидкие нефтепродукты, но и твердые — парафины. В ряде случаев для увеличения ресурсов олефинов прибегают к пиролизу нефтяного сырья. [c.81]

    Промышленное производство винилхлорида базируется на двух видах углеводородного сырья - этилене и ацетилене. При этом этилен и ацетилен в зависимости от метода производства винилхлорида могут использоваться по отдельности, либо в смеси, получаемой например, из нафты в составе самого производства винилхлорида. Ацетилен в промышленности получают в основном двумя методами карбидным и тердо-окислительным пиролизом метана. Этилен получаззт пиролизом жидких углеводородов нефти или из этана. Производство винилхлорида из ацетилена обладает определенными достоинствами простотой технологической схеш, близкими к 100 селективностью химической реакции и конверсией реагентов и связанным с этим незначительным количеством органических отходов производства, сточных [c.147]

    Значительная часть ацетилена производится из углеводородов, однако большая часть — все еще из карбида. Послевоенное развитие характеризуется несколькими чертами. Оно практически полностью основано на процессах, разработанных в более ранние периоды, история которых описана выше. Лишь несколько новых продуктов достигло уровня промышленного производства, и пока, несмотря на активность спроса на новые продукты на основе ацетилена, мало вероятно, чтобы в ближайшем будущем какой-либо из них начали бы производить в заметном масштабе. Крупными химическими производствами, в которых потребляется ацетилен, остались производство ацетальдегида, винил-хлорида, винилацетата, акрилонитрила, неопрена, трихлорэтилена, а также акрилатов и фтористого винила. Использование кислородно-ацетиленового пламени для обработки металлов также расширилось, однако здесь наблюдаются признаки остановки роста или даже сокращения. Использование ацетилена повсеместно сталкивается с, очень жесткой конкуренцией других более дешевых видов сырья, позволяющих получать те же конечные продукты, и болре [c.55]

    Совершенно очевидно, что производство из углеводородов ацетилена, используемого только в промышленности растворенного ацетилена, не может, по крайней мере до сих пор, считаться экономически выгодным. Получаемый этим способом ацетилен может использоваться и используется для пропзводства растворенного ацетилена, при условии, что выспше (и особенно ароматические) углеводороды в основном удалены. Концентрация бензола в ацетилене должна быть менее 0,1%, в противном случае при продолжительной эксплуатации баллона он накапливается в ацетоне в количествах, достаточных для снижения растворяющей силы растворителя. [c.435]

    Целью хлорирования насыщенных углеводородов (за исключением метана и твердого парафина) почти всегда является получение монохлорпроизводных. Для производства полихлоруглеводородов в промышленности используют реакции присоединения хлора к ацетилену, этилену и другим ненасыщенным углеводородам с последующим отщеплением хлористого водорода и дальнейшим хлорированием (гл. 10, стр. 167 исл.). [c.87]

    Для синтеза хлорпроизводных метана исходят из метана 99%-ной чп-стоты. Метанол получается непосредственно из природного газа, но тщательно очищенного от сероводорода и органической серы [24]. Сероуглерод производится также из природного газа, содержащего преимущественно метан с минимальным количеством углеводородов Сз [24]. Для производства ацетилена окислительным крекингом метана необходимо отделение этого носледиего от и СО. В электрической дуге ацетилен успешно получается из 90—92%-ного метана, а в циклично действующих регенеративных печах Вульфа пиролизу подвергается природный газ без разделения его на фракции [24]. Для получения альдегидов окислением углеводородов также нет необходимости выделять метан из природного газа. Промышленный способ окисления СН4 па фосфатах алюминия и меди проводится на сырье, содержащем 60% СЫ4 [27]. [c.159]

    Ацетилен является в настоящее время одним из важнейших сырьевых веществ в промышленности органического синтеза. Наиболее выгодно получать ацетилен из углеводородных газов (электрокрекинг метана и другие способы). При производстве ацетилена путем переработки углеводородных газов его концентрация в получающихся газообразных продуктах (водород, углеводороды и др.) относительно невелика. В то же время ацетилен в отличие от предельных углеводородов хорошо растворяется в воде. Он растворяется в воде примерно в 30 раз лучше, чем метан. Ацетилен очень хорошо растворяется также в диметилформамиде, ацетоне, метаноле, бутирол-актоне и других растворителях. Эти свойства ацетилена и используются сейчас для его выделения из газовых смесей. [c.62]

    Универсализм водорода состоит в том, что он может заменить любой вид горючего в различных отраслях производства, в промышленности, на транспорте, в энергетике. Он способен заменить природный газ для бытовых целей, бензин — в двигателях внутреннего сгорания, специальные виды горючих — в ракетных двигателях, ацетилен — в процессах сварки металлов, кокс — в металлургических процессах, метан — в топливных элементах, углеводороды — в ряде микробиологических процессов, углерод — во многих процессах, требующих восстановителя. Водород может быть легко использован и на небольших передвижных или стационарных энергетических установках, в газовых турбинах для генерирования электроэнергии и в крупных топках и печах может и храниться в любых количествах. Его использование в качестве энергоносителя не потребует коренных изменений в современной технологии топливоиспользования. [c.42]

    В первое десятилетие после первой мировой войны спрос на ароматические углеводороды полностью удовлетворялся коксохимической промышленностью. Сырьем для производства алифатических химикатов служили продукты ферментации растительного сырья, сухой перегонки древесины и переработки каменного угля (этилен из kok oiBoto газа и ацетилен из карбида кальция). [c.3]

    Получение. Хлорированием, дегидрохлорированнем,. оксигид-рохлорированием углеводородов i—С4 (этилен, ацетилен) и их хлорпроизводных, в том числе отходов хлорорганического производства. Т. сопутствует производству трихлорэтилена, четыреххлористого углерода и хлорэтилена (до 10 %) и может быть выделен как товарный продукт. В промышленном масштабе используют также дегидрохлорирование пентахлорэтана и дехлорирование гексахлорэтана. Технический продукт содержит комплекс примесей ( Tetra hloroethylene, 1984 ), [c.455]

    Конечно, при выборе метода переработки метана коксового газа в ацетилен нужно исходить из конкретных условий того или иного экономического района. Тем не менее можно сказать заранее, что эЛектрокрекйНГ метана, требующий больших затрат электроэнергии и минимального расхода углеводородов, следует осваивать в районах с богатыми источниками дешевой электроэнергии и ограниченными ресурсами сырья. Метод термического крекинга, особенно в трубчатых аппаратах, нашел применение главным образом в случае переработки гомологов метана (пропан, бутан и др.). Что же касается коксохимической промышленности, то в этом случае, с учетом больших ресурсов метана коксового газа и возможности комбинирования ацетиленового производства с кислородными станциями металлургических заводов, наиболее приемлемым явится, по-видимому, метод окислительного пиролиза. [c.119]

    Обширная монография Миллера представляет собой настоящую энциклопедию, в которой учтены практически все существенные работы по ацетилену, начиная с его открытия Эдмундом Дэви (братом известного ученого) в 1836 г. Исторически сложилось так, что путям его производства и использования посвящено больше работ, чем, пожалуй, какому-либо другому продукту (или полупродукту) органического синтеза. В связи с этим может создаться впечатление, что в этой области проведены исчерпывающие исследования. На самом деле при обсуждении кинетики образования и превращений ацетилена и выборе оптимальных путей его производства и дальнейшего использования бушуют страсти . До настоящего момента мы не знаем окончательного, описывающего все наблюдаемые явления химического механизма основного процесса образования ацетилена из метана. В последние десять лет в этой области достигнуты значительные успехи, обязанные применению новых методик исследования быстрых высокотемпературных эндотермических реакций. Интенсивно развиваются также новые промышленные способы получения ацетилена из углеводородов термический, окислительный пиролиз, плазмохимический. Имеются даже предложения использовать для получения С2Н2 интенсивные световые пучки (лазеры). [c.13]

    Давно известно, что ацетилен присутствует в продуктах неполного сгорания углеводородов, например при проскоке пламени в бунзеновской горелке. Чтобы получить достаточно высокую концентрацию ацетилена в отходящих газах, обычно вместо воздуха применяют кислород, претем сырье и кислород должны быть предварительно подогреты. Определение режима подогрева, а также формы и размеров горелки, необходимое для получения стабильного пламени в промышленных условиях, потребовало. чначительпых исследований, прежде чем процесс был осуществлен фирмой I. G. Farbenindustrie (Германия) во время войны па установке, которая, по существу, являлась укрупненной пилотной установкой. Прошло еще десять лет прежде чем были пущены первые промышленные установки (в 1953 г.). В последнее десятилетие процесс быстро распространился, заводы появились в нескольких странах, причем были использованы различные модификации первоначально разработанного метода. К 1962 г. около 350 ООО т ацетилена, т. е. около одной седьмой его мирового производства, получали методом окислительного пиролиза, потребляя при этом 1,5 млн. т кислорода. Недавно было высказано предположение [1], что процесс пиролиза начинается по окончании процесса горения. Хотя это утверждение справедливо только приближенно (стр. 396), оно позволяет точно предсказывать результаты процесса. Поскольку кинетика пиролиза уже была рассмотрена (стр. 334), ниже обсуждается только кинетика стадии горения. Энергия активации для смесей, богатых метаном, составляет 62 ккал/молъ. Механизм горения был предложен Норришем [3]  [c.380]

    Источником промышленного получения этилена в настоящее время является пиролиз различного углеводородного сырья этана, пропана, бутан-пентановых и бензиновых фракций. Пиролиз осуществляется в трубчатых печах при 780—840 °С и времени контакта 0,3—1 с. Продукт пиролиза делят на газ пиролиза (водород и углеводороды С1—С4) и жидкие продукты (углеводороды Сз и более тяжелые). Выход газа при пиролизе на этилен приближенно составляет при пиролизе этана 90% (в том числе 70% этилена), при пиролизе бензиновых фракций 70% (из них 25—30 % этилена). Поток продуктов после пиролизной печи подвергается закалке водой, первичному фракционированию и охлаждению до 40 °С. Газы после этого компримируют и направляют на газоразделительную установку, где методами низкотемпературной конденсации и фракционирования газ разделяют на индивидуальные углеводороды и целевые фракции. На установке выделяют таким образом этилен с концентрацией С2Н4 99% и более. Основной примесью является ацетилен. К этилену, идущему на производство спирта, пока не предъявляется жестких требований по содержанию ацетилена, и поэтому его не очищают от ацетилена. Примерно 20% всего этилена, получаемого методом пиролиза, расходуется в производстве этилового спирта. [c.16]

    Нефтехимическая промышленность в качестве сырья использует продукты переработки нефти. Задачи этой отрасли — обеспечение многих оргаиических производств углеводородным сырьем (олефинами, ацетиленом, ароматическими углеводородами, синтез-газом), получение многотоннажяых органических веществ и синтетических полимерных материалов. [c.7]

    Для окисления фосфористого водорода в производстве предлагалось применять при 70° серную кислоту примерно 85-процентного содержания. Методы оценки различных препаратов производственной очистки ацетилена и их сравнительные испытания опубликованы в печати [9, 13, 14]. Один из самых старых способов очистки ацетилена состоит в полном осаждении примесей двухлористой медью или хлорной ртутью в присутствии других хлористых солей. Однако такие растворы реагируют, до некоторой степени, и с ацетиленом н обычно образуют с ним летучие продукты присоединения. Для высушивания ацетилена на заводах практикуется вымораживание, действие окиси алюминия с соблюдением надлежащих предосторожностей, промывание по принципу противотока насыщенным раствором хлористого кальция. Справедливости ради, следует отметить, что следы кислорода являются весьма существенной примесью в ацетилене, особенно при использовании его в некоторых синтезах но на этот вопрос пока обращалось мало внимания. Даже небольшие количества кислорода весьма вредны при приготовлении винилацетилена и, вероятно, влияют и на полимеризацию, галоидирование и гидратацию ацетилена. В содержащих ацетилен газовых смесях, полученных путем пиролиза, присутствие кислорода менее вероятно, чем в ацетилене, выделенном из карбида. И в промышленном масштабе и в лабораториях лучше всего удалять кислород из ацетилена с помощью щелочного раствора гидросульфита натрия, содержащего небольшие количества антрахино.ч-[1-суль-фокислоты [10]. Труднее всего очистить ацетилен от газообразных углеводородов, окиси углерода и водорода но так как они не мешают ни при использовании ацетилена как горючего, ни при химических синтезах, то в промышленном масштабе никто и не пытается их полностью удалять. [c.27]

    После успешного внедрения в промышленность начавшего развиваться примерно с 1894 г. производства ацетилена из карбида кальция вни,мание к пиро-генетическому способу на время ослабло. Только значительно позднее интерес к этому методу снова возрос в связи с увеличивающимся предложением дешевого органического сырья, как например природный газ. с.месь газообразных парафинов и олефинов крекинга, сырая нефть и различные ее погоны, тяжелые смолы и асфальты. Транспортировка метана, являющегося главной составной частью природного газа, невыгодна для многих районов его добычи, а применение его как топлива и источника сажи ограничено. Поэтому и были начаты поиски способов превращения метана в другае углеводороды. Однако для быстрого разложения метана требуется настолько высокая температура, что образование при этом парафинов и олефинов в больших количествах становится невоз.можньш хогя даже ароматические углеводороды могут быть получены при 1200°, все-таки наиболее важным способом использования. метана обещает быть конверсия его в ацетилен. Вследствие этого высокотемпературный крекинг метана и привлек к себе больше внимания, че.м другие пирогенетические процессы, предложенные для получения ацетилена. В некоторых странах Европы, не богатых запасами природных газов, была изучена также возможность пиролиза газов коксовых печей, водяного газа и содержащих метан смесей, получаемых из окисей углерода и водорода, нередко являющихся дешевыми побочными продуктами. Некоторый интерес как потенциальный источник ацетилена представляет крекинг дешевых нефтяных остатков, асфальтов и смол. Газообразные парафины и олефины и низкокипящие погоны представляют ценность для других целей, поэтому на них как на сырье для получения ацетилена обращалось меньше внимания. [c.38]


Смотреть страницы где упоминается термин Промышленность производства ацетилена из углеводородов: [c.9]    [c.360]    [c.4]    [c.187]    [c.270]    [c.397]    [c.458]    [c.6]   
Смотреть главы в:

Ацетилен, его свойства, получение и применение -> Промышленность производства ацетилена из углеводородов




ПОИСК







© 2025 chem21.info Реклама на сайте