Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Качественный и количественный анализ кислот и эфиров кислот

    На основании комплексного качественного и количественного анализа сложных низкомолекулярных летучих продуктов окисления высших моноолефинов методами ИК-спектроскопии и хромато-масс-спект-рометрии, в летучих продуктах жидкофазного окисления промышленных фракций а-олефинов идентифицированы следующие классы органических соединений углеводороды (предельные, непредельные, ароматические), альдегиды, спирты, кислоты, эфиры, перекиси. Основными компонентами легколетучих продуктов окисления являются альдегиды (до 87%), представленные главным образом соединениями, содержащими два или три углеродных атома в молекуле. За ними в количественном отношении следуют гидроксилсодержащие соединения и углеводороды, содержание которых с увеличением глубины окисления растет от 5—8% до 12—15% мол. Данные по составу летучих продуктов также представляют интерес для выяснения механизма жидкофазного окисления а-олефинов. [c.57]


    При определении углеродного скелета молекулы методом хроматографии от молекулы отщепляют функциональные группы и насыщают ее кратные связи. Подобный метод, описанный в недавно вышедшем обзоре [23], применяли в анализах большого числа различных соединений кислот, спиртов, альдегидов, ангидридов, простых и сложных эфиров, эпоксисоединений, кетонов, аминов, амидов, алифатических и ароматических углеводородов, нитрилов, сульфидов, галогенидов, олефинов и соединений других типов. Область применения этого метода очень широка и потому он обсуждается именно в этом общем разделе, а не в главах, посвященных анализам отдельных функциональных групп. Сам по себе этот метод дает качественные результаты, но его можно использовать и в количественных определениях. Однако основным применением этого метода является определение структуры, для которого часто необходимы количественные анализы функциональных групп. В определении химической структуры молекул важен метод, основанный на индексах удерживания углеродного [c.433]

    Цель настоящего исследования — определение оптимальных условий качественного и количественного анализа жирных кислот и их метиловых эфиров. [c.210]

    Сложность строения многих алкалоидов сильно затрудняет определение их структуры. Прежде всего выясняют, содержит ли изучаемый алкалоид кислород или нет, для чего проводят качественный и количественный анализ, определяют молекулярный вес и устанавливают его молекулярную формулу. Если алкалоид оказался кислородсодержащим, устанавливают, в какой форме представлен в нем кислород для этого применяют ряд реакций, характеризующих ту или иную кислородсодержащую группу например, гидроксильную группу открывают с помощью хлорангидридов кислот или уксусным ангидридом, сложные эфиры — путем их омыления, простые эфиры — действием на них иодистого водорода, что приводит к образованию соответствующего галоидоалкила. [c.370]

    С помощью газо-жидкостной хроматографии метиловых эфиров жирных кислот осуществляют количественный и качественный анализ сложных смесей кислот, а также их препаративное разделение [И, 13]. Преимуществами данного способа являются быстрота осуществления анализа, четкость деления компонентов, возможность проведения большого числа анализов (100 и более) без регенерации фаз, высокая чувствительность метода (до 1%), возможность автоматического управления процессом, достаточная точность результатов. С помощью данного метода достигается разделение жирных кислот по длине цепи и степени ненасыщенности, возможно также разделение структурных и геометрических изомеров. Точный количественный анализ высших жирных кислот стал доступен вследствие совершенствования техники ГЖХ и с введением масс-спектрометрической идентификации выделенных компонентов. [c.197]


    Масс-спектрометрия. Этот метод применяется для определения структуры, качественной идентификации и количественного анализа жирных кислот [21]. Предварительно карбоновые кислоты переводят обычно в эфиры, значительно более летучие. [c.205]

    Однако в идентификации таких важных продуктов реакции, как карбонилсодержащие соединения, имеются существенные трудности. ИК-полосы карбонильных групп в этих соединениях (альдегиды, кетоны, кислоты и сложные эфиры) в большинстве случаев не разрешаются и сливаются в одну широкую полосу в области 1700 см . Поэтому невозможно вести качественный и, следовательно, количественный анализ этих продуктов реакции. [c.253]

    В этом разделе в общих чертах описываются основные применения спектроскопии в органической химии. Можно выделить два главных направления применения спектроскопии, которые, однако, иногда не могут быть строго разграничены. Это, во-первых, качественный и количественный анализы, которые проводятся эмпирическим сравнением спектров исследуемых и известных веществ, и, во-вторых, более или менее полное определение строения молекул вещества по его спектру. Спектральный анализ основывается на том, что всякое вещество обладает в одной из областей (инфракрасной, видимой или ультрафиолетовой) специфическим спектром, который может быть удобной и дающей высокую чувствительность анализа характеристикой вещества для его обнаружения и количественного определения. Одним из наиболее простых и наиболее распространенных применений спектроскопии является определение загрязнений, которое очень просто выполняется в том случае, когда примеси имеют полосы поглощения в области, прозрачной для основного соединения. Например, парафины и насыщенные алифатические спирты, эфиры и кислоты только очень слабо поглощают в большей части ультрафиолетовой области, пропускаемой кварцем, и наличие любого поглощения в близкой ультрафиолетовой области указывает на присутствие примесей. Небольшое количество бензола в этиловом спирте, полученном азеотропной перегонкой, определяется [c.165]

    Методы спектрофотометрического анализа основаны на качественном и количественном изучении спектров поглощения различных веществ в инфракрасной области спектра (невидимые электромагнитные колебания с длиной волны от 0,76 до 500 мк), видимой (от 0,76 до 0,4 мк) и ультрафиолетовой (от 0,4 до 0,01 мк). Задача спектрофотометрического анализа — определение концентрации вещества путем измерения оптической плотности на определенном участке видимого или невидимого спектра в растворе исследуемого вещества. Например, при определении хрома исследуют оптическую плотность раствора хромата желтого цвета, поглощающего свет в сине-фиолетовой части видимого спектра. При проведении фотометрического анализа необходимо создать оптимальные физико-химические условия (избыток реактива, светопреломление растворителя, pH раствора, концентрацию, температуру). Фотометрический анализ применяют для определения соединений различных типов окрашенных анионов кислот, перманганата, гидратированных катионов меди (II), никеля (II), роданидных комплексов железа (III), кобальта (II), различных гетерополикислот фосфора, мышьяка, кремния, перекисных соединений титана, ванадия, молибдена, лаков различных металлов с органическими красителями и др. Экстракционные методы разделения химических элементов основаны на различной растворимости анализируемого соединения в воде и каком-либо органическом растворителе. При этом происходит распределение растворенного вещества между двумя растворителями (закон распределения, 25). Для извлечения из водных растворов чаще всего применяют различные эфиры (диэтиловый эфир), спирты (бутиловый, амиловый спирт), хлорпроизводные (хлороформ, четыреххлористый углерод) и др. Иод можно извлечь бензолом, сероуглеродом, хлорное железо — этиловым или изопропиловым эфиром. [c.568]

    Аналитическое определение. Для целей анализа нерастворимые соединения С. переводят в раствор, либо обрабатывая их соляной к-той, либо сплавляя с содой и затем растворяя в кислоте. Для отделения С. от кальция используется нерастворимость нитрата С. в смеси сиирта и эфира, а для отделения от бария последний осаждают в виде хромата в уксуснокислой среде. Качественно С. определяют по карминово-красному окрашиванию пламени. Для количественного определения С. его осаждают в виде оксалата, карбоната или сульфата и определяют весовым способом, причем оксалат и карбонат превращают в SrO при прокаливании. Для объемного определения С. пользуются комплексометрическим титрованием с этилендиаминтетрауксусной кислотой. Небольшие количества С. определяют спектральным способом. [c.539]


    Подобно галлию и индию, для галогенидных комплексов таллия характерно образование экстрагируемых бензолом ионных ассоциатов с красителями группы родаминов. Предложено качественное открытие ионов ТР+ с родамином С в солянокислой среде [221, 265]. Эта реакция использована и для количественного фотометрического определения [297], а для отделения от мешающих примесей таллий предварительно экстрагирует в виде дитизоната [298]. Несмотря на некоторые указания на то, что флуоресцентный вариант этого метода не имеет преимущества перед колориметрированием [299], он был успешно применен для анализа йодида натрия [37, 109]. После предварительного экстракционного отделения эфиром реакция с родамином С в 0,1 н. бромистоводородной кислоте использована при определении таллия в рудах [146]. Высокочувствительный метод его определения в минеральном сырье (тоже с предварительной эфирной экстракцией) основан на взаимодействии бромида одновалентного таллия с родамином 6Ж [44] (см. табл. 1У-17). Отмечена также реакция солянокислых растворов иона ТР+ с родамином ЗВ и с родамином Ж [84]. Как и для сурьмы, нет литературных указаний на флуоресцентные реактивы, содержащие р-дикетонную функционально-аналитическую группу для иона Т1+ [100]. [c.180]

    Качественный анализ кислот и количественное определение дикарбоновых кислот (в виде метиловых эфиров) проводили на хроматографе ЛХМ-72, с пламенно-ионизационным детектором. Использовалась колонка длиной 2 м, заполненная неопентилгликольсукцииатом, нанесенным па хромосорб О. Газ-носи-те.ль — азот. Темие])атура колонки повышалась со ско )остыо 10 °С/мин от 70 °С до 210°С. Температура детектора 260°С, температура испарителя 320°С. В качестве внутреннего стандарта применялся диэтиловый эфир терефталевой кислоты. [c.35]

    Для целей качественного анализа липидов первичного экстракта наиболее полезным является метод ТСХ. Однако таким методом даже с помощью самых тщательно разработанных процедур не удается осуществить количественную оценку фракций липидов. Трансметилирование эфиров различных жирных кислот с последующим количественным анализом метиловых эфиров жирных кислот методом ГЖХ дает удовлетворительные результаты, но анализ занимает много времени [45, 663—668]. Этот метод широко применяют для количественной оценки соотношения глицеролипидов в различных фракциях, полученных с помощью ТСХ, а также для дальнейшей характеристики состава этих фракций. Опубликованы многочисленные работы, в которых указанные методы были использованы для анализа липи- [c.204]

    Ч1ротеииы с помощью кислотного, основного или ферментативного гидролиза могут расщепляться на простейшие составляющие — а-ами-нокарбоновые кислоты, обычно называемые просто а-аминокислотами. Ка.чественный анализ получающихся при этом смесей аминокислот связан с относительно большими трудностями. Э. Фишер (1901 г.) обрабатывал такие смеси спиртом и разделял образующиеся в результате смеси сложных эфиров а-аминокислот дробной перегонкой. В настоящее время эти соединения разделяют и идентифицируют методами газовой хроматографии. Использование ионообменной хроматографии позволяет разделить подобные смеси без предварительной этерификации. Существуют приборы, которые автоматически проводят качественный и количественный анализ смесей такого рода. При этом первоначально а-аминокислоты разделяются на ионообменных смолах, элюаты обрабатываются нингидрином, а образующиеся синие окрашенные вещества анализируются колориметрически, кривые поглощения записываются с помоп ью самописца. [c.647]

    При определении количественного и качественного состава кислородсодержащих соединений широко применяется инфракрасная спектроскопия благодаря наличию характеристических полос кислородных функциональных групп 3400—3600 см — валентные колебания атомов водорода гидроксильных групп кислот и фенолов, 1650—1740 см —валентные колебания карбонильной группы кислот, кетонов, сложных эфиров (лактонов), ангидридов кислот, амидов. Показано [49], что с помощью специфических химических реакций возможно провести идентификацию полос поглощения карбонильных групп различных классов соединений. Так, обработка карбоновых кислот бикарбонатом натрия приводит к образованию карбоксилатанионов, для которых характерно поглощение в области 1580—1610 см . Дальнейшая обработка образца гидроксидом натрия при нагревании вызывает омыление сложных эфиров, лактонов, ангидридов и образование карбоксилатанионов. В результате в области 1650— 1740 СМ наблюдается только поглощение кетонов. Пользуясь групповыми интегральными коэффициентами поглощения (для карбоновых кислот 1,24-10 л/(моль-см), сложных эфиров 1,15 10 кетонов 0,72-10 л/(моль-см) [50], можно определить концентрацию соединений каждого типа. Применение методов ИК-спектроскопии в исследованиях состава нефтей 51] позволило обнаружить и количественно оценить наличие карбоновых кислот, фенолов, амидов, 2-хинолонов. Отмечено, что точность анализа значительно снижается вследствие межмолекулярной ассоциации компонентов, что приводит к уменьшению интенсивности поглощения групп и занижению результатов. Повышение точности достигается разбавлением растворов и использованием в качестве растворителей тетрагидрофурана или дихлорметана. Однако более значительные ошибки возникают из-за неверной оценки молекулярных масс определяемых соединений и наличия в молекуле более одного гетероатома. Исправление этого положения возможно препаративным выделением одного класса соединений и установления коэффициента поглощения данной функциональной группы. [c.50]

    Функциональный анализ. Одним из необходимых шагов в структурном анализе органических соединений является определение природы и числа функциональных групп. На функциональные группы обращали внимание уже сторонники теории радикалов и теории типов. Поэтому и до появления теории химического строения было известно немало реакций для открытия функциональных групп. Б Введении к полному изучению органической химии Бутлеров упоминает о таких реакциях, например, на гидроксильную группу (в спиртах) с металлическим натрием образование алкоголята с хлорокисью фосфора продукта замещения гидроксильной группы на хлор с кислотами сложных эфиров, особенно характеристический и свойственный собственно алкоголям случай замещения водорода водяного остатка [25, с. 133]. Те же реагенты могут действовать и на гидроксильную группу кислот, однако при этом образуются соли, галогенангидриды кислот, которые в отличие от га-логенпроизводных алкогольных радикалов легко разлагаются водой. Подобный анализ имеет не только качественный, но и количественный характер, так как по числу атомов замещенного водорода в гидроксильных группах или самих этих групп можно судить, например, об атомности и основности оксикислот. К характерным реакциям альдегидов, открытым ранее, относится их легкая способность окисляться до кислот, восстанавливая окись серебра (Либих, 1835), а также способность к прямому соединению с аммиаком (Деберейнер, 1832). Кетоны резко отличаются от альдегидов тем, что не присоединяют кислород, а при действии окисляющих веществ, в отличие от альдегидов, распадаются. Бутлеров упоминает также о бисульфитной реакции на альдегиды и кетоны (Бертаньини, 1853). Были известны также реакции не только на аминогруппы, но и для [c.298]

    Обычную фильтровальную бумагу для качественного анализа >1 беззольные фильтры для количественного анализа можно быстро и безошибочно различить следующим методом. В качестве реагсита используют почти насыщенный эфирный раствор кислот-,4ого красителя, известного под названием хромовый небесно-олубой прочный В (ЦИБА, Базель). Каплю раствора этого ре-. геита наносят на фильтровальную бумагу и дают эфиру испариться. На бумаге появляется розовое пятно, которое обрабаты-ваю Т парами аммиака. На обычной бумаге, содержащей минеральные вещества, окраска пятна немедленно переходит в синюю, а на беззольиой бумаге—в желтую. Синее пятно довольно быстро обесцвечивается, однако его окраску молено восстановить повторной обработкой парами аммиака. Для этой реакции можно исполь--ювать также раствор красителя в разбавленном аммиаке. Для капельной реакции достаточно кусочка бумаги размером 0,2 см- [c.635]

    Из литературных данных известно, что борная кислота является субтрак-тирующим агентом для спиртов. При взаимодействии борной кислоты со спиртами образуются эфиры борной кислоты, температура кипения которых значительно превышает температуру кипения спиртов. При проведении анализа эти эфиры остаются в колонке [1]. Следовательно, при исследовании смесей спиртов и углеводородов на комбинированной колонке, состоя-шей из аналитической и поглотительной колонок, на хроматограмме фиксируются только углеводороды, что значительно облегчает проведение качественного и количественного анализов ело жных смесей. [c.102]

    Сравнительно большое постоянство интенсивности этой полосы, соответствующей определенному количеству двойных связей, использовалось многими исследователями для количественного анализа. В уже упоминавшейся работе Шрив сделал попытку разработать метод определения гранс-октадеценовых кислот, сложных эфиров и спиртов в сложных смесях. Аналогичные методы использовались для определения количества гранс-олефинов в смазочных маслах (41, 68] и в бензине [42]. Особенно полезно применение этих методов при количественном и качественном изучении реакций полимеризации. Объектами таких исследований являлись низкокипящие полимеры бутадиена и стирола [36, 43], природный и синтетический каучуки [44, 60, 69] изучалась вулканизация природного каучука [59]. В случае терпенов [46] и стеринов [48, 61] изучение поглощения при 965 м вместе с исследованием деформационных колебаний СН при двойных связях других типов также дает ценные сведения о строении соединений. Все эти работы также свидетельствуют о постоянстве этой частоты для широкого круга различных соединений. [c.56]

    Разработанная методика качественного анализа позволила осуществить и количественный анализ смеси различных пиридиновых оснований, в том числе кислородсодержащих. В эту смесь в.ходили пиридин, изомерные алкилпиридилкето-ны и эфиры никотиновой и изоникотиновой кислот. [c.25]

    Об образовании и накоплении в смазках продуктов окисления позволяют судить данные ИК-сиектроскопии носледняя впервые применена для качественного и количественного анализа окисления смазок [18]. При окислении в ИК-сиектре смазок появляется полоса поглощения в области 1710—1740 см В этой области находятся характеристические полосы поглощения карбонильной группы альдегидов, кетонов, сложных эфиров и кислот. С равнеиие спектров до и после окпсления смазок свидетельствует о значительном повышении концентрации карбонильных соединений, поглощающих в области 1710 см- , а также об увеличении интенсивности полосы при 3300 см- , указывающей на образование гидроксисоединений, т. е. спиртов. Методом ИКС можно оценить и влияние окисления мыльных дисперсий на изменение ассоциации мыла (начальная стадия структурообразования смазок) и роль кислородсодержащих продуктов на образование структуры смазки. [c.41]

    Холестерин, один из наиболее распространенных стероидов, в чистом виде представляет собой бесцветное кристаллическое вещество (ромбические пластинки) с температурой плавления 150° С. В холестерине имеется вторичная спиртовая группа у третьего атома и двойная связь у пятого атома углерода (см. формулу на стр, 267). Химические свойства холестерина определяются этими функциональными группами. Например, холестерин образует сложные эфиры с жирными кислотами, находящимися в тканях, присоединяет водород, осаждается из растворов дигитонином. Йодное число холестерина составляет 65,8. Для определения холестерина в качественном и количественном анализах применяется несколько цветных реакций. Например, по методу Салковского раствор холестерина в хлороформе встряхивают с серной кислотой, при этом хлороформный слой окрашивается в красный цвет, а кислый слой приобретает зеленую флуоресцирующую окраску. [c.273]

    Описаны также две д1етодики количественного газохроматографического анализа смесей этаноламинов, одна из которых [45] предусматривает хроматографирование в 5 словиях ваку ма, а другая [46] — определение этаноламинов в виде эфиров трифтор-уксусной кислоты, и ряд методик качественного хроматографического анализа этаноламинов и других аминоспиртов ионообменная [47], бумажная [48—52] и тонкослойная хроматография [53-56]. [c.53]

    Число гидроксильных групп, содержащихся в органическом соединении, может быть установлено путем количественно го элементарного анализа тех же производных, которые применялись при качественном определении для этого наиболее пригодны сложные эфиры (стр. 17). Если эфиры содержат азот, как напри.мер уретаны (стр. 28) и их производные, или эфиры нитробензойной кислоты, то часто можно ограничиться только определением азота точно так же достаточно определить содержание галоида в галоидосодержащих соединениях, как например зфирах бромбензойной кислоты или серы в содержащих серу сложных эфирах (стр. 22). В уретанах, полученных с помощью хлорангадрида карбаминовой кислоты, можно определить азот в виде аммиака путем отщепления его щелочью  [c.58]

    Смесь цис- п /гаракс-изомеров циклических диолов проанализирована на основе реакции с борной кислотой — последняя реагирует только с цис-гидроксильными группами [17]. Количественное определение простых моноэфиров гликолей основано главным образом на реакциях ацилирования и осуществляется так же, как и анализ гликолей. Сложные эфиры гликолей определяют качественно и количественно гидролизо.м щелочалш. После гидродиза раствор титруют соляной кислотой в присутствии фенолфталеина уменьшение содержания щелочи пропорционально количеству сложного эфира в пробе. Параллельно проводят холостой опыт [4, р. 981]. [c.340]

    Возможности и ограничения метода. Описанный метод отличается простотой и позволяет проводить систематический анализ наиболее распространенных фенольных соединений растений (свободные и связанные фенолкарбоновые кислоты, флавоноидные агликоны, флавоновые, флавоноловые и изофлавоновые гликозиды, эфиры и гликозиды фенолкарбоновых кислот). При необходимости можно легко перейти от систематического определения фенолов к дробному, однако в этом случае увеличивается продолжительность анализа и усложняется очистка и идентификация отдельных соединений. В то же время метод пригоден как для качественного, так и для количественного изучения указанных соединений (за исключением флавоноидных агликонов, где возможна некоторая потеря содержания отдельных веществ за счет частичного осаждения бикарбонатом натрия и увеличения с частицами пигментов при очистке петролейным эфиром.) [c.48]

    Из условия параллельности реакций образования эфиров Ц и Э можно заключить, что отношение их концентраций в реакционной смеси по окончании разложения навески этилдиазоацетата для каждой из схем должно быть пропорционально отношению скоростей образования этих соединений. Анализ продуктов реакции с помощью количественной газовой хроматографии показал, что отношение выхода продуктов циклоприсоединения к суммарному выходу эфиров Фумаровой и малеиновой кислот возрастает с увеличением начальной концентрации олефина, уменьшается с увеличением начальной концентрации этилдиазоацетата и не зависит от концентрации катализатора. Схема (3) полностью согласуется с этими экспериментальными данными. Схема (4) подразумевает независимость отношения выхода продукта циклоприсоединения к выходу эфиров непредельных кислот от начальной концентрации этилдиазоацетата и поэтому не отражает основного пути образования циклопропана в этой реакции. Полученные качественные зависимости не позволили, однако, полностью исключить схему (4), По мнению авторов /47/, схема (4) может реализоваться одновременно со схемой (3). Противоречит найденным окспериментальным данным лишь путь, предусматривающий образование циклопропана при взаимодействии комплексов, т.е. при одновременной активации обоих партнеров реакции  [c.92]

    Применение комплексного хроматографического анализа позволяет осуш ствлять методом тонкослойной хроматографии идентификацию гидразидов пиридиннарбоновых кислот, а методом газовой хроматографш качественно и количественно определять возможные в них примеси соответствующих сложных эфиров пиридинварбоновых кислот. [c.59]


Смотреть страницы где упоминается термин Качественный и количественный анализ кислот и эфиров кислот: [c.45]    [c.46]    [c.203]    [c.199]    [c.199]    [c.88]    [c.13]    [c.149]    [c.339]    [c.151]    [c.436]    [c.357]    [c.48]    [c.52]    [c.38]    [c.193]    [c.528]   
Смотреть главы в:

Газовая хроматография - Библиографический указатель отечественной и зарубежной литературы (1967-1972) Ч 2 -> Качественный и количественный анализ кислот и эфиров кислот




ПОИСК





Смотрите так же термины и статьи:

Анализ качественный

Анализ качественный и количественный

Анализ количественный



© 2025 chem21.info Реклама на сайте