Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение строения молекулы вещества в растворе

    Метод ядерного магнитного резонанса (ЯМР), получивший широкое применение, в частности, для определения строения некоторых видов органических молекул, основан на исиользовании различия магнитных свойств атомных ядер. Так, спин ядра в атомах С, равен нулю, в атомах Н, ои равен половине, а в атомах Ы, — единице . Метод ЯМР дает возможность определять строение молекул некоторых органических соединений, подвижность частиц в кристаллах в разных условиях. Он все шире применяется при изучении кинетики и механизма химических реакций, состоятя веществ в растворах, процессов протонного обмена между молекулами в растворах, для анализа сложных смесей продуктов реакций и для других целей. [c.90]


    Направление научных исследований электрохимия химия фтора и фтористых соединений фтористый водород как растворитель химия гетероциклических и ароматических соединений мостико-вые кольцевые системы протеины и терпены кинетика деградации полимеров использование меченых атомов в изучении высокомолекулярных веществ реакции переноса протона газожидкостная хроматография применение методов рентгеновской дифракции к изучению строения кристаллов и молекул микроволновая спектроскопия кинетика окислительновосстановительных реакций в растворе и твердом состоянии гетерогенный катализ теория, расчет и определение строения молекул. [c.258]

    Одним из наиболее эффективных методов исследования можно считать оптическую спектроскопию. При прохождении света (УФ, видимого или ИК, т. е. электромагнитных волн с определенной энергией) через раствор органического вещества происходит его частичное или полное поглощение (это зависит от энергии светового пучка и от строения органического вещества). Другими словами, оптическая спектроскопия исследует зависимость интенсивности поглощения света от длины волны (энергии). Поглощенная молекулой энергия может вызвать или переход электрона с одного энергетического уровня на другой, энергия которого выше (УФ-спектро-скопия), или привести к колебанию и вращению атомов (ИК-спек-троскопия). Поскольку спектры поглощения в УФ и видимой областях связаны с электронными переходами, то эти спектры называются также электронными спектрами. В общем спектре электромагнитных волн они находятся в интервале от 200 до 1000 нм.  [c.33]

    Итак, с помощью структурного анализа возможно определение а) периодической атомной структуры кристалла б) магнитной структуры магнетиков в) динамических нарушений (фонон-ных и магнонных спектров) г) типа и распределений статических структурных дефектов в реальных кристаллах д) структурного механизма фазовых переходов и структурных особенностей метастабильных состояний в твердых телах е) ближнего порядка в аморфных телах и в жидкостях ж) формы и строения частиц в растворах з) структуры газовых молекул и) фазового состава вещества. [c.15]


    Вскоре, однако, выяснилось, что знак вращения — признак неустойчивый. Существуют вещества, меняющие знак вращения в зависимости от условий (растворитель, температура, концентрация), в которых проводится поляриметрическое определение. Так, например, водный раствор природной яблочной кислоты при концентрации 70—50 % имеет правое вращение, при концентрации ниже 25 % — левое. Раствор природной аспарагиновой кислоты в воде при комнатной температуре вращает вправо, а выше 75 "С приобретает левое вращение. Таким образом, конфигурация непосредственно не связана со знаком вращения, последний — только признак единственный в случае пары оптических антиподов, один из признаков при сопоставлении пары диастереомеров ), позволяющий отличить друг от друга пространственные изомеры. Когда это стало ясным, появилась потребность обозначать не просто знак вращения, а конфигурацию оптически активных веществ, т. е. отражать в названии особенности пространственного строения молекулы данного стереоизомера, отличающего именно этот стереоизомер от других. Потребность эта появилась, однако, в то время, когда еще не умели определять абсолютную конфигурацию. [c.295]

    Исходя из тех же соображений, молекулярная и удельная рефракции смеси веществ также аддитивны и слагаются из соответствующих рефракций компонентов с учетом их количества в смеси. Основываясь на аддитивности рефракции, можно определить рефракцию растворенного вещества по найденной рефракции раствора и известной или также установленной опытным путем рефракции растворителя. Такая методика часто применяется для определения рефракции твердых веществ (неорганических солей и твердых органических соединений). Молекулярная рефракция позволяет сделать ряд выводов о строении молекулы .  [c.90]

    Речь идет о тех веществах, оптическая активность которых связана со строением их молекул. Такие вещества, в отличие от тех, у которых это свойство определяется строением кристаллической решетки, сохраняют его и в растворенном состоянии. Величина угла поворота плоскости поляризации оказывается при этом тем больше, чем большее число молекул вещества встречается в растворе на пути поляризованного светового луча. Следовательно, величина эта зависит от концентрации оптически активного вещества в растворе и от расстояния от одной стенки сосуда до другой по линии распространения светового луча. Если это расстояние будет во всех определениях неизменным, то угол вращения плоскости поляризации плоскополяризованного света окажется прямо пропорциональным концентрации. [c.132]

    При прохождении сквозь призму Николя светового луча его колебания сохраняются только в одной плоскости — луч становится плоскополяризованным (рис. 50). Если при пропускании такого луча сквозь раствор исследуемого соединения произойдет отклонение его плоскости поляризации от первоначальной на определенную величину угла, измеряемую в градусах, то такое вещество оптически активно. Оптическая активность большинства органических соединений связана со строением их молекул, что подтверждается фактом оптической активности их растворов. Связь между строением органических веществ и их оптической активностью видна из следующих примеров. [c.186]

    Величина Н° — ЯГ выражает теплоту перехода вещества из твердого состояния в жидкое, т. е. теплоту плавления, а разность (Н — Н° ) — дифференциальную теплоту разбавления п-го компонента до концентрации, соответствующей насыщенному раствору. Теплота плавления — величина положительная, поскольку плавление любого вещества требует затраты определенного количества тенла, зависящего от строения молекул этого вещества и его кристаллической структуры в твердом состоянии. Теплота разбавления Н п — Н°п может быть как положительной, так и отрицательно . Если взаимодействие молекул растворенного вещества и растворителя невелико и растворение не сопровождается значительным тепловым эффектом, то с повышением температуры растворимость, как правило, увеличивается. Такой характер влияния температуры типичен для растворов большинства твердых неорганических и органических веществ. [c.101]

    Кроме изменения яркости свечения, замораживание растворов некоторых веществ в определенных растворителях (углеводородах от гексана до декана) приводит к коренному качественному изменению спектра флуоресценции, который из широкой бесструктурной полосы превращается в более или менее резко выраженный линейчатый [23]. Это явление, названное по имени его открывателя эффектом Шпольского, позволяет обнаруживать характерные особенности и тонкие различия в строении молекул. Оно очень упростило раздельное определение близких по структуре соединений в их смесях при анализе битумов и нефтей [9, 16], изомеров сложных соединений некоторых биологически активных веществ [22] и ряда других объектов [22]. Исследование возможности применения эффекта Шпольского для определения металлоорганических комплексов может дать очень интересные результаты. [c.49]


    Описанные спектрофотометры для видимой и ультрафиолетовой части спектра применяются для изучения спектральных характеристик анализируемых растворов и анализов сложных смесей окрашенных веществ. Изучение спектральных характеристик дает возможность выбрать наиболее удобную для аналитического определения область спектра, наиболее подходящий светофильтр. Для аналитических определений нет необходимости снимать полные спектральные характеристики анализируемых растворов, достаточно лишь определить поглощение при тех длинах волн, при которых оно наибольшее. Инфракрасные спектры используются в большинстве случаев для качественной расшифровки природы исследуемого раствора, строения молекул растворенного вещества. Расшифровка инфракрасных спектров очень сложна и требует большого навыка, ее можно значительно облегчить применением каталогов инфракрасных спектров. [c.106]

    При изучении строения легко летучих или растворимых без электролитической диссоциации веществ определяют молекулярные веса в газообразном или растворенном состоянии, так как, согласно сказанному выше, можно в общем предположить, что у этих веществ молекулы, присутствующие в газовой фазе или в растворе, идентичны тем, из которых построено твердое вещество, В веществах, которые при растворении испытывают электролитическую диссоциацию, часто присутствуют радикалы, состав которых, если они переходят в раствор, не изменяется. Для них имеет значение определение ионных весов. Только в том случае, если речь идет об истинных радикалах, т. е. о группах, которые остаются неизменными при химических превращениях, на основании присутствия в растворе в виде ионов определенных групп можно судить с уверенностью о существовании их в твердом соединении. Действительно, часто в растворе существуют иные группы, чем в твердых соединениях (например, тиосульфат серебра, см. т. II, гл. 8). Но даже и в таких случаях определение ионного веса в растворе представляет значительный интерес, ибо оно часто позволяет сделать заключение о силах, действующих в растворе между ионами. [c.334]

    Кроме нахождения дипольных моментов молекул в парах и в разбавленных растворах полярных веществ в неполярных растворителях (так называемые первый и второй метод Дебая), возможно определение их спектроскопическими методами, которые позволяют также (хотя и не совсем бесспорно) получать значения дипольных моментов отдельных связей (см. ниже). Основное применение данных по дипольным моментам в органической химии относится к решению некоторых стереохимических проблем, а также вопроса об электронном строении молекул [27, с. 373 28, гл. V]. [c.215]

    Термин поверхностно-активные вещества (ПАВ) обычно применяют к специфическим веществам, обладающим очень большой поверхностной активностью по отношению к воде, что является следствием их особого строения. Молекулы ПАВ имеют иеиоляр-иую (углеводородную) часть и полярную, представленную функциональными группами —СООН, —NH2, —ОН, —О—, —SO2OH и др. Углеводородные радикалы выталкиваются пз воды на поверхность, и их адсорбция Г > 0. ПАВ типа обычных мыл (олеаг натрия) в концентрации 10 моль/см (1 моль/л) понижают сг воды ири 298 К с 72,5-10-3 до ЗО-Ю- Дж/м что даег g = A-W гиббсов. Это значит, что в определенной толщине поверхностного слоя концентрация ПАВ в S-IO раз (т. е. в десятки тысяч раз) превышает концентрацию ПАВ в объеме раствора. [c.41]

    Применимость метода уравновешивания при колориметрических определениях основана на подчинении раствора данного окрашенного соединения закону Ламберта—Беера. Между тем этот закон оказывается справедливым в широких границах концентраций только при условии, если строение окрашенных нонов (или молекул—в случае неэлектролитов) не меняется с изменением концентрации. Это справедливо, например, для растворов перманганатов, хроматов, многих органических красителей и т. п. Нередко, однако, с изменением концентрации окрашенное вещество претерпевает те или иные химические превращения, влияющие на его окраску. В таких случаях растворы вещества не подчиняются закону Ламберта—Беера. Это проявляется в том, что молярный коэффициент погашения е, который, согласно указанному закону, должен быть величиной постоянной для данного вещества, в действительности меняется с изменением концентрации. Уравнение (9) становится тогда, очевидно, неприменимым, и методом уравновешивания пользоваться нельзя. [c.469]

    Некоторые ученые, исходя из положения диалектического материализма о неразрывной связи формы движения с определенным видом материи, считают необходимым указать при определении предмета химии соответствующую материальную структуру (носитель). Так, с точки зрения Я- И. Герасимова, химия есть наука о связи свойств вещества (в основном химических свойств) с составом и строением молекул и об изменении этих свойств с изменением состава и строения молекул При этом Я- И. Герасимов расширительно толкует понятие молекулы, считая, например, что молекулярное строение имеют также и ионные кристаллы, и растворы и т. д. Получается, что одна из важнейших задач химии состоит в выяснении зависимости химических свойств молекул от их химического строения, т. е. от состава молекул, от последовательности связи и пространственного расположения атомных остовов и различных атомных групп в молекуле, от характера их взаимного влияния. К мысли о том, что непременным условием протекания этих процессов (химических.— Н. Б.) является присутствие специфических материальных структур, которые принято называть молекулами приходит и М. И. Шахпаронов. [c.37]

    НОЙ между полюсами магнита, и постепенно повышать напряженность магнитного поля, то при некоторой определенной напряженности поля испытуемое вещество начнет поглощать энергию. При этом ток, протекающий по катушке, возрастает. В результате получают спектр, в котором можно установить происхождение каждой линии. Таким образом, с помощью метода ЯМР можно изучать строение молекул, распределение электронной плотности и некоторые другие характеристики органического вещества. Применимость метода ЯМР ограничена жидкостями или растворами органических веществ. [c.19]

    Величину А = —lg Г = 1 (/о//) называют оптической плотностью, измерив которую на спектрофотометре или калориметре в определенной спектральной области, можно получить спектр поглощения раствора исследуемого вещества. Поглощение максимумов на спектре зависит от строения молекул. Ширина и перекрытие полос поглощения характеризует наличие сложных взаимоотношений между переходами электронов при освещении анализируемых растворов и происходящими одновременно колебаниями молекул. [c.6]

    Метод этот основан иа том, что да.же сравнительно небольшие различия в строен молекул веществ часто вызывают заметные изменения в их способности адсорбироваться определенным адсорбентом. Например, при движении раствора по колонке с адсорбенто.м те вещества, которые лучше адсорбируются, остаются в начале колонки, а вещества, хуже адсорбирующ иеся, продвигаются дальше. Получаются различно окрашенные зоиы, расположенные в определенной последовательности. Совокупность этих расцвеченных зон и составляет хроматограмму, по которой можно сулить о качественном и количественном составе е-щесТ В, находящихся в исследуемой смеси. Адсорбционно-хроматографический метод анал иза, вначале применявшийся в органической химии, теперь широко используется в аналитической химии при его помощи производят качественное и количественное определение некоторых катионов и анионов. [c.11]

    Избирательное растворение компонентов масляных фракций в полярных растворителях, протекающее в системе, где постоянно присутствуют две жидкие фазы разного состава, зависит от структурных особенностей молекул растворителя. Строение молекул растворителя определяет его растворяющую способность и избирательность по отношению к углеводородам и неутлеводородаым компонентам масляных фракций, т. е. те два основные свойства, которые учитываются при выборе растворителя для очистки нефтяного сырья. Под растворяющей способностью понимают абсолютную растворимость компонентов масляных фракций в определенном количестве растворителя избирательность характеризует способность растворителя растворять вещества только определенной структуры, что позволяет отделять одни компоненты от дру- [c.51]

    В табл. 63 приведены характеристики некоторых наиболее часто применяемых изотопов различных элементов. Большое и разнообразное применение метод меченых атомов нашел при химических исследованиях. С помощью этого метода изучают взаимодействие катализаторов с реагирующими веществами, строение молекул, механизм химических реакций, взаимодействие между раствором и осадком, диффузию в твердых телах, различные процессы, протекающие в растительных и животных оргаиизмах. На основе применения радиоактивных изотопов Ан. Н. Несмеяновым были разработаны новые методы определения давления насыщенного пара чистых веществ и парциальных давлений пара растворов, дающие возможность определять столь малые значения их, как 10 —10 мм рт. ст. и даже ниже. В настоящее время, бла- <, годаря большей доступности искусственно получаемых радиоак-тивных изотопов некоторых элементов, метод меченых атомов B eff более широко используется в исследовательских работах в раз- личных областях естествознания и техники. Он применяется для наблюдения за ходом производственных процессов, для контроля качества продукции, используется при автоматизации производства, применяется в медицине и сельском хозяйстве. [c.543]

    Рассмотрение нефтяных систем как молекулярных растворов господствовало достаточно долго. При этом в связи с трудностями аналитического выделения отдельных компонентов из средних и высших фракций нефти (масляных и газойлевых фракций) их характеризовали с помощью гипотетической средней молекулы. Модельные представления о строении молекулы смолисто-асфальтеновых веществ (САВ) получили широкое распространение. Характеристика таких гипотетических молекул — средняя молекулярная масса — входит во многие расчетные формулы зависимости свойств нефтяной фракции от Р, V, Т-условий и используется в технологических расчетах. Хотя сегодня достоверно показано, что это не всегда верно, поскольку молекулярная масса нефтяных фракций сильно зависит от условий ее определения (растворителя, температуры) [1]. До сих пор многие явления в нефтяных системах и технологические расчеты трактуются на основе физических законов, установленных для молекулярных растворов (законов Рауля-Дальтона, Генри, Ньютона, Дарси и т. д.). В результате теоретически рассчитанные доли отгона при выделении легкокипя-щих компонентов из нефти не совпадают с экспериментальными данными. Часто обнаруживающаяся в нефтяных системах (особенно с высоким содержанием парафинов и САВ) зависимость эффективной вязкости от скорости деформации свидетельствует о ее надмолекулярной организации. Отклонения от закона Дарси при течении таких систем впервые были подмечены в 1941 г. профессором В. П. Треби-ным. Однако эффекты нелинейного отклика, обусловленные особен- [c.172]

    На явлении рассеяния основаны экспериментальные методы получения спектров плотности в структурном анализе. Эти методы применимы к определению функций распределения плотности независимо от агрегатного состояния вещества. В газе нет корреляции в расположении частиц, поэтому складываются интенсивности волн, рассеянных отдельными частицами. Из картины рассеяния, в случае одноатомного газа, путем фурье-преобразова-ния находят распределение электронной плотности в атомах. Для многоатомного газа с помощью модельных расчетов определяют строение газовых молекул, в растворах изучают форму и размеры макромолекул, частиц вирусов и т. д. В жидкостях и аморфных телах существует корреляция в расположении ближайших соседей. Анализ картин рассеяния в этом случае позволяет определить ближний порядок. В кристаллах, как следствие периодичности структуры, имеется как ближний, так и дальний порядок. Дифракционная картина, получаемая от кристалла, является по содержащейся в ней информации наиболее богатой. Из этой картины, даже для таких сложных объектов, как биополимеры, можно определить координаты всех атомов кристалла [8]. [c.14]

    Рассмотрим процесс испарения в общих ч ах. При любой температуре над поверхностью раствора в парообразном состоянии находится определенное число молекул, входящих в его состав. При этом происходит постоянный обмен молекулами между жидкой и газообразной фазами часть молекул из раствора испаряется, а часть возвращается назад в раствор. Если число частиц испаряющихся равно числу конденсирующихся, то такой установившийся процесс называют состоянием динамического равновесия. Если раствор поместить в замкнутый объем, то вначале равновесия не будет. Оно наступит только по истече определенного времени. Пар, находящийся в равновесии "с жидкостью, называется насыщенным паром. Давление насыщенного пара над раствором является величиной, постоянной при неизменной температуре. Состоянию равновесия отвечает определенная для данной температуры концентрация пара. С повышением температуры давление насыщенного пара повышается и в случае, коща оно достигает атмосферного, жидкость закипает. Если компоненты раствора летучие, то образующийся пар будет содержать молекулы всех веществ, входящих в состав раствора. В таком случае общее давление насыщенного пара над раствором Робщ будет равно сумме индивидуальных (парциальных) давлений, создаваемых молекулами этих веществ, то есть Робщ=Р1+Р2+...+Рп, ще Рь Р2..., Рп — давление насыщенного пара отдельных веществ в о еме, равном объему этой смеси. Казалось бы, что парциальные давления насыщенных паров компонентов раствора должны быть пропорциональными концентрации этих веществ в растворе. Однако это бывает только в том случае, когда молекулы компонент раствора близки по величине, строению, составу и не взаимодействуют друг с другом. На самом деле, в большинстве случаев молекулы веществ, образующие раствор, не просто равномерно распределены между собой, но и связаны химически, что сказывается как на свойствах растворов, так и на величине парциальных давлений их паров. Поэтому в большинстве случаев состав пара отличается от состава раствора и сложным образом зависит от него. [c.140]

    В соответствии с рекомендациями Международной комиссии по терминологии Международного комитета по ПАВ понятгао поверхностно-активное вещество дается следующее определение Вещество, способное из раствора (истинного или коллоидного) в жидкой среде адсорбироваться на поверхности раздела фаз (жидкость-газ (пар), жид-кость-жидкость, жидкость-твердое тело) с соответствующим понижением свободной энергии (поверхностного натяжения) на этой поверхности. Для типичных ПАВ характерно определенное дифильное строение их молекул. Вещество, поверхностно-активное на одной границе раздела, на другой границе может бьггь инакгивным (неспособным к адсорбции)...  [c.322]

    Обзор литературных данных по строению органических веществ с 1929 по 1973 год [256, 257] и до настоящих дней позволяет систематизировать структурные исследования кристаллических компонентов серных вулканизующих систем в соответствии с их принадлежностью к определенным классам соединений и предвидеть возможности образования при их смещении эвтектических систем и твердых растворов замещения. Такой прогноз облегчается при наличии информгщии о геометрическо] форме кристаллических молекул и параметрах элементарных ячеек, а также о принадлежности кристаллов к определенной сингонии [258] и структурному классу. [c.63]

    Растворы немезоморфных соединений в нематических жидких кристаллах являются к настоящему времени наиболее изученными. В зависимости от строения молекулы немезогена нематические растворы могут быть разделены на две группы. К первой группе следует отнести системы с потенциально мезоморфными немезогенами. Молекулы таких соединений характеризуются значительной геометрической анизотропией. Обычно эти вещества являются аналогами жидкокристаллических соединений, но не проявляют ни энантиотроиного, ни монотропного - мезоморфизма. Примерами могут служить соединения 1Уа и Г д. Все остальные системы относятся ко второй группе. Разумеется, вполне определенную границу между этими двумя группами провести трудно, но обычно системы первой группы имеют фазовые диаграммы типа V (по Розебому), а второй группы - типа IV. [c.221]

    Взаимодействие ионов щелочных металлов с ионами хлора носит совершенно иной характер. Прежде всего не удается установить присутствия недиссоциированных молекул в водных растворах уменьшение молекулярной электропроводности может быть, как мы видели выше, объяснено и иным путем. При упаривании раствора газ не выделяется, как в случае хлористого водорода, а остается соль в кристаллическом состоянии, и требуются сравнительно очень высокие температуры, чтобы перевести ее в газообразное состояние. Хотя в этом и заключается характерное различие между кристаллами типа хлористого натрия и кристаллами затвердевшего хлористого водорода и других газообразных или легко летучих при обычной температуре соединений, но все же ранее по аналогии предполагали, что кристаллы типа Na l построены из молекул соответствующих соединений. Недостатком этого представления было то, что на его основе нельзя было объяснить характерное различие в летучестях этих веществ. В дальнейшем эти представления были опровергнуты определением строения кристаллов рентгенографическим способом, показавшим, что кристаллы хлоридов щелочных металлов, так же как и других типичных солей, построены не из молекул, а непосредственно из ионов, образующих эти соединения. [c.230]

    Тр обстоятельство, что старые методы определения строения веществ, основанные главным образом на изучении химических свойств, большей частью совершенно неприменимы для неорганических соединений, объясняется следующим образом почти все органические вещества построены из молекул, содержащих ограниченное число атомов и способных переходить в газообразное состояние или в раствор, не испытывая при этом существенных структурных изменений. Напротив, неорганические вещества в твердом состоянии в подавляющем большинстве построены ив неограниченного числа атомов или ионов. При испарении или растворении таких веществ разрушаются силовые поля, в которых находились атомы или ионы в твердом состоянии, и тем самым становится невозможным непосредственное изучение существовавшего прежде типа строения. Кроме того, в органических соединениях почти всегда осуществляется только один тип связи. Не существует принципиальных отличий ни между углерод-углеродными связями (простая и кратная связь, ароматическая связь), ни между углерод-углеродными и другими связями, возникающими между углеродными и другими атомами в органических соединениях. В неорганических соединениях следует различать многие принципиально отличные типы связей, между которыми существуют многочисленные переходы, которые еще более осложняют положение. Открытое Лауэ преломление рентгеновских лучей при прохождении через кристалл впервые позволило изучить структуру веществ, построенных из неограниченного числа атомов или ионов. Принципиальные различия между типами связи, присущими неорга1 и еским веществам, становятся понятными на основе теории строения атома и квантово-механических представлений. [c.322]

    Знание формы молекул и межатомных расстояний в них для химии более важно, чем знание упаковок (Молекул в кристалле. Поэтому ири работе с молекулярными соединениями приходится пользоваться данными о строении молекул, полученными не только рентгено-структурным методом, но и другими методами (спектральным, электронографическим и др.), тем более что определение структур молекулярных соединений часто затруднено тем, что при обычных условиях эти соединения газообразны или жидки. Работа же при низких температурах представляет известные эксперименталыные трудности. При этом надо помнить, что если молекулы существуют в парах, расплаве или растворах, то это еще яе значит, что они обязательно присутствуют и в кристаллах. Так, например, в кристаллах Na l и NaBr никаких молекул нет. Межатомные расстояния в структурах этих веществ (2,81 и 2,98 соответственно) сильно отличаются от соответствующих межатомных расстояний в молекулах в парах (2,51 и 2,64). [c.326]

    Экспериментальные исследования колебательно-вращательных спектров показали, что полосы при некоторых частотах можно привести в соответствие с колебаниями определенных групп атомов или отдельных атомов в молекуле. Такие частоты назвали характеристическими. Различные молекулы, содержащие одну и ту же связь или одну и ту же атомную группировку, будут давать в ИК-спектре полосы поглощения в области одной и той же характеристической частоты. Это и является основой качественного анализа по инфракрасным спектрам. Характеристические частоты дают возможность установить по спектру наличие определенных групп атомов в молекуле и тем самым позволяют судить о качественном составе вещества и строении молекул. Например, полосы в области 3000...3600 см могут быть приписаны только О—Н- или N—Н-связям, и отсутствие полос в этой области спектра однозначно свидетельствует об отсутствии ОН- и NH-rpynn в анализируемом веществе. Примеры такого рода исследований весьма многообразны. С помощью инфракрасных спектров было установлено строение многих олефинов, ароматических соединений, карбонильных соединений, аминокислот и других групп веществ. Было выяснено, например, что большинство аминокислот существует в растворе в ионизированном состоянии, которое можно предстало [c.65]

    Метод ядерного магнитного резонанса (ЯМР). В основе ме-> тода лежит резонансное поглощение электромагнитных волн исследуемым веществом в постоянном магнитном поле, обусловленное ядерным магнетизмом. Ядра атомов определенного рода действуют как микроскопические магниты, которые, попадая в магнитное поле, поворачиваются все в одном направлении. Если какое-либо- соединение, в котором ядра атомов водоррда обладают свойствами магнитов, поместить в центр катушки (через обмотку которой пропущен переменный ток), расположенной между полюсами магнита, и постепенно повышать напряженность магнитного поля, то при некоторой определенной напряженности поля испытуемое вещество начнет поглощать энергию. При этом ток, протекающий по катушке, возрастает. В результате получают спектр, в котором можно установить происхождение каждой линии. Таким образом, с помощью метода ЯМР можно изучать строение молекул, распределение электронной плотйости и некоторые другие характеристики органического вещества. Применимость метода ЯМР ограничена жидкостями или растворами органических веществ. [c.19]

    Существующие теории строения жидких кристаллов базируются на представлении о взаимном ориентирующем действии молекул жидкости друг на друга, вследствие чего оси молекул располагаются в определенных направлениях. Некоторые вещества в жидко-кристаллическом состоянии способны смешиваться и образовывать жидкие кристаллы, аналогичные растворам твердых вещестд. [c.42]


Смотреть страницы где упоминается термин Определение строения молекулы вещества в растворе: [c.595]    [c.276]    [c.176]    [c.64]    [c.356]    [c.535]    [c.7]    [c.5]    [c.183]    [c.402]    [c.52]   
Смотреть главы в:

Практикум по физической и коллоидной химии -> Определение строения молекулы вещества в растворе

Практикум по физической и коллоидной химии -> Определение строения молекулы вещества в растворе




ПОИСК





Смотрите так же термины и статьи:

Вещества строение

Молекула строение

Молекула, определение



© 2025 chem21.info Реклама на сайте