Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Катализаторы, инициаторы и инициирование цепи

    Инициирование цепи — возникновение активного центра, на котором происходит рост макромолекулы. Такой активный центр может возникнуть в результате одной или нескольких последовательных реакций мономера с инициатором (катализатором) процесс инициирования закончится, когда сформируется активный центр минимальной длины, активность которого в продолжении цепи практически не меняется при дальнейшем присоединении молекул мономера (при гомополимеризации). [c.219]


    Зная число инициированных цепей, легко рассчитать эффективность инициирования цепей катализатором, если известна скорость разложения инициатора. Например, для инициатора, использованного Арнеттом и Петерсоном [16, было найдено, что отношение числа радикалов, инициирующих цепи, к числу всех радикалов, образующихся при разложении инициатора, меняется в зависимости от мономера  [c.401]

    Инициирование полимеризации происходит в результате атаки мономерной окиси пропилена анионом, образовавшимся при действии основного катализатора на инициатор. Рост цепи происходит путем ряда последовательных атак на мономер анионов, получаюш,ихся при раскрытии окис-ного кольца. Обрыв цепи — результат дезактивации полимерного аниона протоном. [c.44]

    Классификация процессов. Реакции полимеризации относятся к классу сложных последовательных реакций типа А— В, В—>-С, С—уВ.....Как во всяком цепном процессе, здесь различают элементарные стадии — инициирования, роста, обрыва и передачи цепи. Так, например, аддитивная полимеризация может быть описана следующей моделью сначала мономер М1 под действием катализатора (инициатора) превращается в активный растущий центр Р , дающий начало полимерной цепи затем Р1 соединяется с М1 и превращается в Рг далее Рг соединяется с 1, образуя Рз, и т. д. Полимер Рх не обязательно остается активным в течение всего процесса роста цепи, так как могут происходить реакции обрыва цепи — образования неактивной мертвой цепочки М . [c.12]

    Технологический расчет процесса полимеризации проводится либо на основании эмпирических зависимостей, либо с использованием математической модели процесса, содержащей уравнения, которые описывают скорость всех элементарных реакций (например, для эмульсионной полимеризации распад инициатора, инициирование, рост цепи полимера, обрыв цепи, передача цепи, повторное инициирование). Кроме того, в математическую модель входят уравнения, описывающие тепло- и массообмен, а также граничные условия. Поэтому модель получается достаточно сложной и решение ее возможно только на ЭЦВМ. Сложным оказывается также описание процесса полимеризации в растворе, скорость которого зависит от начальной концентрации катализатора, температуры и концентрации мономера. [c.132]

    Окисление углеводородного горючего катализируют высшие окислы и соли органических кислот этих металлов. Ускоряющее действие таких катализаторов связано с их способностью, вступать в реакции с исходными углеводородами и продуктами их окисления. При этом металл меняет свою валентность и образует свободные радикалы. Каждая молекула катализатора может многократно принимать участие в инициировании цепей, вызывая превращения молекулярных продуктов в свободные радикалы. Этим катализаторы отличаются от инициаторов типа перекисей. [c.70]


    II. КАТАЛИЗАТОРЫ, ИНИЦИАТОРЫ И ИНИЦИИРОВАНИЕ ЦЕПИ [c.94]

    Степень полимеризации — число повторяющихся мономерных звеньев п. Процесс полимеризации осуществляется в присутствии катализаторов (инициаторов) и включает три основные стадии инициирование, развитие и обрыв цепи. [c.339]

    Синтез термоэластопластов осуществляется с помощью катализаторов, образующих так называемые живые цепи, сохраняющие способность к росту в течение неограниченного времени [4]. В качестве катализаторов такого типа промышленное признание получили литийорганические соединения. Они позволяют получать полимеры с более регулярной микроструктурой эластомерного блока, чем при использовании органических соединений других щелочных металлов, и тем самым обеспечить термоэластопластам лучший комплекс свойств. Литийорганические инициаторы, используемые для синтеза термоэластопластов, должны обладать высокой скоростью инициирования, обеспечивающей получение полимеров с узким молекулярно-массовым распределением. С этой целью обычно применяется вгор-бутиллитий [5]. [c.284]

    Инициирование полимеризации. Полимеризация виниловых мономеров протекает в присутствии малых количеств различных реагентов, известных как инициаторы. Поскольку инициаторы разрушаются в процессе реакции, их не следует считать катализаторами, хотя они иногда так называются. Инициаторы необходимы для образования некоторых активных веществ, таких, как ионы или свободные радикалы, способных присоединяться к углерод-углеродной двойной связи с образованием нового иона или свободного радикала, который в свою очередь может присоединить следующую единицу. Различные процессы полимеризации наиболее легко описать, принимая во внимание химическую природу растущей полимерной цепи. [c.579]

    Такая же картина наблюдается и при добавлении олефинов [95]. Особенно сильное действие с таким же распределением радиоактивности оказывает кетен [96]. Эти факты говорят об инициировании добавками процесса цепной закрепленной реакции образования молекул алканов. Добавка действует в качестве инициатора цепи, и поэтому обычно ее содержание в молекулах с разным числом атомов углерода одинаково. Это перестает соблюдаться при увеличении концентрации меченой добавки, для которой появляется вероятность участия в росте цепи тем больше, чем длиннее эта цепь [97]. В качестве иллюстрации приведем данные по инициированию реакции меченым олефином на катализаторах Со/ТШг (рис. 1.26). [c.60]

    Наконец, необходимо упомянуть еще о т. наз. газофазной полимеризации. Очевидно, что осуществление П. целиком в газовой фазе практически невозможно, т. к. из-за ничтожно малой растворимости полимера в парах своего мономера растущие цепи уже при достижении относительно небольших размеров выпадают в виде твердой фазы. Газофазной П. обычно называют процессы, в к-рых мономер находится в газообразном состоянии. Инициирование может происходить либо в газовой фазе (под действием у-излучения или парообразного инициатора), либо на поверхности твердого катализатора. Сама же П. (рост цепи) происходит на поверхности или в объеме твердой фазы полимера. [c.444]

    В настоящее время можно подчеркнуть одну особенность, которая отличает радикальный процесс от ионного и, очевидно, определяет возможность стереоспецифической полимеризации. В радикальной полимеризации после инициирования течение процесса полимеризации не зависит ог природы инициатора, в то время как в ионной полимеризации, благодаря тому, что катион и анион всегда ассоциированы в ионную пару, все этапы процесса (т. е. инициирование, рост, передача и обрыв цепи) находятся под контролем ионной нары и поэтому природа катализатора влияет на каждый из этих этапов процесса. [c.50]

    Изучение молекулярно-весового распределения (МВР) при быстрых реакциях, протекающих без обрыва цепи, для полимеризации стирола в тетрагидрофуране под действием Ыа-нафта-лина показало, что константа роста цепи при —78° лежит между 10 и л моль-сек. Авторы пришли к выводу о том, что полидисперсность живущих полимеров в случае больших концентраций инициатора объясняется главным образом небольшой скоростью смешения катализатора и мономера и лишь в меньшей степени малой скоростью реакции инициирования по сравнению с реакцией роста цепи юзз-юзб [c.127]

    Характерное отличие кинетики ионной полимеризации ог радикальной, как это доказал С. С. Медведев с сотр., заключается в линейном изменении скорости полимеризации в зависимости от концентрации катализатора скорость же радикальной (инициированной) полимеризации пропорциональна квадратному корню концентрации инициатора. Однако основные зависимости ионной полимеризации (например, молекулярного веса полимера от температуры, концентрации катализатора и т. д.) имеют в основном тот же характер, что и при радикальной полимеризации. Процесс передачи цепи, повидимому, играет меньшую роль, чем при радикальной полимеризации, и основные зависимости опре-.деляются лишь распадом образующихся комплексов с освобождением катализатора в диссоциированном состоянии. [c.46]


    Это направление — первое в системе химической кинетики — сразу же привлекло внимание технологов своими теоретическими и пра ктическ.ими результатами и установило тесные контакты с химическим производством. В этом направлении уже в 1930—1940-е годы были решены многие очень важные вопросы. Выяснен детальный механизм цепных разветвленных реакций, состоящий из стадий инициирования свободных радикалов, развития цепей, рекомбинации и захвата радикалов, обрыва цепей. На этой основе были созданы теории предельных явлений, объясняющие наличие лавн-нообразного процесса в определенных пределах давления или плотности реагентов, температуры, геометрических размеров сосуда ( ), разбавления инертными разбавителями и резкое падение скорости процесса за этими пределами. Впервые была показана конкретная роль стенки реактора, с одной стороны, как инициатора свободных радикалов и, следовательно, неспецифического катализатора, а с другой —как Н1гибит0(ра, за.чватьгвающего радикалы. [c.149]

    Таким образом, несмотря на наличие некоторых общих черт у радикальной н ионной полимеризации как цепных реакций синтеза полимеров, где кинетическая цепь реакций активных расту1цих частиц с молекулами мономера воплощается в материальную цепь макромолекул, между ними имеются существенные различия. Прежде всего в ионной полимеризации в качестве растущей частицы действуют заряженные ионы, а в свободнорадикальной полимеризации— свободные радикалы с неспаренным электроном на атоме углерода. Ионы более активны и реакциоппоспособны. В связи с этим требуются более тщательно контролируемые условия их образования и существования. Инициирующие системы в ионной полимеризации в основном являются каталитическими, т. е. восстанавливают свою исходную структуру, а не расходуются необратимо, как в случае радикальных инициаторов. Во многих случаях катализаторы ионной полимеризации осуществляют не только химическое инициирование полимеризации, но и координируют молекулы мономера около растущих частиц. Это позволяет получать строго регулярное пространственное (стерическое) расположение звеньев мономера в цепи полимера (стереорегулярные полимеры). [c.36]

    П.-особый тип цепных реакции в ней развитие кинетич. цепи сопровождается ростом материальной цепи макромолекулы. Процесс включает неск. осн. стадий, т. наз. элементарных актов инициирование-превращ. небольшой доли молекул мономера в активные центры под действием специально вводимых в-в (инициаторы радикальные и катализаторы полимеризации), излучения высоких энергий (радиационная полимеризация), света (фотополимеризация) или электрич. тока рост цепи-последоват. присоединение молекул мономера (М) к активному центру (М )  [c.637]

    Закономерности ионной полимеризации могут быть рассмотрены только в общих чертах, так как в каждом конкретном случае в зависимости от природы мономера, катализатора к среды процесс имеет свои особенности. Энергия активации ионной полимеризации ниже, чем радикальной, поэтому процесс идет прн низких температурах, часто отрицательных, с очень высокой скоростью. Ионная полимеризация, как любой цепной процесс, протекает в три стадии инициирование, рост цепи, ограничение роста. Однако в отличие от радикальных процессов функция катализатора не ограничивается только участием в реакц[ ях инициирования катализаторы влияют на реакцик роста и обрыва цепи, участвуют в реакциях переноса. Это определяет кинетику процесса н структуру получаемого полимера. Прн радикальной по.лимернэации инициатор не оказывает влияния на структуру полимера. [c.122]

    Медленное обычное инициирование, описываемое уравнением (2.2), может быть полностью исключено при использовании инициаторов с имидными группами, например ацетиллактама. Процесс активированного инициирования по уравнениям (2.3) и (2.4) осуществляется очень быстро, так что в присутствии катализатора и имидного инициатора полимеризация в блоке может осуществляться в диапазоне температур 100—200 °С, т. е. при температурах ниже температуры плавления полимера, которая составляет примерно 225 °С. Основные стадии процесса роста цепи при активированном инициировании представлены уравнениями (2.5) и (2.6). [c.50]

    Начальной стадией свободнорадикальной полимеризации является стадия инициирования, в результате которой образуются свободные радикалы. Свободные радикалы могут быть получены при нагревании самого мономера, однако это достоверно установлено только для стирола (опыт 3-01). Обычно радикалы получают при термическом разложении инициаторов, иногда называемых также катализаторами. Свободные радикалы реагируют с мономером, возникающие реакционноспособные частицы последовательно присоединяют молекулы мономера, что приводит к образованию макрорадикалов. Этот процесс продолжается до тех пор, пока реакция роста не прекратится. Обрыв растущих цепей происходит в результате рекомбинации или диспропорционирования двух макрорадикалов. Таким образом, свбодные радикалы, которые получаются при разложении инициатора, входят в состав макромолекул в качестве концевых групп. Образующиеся при этом макромолекулы содержат один или два концевых фрагмента инициатора, что зависит от механизма реакции обрыва. [c.112]

    ПВФ, полученный в присутствии обычных свободно-радикальных инициаторов, имеет беспорядочно ориентированную (атактическую) молекулярную структуру и содержит до 32% звеньев, соединенных по типу голова к голове , т. е. в поли-.мерной цепи одно мономерное звено из каждых шести присоединяется обратно . Степень стереорегулярности образцов ПВФ, синтезированных на катализаторах Пиглера — Натта, а также при инициировании полимеризациич ооралкилами, существенно не улучшается. У образцов обнаружен одни и тот же тип спектров дифракции рентгеновских лучей полимеры отличаются лишь повыщенными степенью кристалличности и температурой плавления кристаллитов [121], что обусловлено более регулярным присоединением по типу голова к хвосту . С понижением те.мпературы полимеризации повышается регулярность ПВФ за счет уменьшения аномальных мономерных связей голова— голова , хвост—хвост и разветвлений цепи полимера. [c.74]

    П.— цепная р-ция, при к-рой развитие кинетич. цепи сопровождается ростом материальной цепи макромолекулы. Включает след, кинетически связанные стадии 1) инициирование — превращ. небольшой доли мономера в активные центры в результате взаимодействия с инициаторами или катализаторами либо под действием ионизирующего излучения, электрич. тока или света 2) рост цепи — присоед. молекул мономера к активному центру 3) обрыв цепи — дезактивация активного центра при взаимодействии с др. активным центром, др. в-вом или вс.чедствие мономол. превращения 4) передача цепи — переход активного центра на к.-л. другую частицу, напр, мономер, полнмер, р-ритель. В нек-рых случаях передача цепи приводит к оО- [c.462]

    Для того чтобы синтезировать привитой сополимер по механизму, включающему передачу цепи, необходимо наличие в нолимеризующейся системе трех компонентов, а именно способного полимеризоваться мономера, полимерных цепей, на которые прививается этот мономер в качестве боковых цепей, и источника образования свободных радикалов или катализатора, который способен отрывать атом от полимерной цепи для инициирования цепной реакции. Эффективность метода получения привитых сополимеров в результате реакции передачи цепи непосредственно зависит от структур мономера, полимера и от природы инициатора. [c.264]

    Существуют реакции двух типов с участием больших хмоле-кул — реакции, ведущие к их образоваш1Ю, и реакции, ведущие к их распаду. К реакциям первого типа относятся процессы полн-конденсации и полимеризации здесь рассмотрены только последние. Среди многочисленных работ в области высокополимеров в течение последних десятилетий были проведены обпшрные исследования по механизму и кинетике цепных реакций, происходящих при полимеризации в настоящей главе в общих чертах описаны результаты этих работ. Речь идет об образовании длинных цепей, содержащих сотни или тысячи звеньев поэтому стадия роста цепи будет сравнительно быстрой, а первоначальное образование активных частиц, радикалов или ионов, — относительно медленным и чувствительным к условиям реакции. По этой причине после описания кинетики и экспериментальных значений констант скорости рассмотрены различные механизмы инициирования реакции, т. е. возникновения активных частиц. Имеется два способа инициирования — образование свободных радикалов и образование ионов. Эти частицы получают при помощи инициаторов, т. е. веществ, которые связываются химически с конечным продуктом реакции, или при помощи катализаторов в собственном смысле слова. Радикалы, конечно, могут быть также получены посредством радиации. [c.169]

    Цепная реакция получения полимеров может проходить не только под действием инициаторов, распадающихся на свободные радикалы. Все более возрастает роль процессов, в которых рост цепи макромолекулы проходит под влиянием ионов. Вещества, инициирующие полимеризацию мономеров по ионному механизму, называются катализаторами. Если каталитическое инициирование приводит к росту цепи под действием карбониевого положительно заряженного иона (карбкатиона), М+ [Кат]->М+[Кат]", то имеет место катионная полимеризация, если рост цепи вызывается отри-цительно заряженным углеродным ионом (карбанионом), М + [Кат]->-М [Кат]+, то происходит анионная полимеризация. К ионным типам полимеризации относят также реакции роста цепи, происходящие путем координации мономера на поверхности катализатора, причем твердая поверхность катализатора в этом случае играет особую роль матрицы, которая постоянно репродуцирует полимерную цепь с определенным пространственным упорядоченным расположением составляющих ее звеньев. Реакционная система в случае ионной полимеризации часто является гетерогенной (неор- [c.18]

    Махадеван и Сантхаппа [899] исследовали кинетику полимеризации метилакрилата в массе и в растворе этилацетата при 55—75°, инициатор—перекись бензоила и другие пероксиды. Молекулярный вес рассчитывался по уравнению, [ 1]= 1,28- 10 M i и Рп = 11,2 ([7j]-100)1-22, где Рп — коэффициент полимеризации. Определены также скорость инициирования, константы переноса цепи мономером и катализатором и другие константы. [c.375]

    Во всех описанных случаях, очевидно, фиксированные ионные пары способствуют ускорению реакции роста цепи и контролю за ее протеканием, что приводит к ряду положительных эффектов 1) полимеризационые процессы осуществляются относительно быстро в удивительно мягких условиях 2) исключается возможность протекания побочных реакций разветвления и сшивания 3) образуются стереорегулярпые изомеры, такие, как изотактические и синдиотактические виниловые полимеры, яли полностью цис-, или полностью т/ айс-, или, наконец, целиком 1,2-полидиены 4) такие мономеры, как а-олефины и циклические олефины, которые при применении обычных катализаторов практически не полимеризуются, могут быть заполимеризованы с помощью этих гетерогенных , комплексных , координационных катализаторов. Принцип неполного разделения активных центров инициатора и их пространственной стабилизации является наиболее эффективным нри ионном инициировании, но он может играть роль также и при свободнорадикальном инициировании, как было показано в работах Хааса [169], Фокса [171], Фордхэма [172, 287] и их сотрудников. Этот же принцип проявился при производстве холодных каучуков, где при инициировании свободными радикалами в микрогетерогенной системе (в эмульсии) при низких температурах образуются полимеры бутадиена, изопрена и хлоронрена с преобладающим одержанием 1,4- гранс-звеньев. [c.202]

    При к < к2 процесс протекает нестационарно и ур-ние (И) соблюдается лишь после завершения инициирования. В таких случаях образуются полимеры с широким молекулярно-массовым распределением. Ассоциация обычно обусловливает дробный порядок реакции по инициатору и растущим цепям, т. к. ассоциированные формы, как правило, обладают низкой реакционной способностью и в равновесных системах (МеК) пМеВ (12а) развитие процесса практически целиком обеспечивается мономерной (МеК) или менее ассоциированной формой. В частности, известны факты, в соответствии с к-рыми кинетически эффективными частицами при реакциях литийалкилов являются их димерные формы (взаимодействие литийбутила с бутилброми-дом в присутствии оснований Льюиса, полимеризация винилхлорида под действием литийбутила и др.). В этих условиях кажущиеся константы скоростей элементарных актов включают в себя соответствующие константы равновесия. Подобные черты свойственны многим процессам полимеризации, протекающим в неполярных средах под действием литийалкилов, где растущие цепи различных полимеров (стирола, бутадиена, изопрена) обычно существуют в виде ассоциатов, содержащих 2 молекулы. Дополнительные осложнения возникают из-за образования перекрестных ассоциатов растущих цепей с инициатором. Образование ассоциатов обнаружено и при полимеризации с использованием в качестве катализаторов калийорганических соединений в углеводородной среде. [c.74]

    Наиболее универсальный и распространенный способ инициирования Т. п.— радиационный (у-лучи, рентгеновские лучи, быстрые электроны). В нек-рых случаях удается реализовать др. виды инициирования термическое, фотохимическое, химическое (воздействие паров или р-ров катализатора на поверхность частиц твердого мономера), механохимическое (вибрационное диспергирование, сдвиг под давлением, действие ударной волны). Радиационное и фотохимич. инициирование можно проводить при достаточно низких темп-рах, когда рост цепей в твердой фазе заторможен, и запасти таким путем в твердом мономере низкомолекулярпые активные центры (радикалы, ион-радикалы, ионы), способные при повышении темп-ры начать реакцию в режиме пост-полимеризации. Один из удобных способов получения слоев твердых мономеров, содержащих потенциально активные центры заданной химич. природы,— совместная конденсация паров мономера и инициатора на сильно охлажденной поверхности (метод молекулярных пучков). [c.292]

    Методом ЭПР идентифицированы растущие макрорадикалы в жидкой и твердой фазах, определены их концентрации, найдены константы скорости роста и обрыва цепей. Измеряя скорость расходования специально введенных в мономер стабильных радикалов (дифенил-пикрилгидразила, феноксильных и нитроксильных радикалов), можно определить скорости инициирования и эффективность инициаторов. При исследовании механизма полимеризации на комплексных катализаторах типа Циглера — Натта методом ЭПР обнаружено образование парамагнитных комплексов. Детально исследованы радикалы, образующиеся в полимерах при термической, термоокислительной, радиационной, механической и фотохимической деструкции. По спектрам ЭПР для большинства полимеров определены химич. строение макрорадикалов и их электронная структура. [c.477]

    Вопросу инициирования реакции полимеризации акрилонитрила посвящено значительное количество обзорных работ [34—45]. Наибольшее количество работ касается уже хорошо известных ранее способов инициирования полимеризации акрилонитрила при помощи различных перекисных катализаторов, окислительно-восстановительных систем и 2,2 -азо-бис-изобутиронитрила. Так, Хэм [46] исследовал полимеризацию акрилонитрила в растворе нитрила изомасляной кислоты при 60° в присутствии инициатора — перекиси бензоила и показал, что процессы передачи цепи через полимер в этом случае не имеют существенного значения. [c.559]

    Как видно из рис. 19, а, в случае линейного обрыва цепеГ (кривые 1 и 2) увеличение скорости зарождения цепей Шо приводит к резкому сокращению периода индукции процесса. Сокращение периода индукции, вызванное увеличением Шо путем добавок различных инициаторов в начальный момент реакции, можно наблюдать на примере окисления н-декана, инициированного добавками газообразного бромистого водорода, циклогек-сана, инициированного двуокисью азота, и ряда других жидких углеводородов и сжиженных углеводородных газов, ишщи-ированных газовыми катализаторами, проникающим излучением и действием инертных радиоактивных газов [222—227]. [c.60]


Смотреть страницы где упоминается термин Катализаторы, инициаторы и инициирование цепи: [c.40]    [c.218]    [c.218]    [c.65]    [c.186]    [c.48]    [c.462]    [c.270]    [c.48]    [c.478]    [c.77]    [c.38]   
Смотреть главы в:

Катионная полимеризация -> Катализаторы, инициаторы и инициирование цепи




ПОИСК





Смотрите так же термины и статьи:

Инициаторы

Инициирование



© 2025 chem21.info Реклама на сайте